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Figure 1: Neural 3D reconstruction in the wild. Given a large number of Internet photos capturing popular tourist attractions (left),
our approach learns to produce high quality 3D surface reconstruction, efficiently modeling entire 3D scenes with a novel hybrid neural
implicit representation (right). Colors indicate surface normals. Please zoom in to see details in the geometry. Photos by Flickr users rickz,
Infinite Ache, jon collier, Modes Rodriguez, Ashwin Kumar, Richard Cyganiak, David Lebech, Matt Drobnik, Scott, Naval S. under CC-BY.

ABSTRACT

We are witnessing an explosion of neural implicit representations
in computer vision and graphics. Their applicability has recently
expanded beyond tasks such as shape generation and image-based
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rendering to the fundamental problem of image-based 3D recon-
struction. However, existing methods typically assume constrained
3D environments with constant illumination captured by a small
set of roughly uniformly distributed cameras. We introduce a new
method that enables efficient and accurate surface reconstruction
from Internet photo collections in the presence of varying illumi-
nation. To achieve this, we propose a hybrid voxel- and surface-
guided sampling technique that allows for more efficient ray sam-
pling around surfaces and leads to significant improvements in
reconstruction quality. Further, we present a new benchmark and
protocol for evaluating reconstruction performance on such in-the-
wild scenes. We perform extensive experiments, demonstrating that
our approach surpasses both classical and neural reconstruction
methods on a wide variety of metrics. Code and data will be made
available at https://zju3dv.github.io/neuralrecon-w.
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1 INTRODUCTION

Reconstructing a 3D mesh from a collection of 2D images is a long-
standing goal in computer vision and graphics. Neural field-based
3D reconstruction methods (e.g., [Oechsle et al. 2021; Wang et al.
2021; Yariv et al. 2021]) have recently gained traction as they can
reconstruct high-fidelity meshes for both objects and scenes, sur-
passing the quality of traditional reconstruction pipelines [Cernea
2020; Schonberger et al. 2016]. But these methods are often demon-
strated in controlled capture settings. Consider the Internet photo
collections of the Brandenburg Gate and Trevi Fountain shown in
Fig. 1. Can neural 3D reconstruction techniques apply to real-world,
unconstrained Internet datasets like these? Handling such data
requires both scalability and robustness to highly diverse imagery.

Unlike standard 3D reconstruction datasets that typically contain
tens of images (e.g., the DTU dataset [Jensen et al. 2014] provides
49 or 64 images per scene), Internet datasets can contain hundreds
or thousands of images. Neural 3D reconstruction techniques must
process such image collections efficiently, without sacrificing ac-
curacy in complex scenes featuring geometric detail of varying
granularity. Beyond scalability to large scenes and image collec-
tions, existing reconstruction methods typically assume constant
illumination and leverage photometric consistency across the input
images. In contrast, for in-the-wild scenes, robustness to appear-
ance variation is another key requirement.

In this work, we present an approach that can efficiently recon-
struct surface geometry for large-scale scenes in the presence of
varying illumination. Inspired by Neural Radiance Fields in the
Wild (NeRF-W) [Martin-Brualla et al. 2021], we model appearance
variation using appearance embeddings, but seek meshes as output,
rather than radiance fields as in that work. Meshes, unlike raw radi-
ance fields, provide a direct representation of the scene’s geometry
and can be readily imported into standard graphics pipelines. To
reconstruct such surface geometry, we leverage volume rendering
methods as in NeuS [Wang et al. 2021], coupling a neural surface
representation with volumetric rendering. However, a straightfor-
ward integration of the surface representation presented in NeuS
with a volumetric radiance field that models appearance variations
involves huge compute demands for large-scale Internet collec-
tions, and is intractable in settings with limited access to high-end
GPUs. For each scene we consider, training using this integrated
framework on 32 GPUs converges after roughly ten days.
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We therefore propose a hybrid voxel- and surface-guided sam-
pling technique. We observe that the standard ray sampling strategy
for optimizing neural radiance fields is highly redundant (Figure 2a).
To reduce redundant training samples, we first leverage the sparse
point clouds from structure-from-motion (SfM) to initialize a sparse
volume from which samples are generated (Figure 2b). We then
combine this voxel-guided strategy with a surface-guided sampling
technique which generates samples based on the current state of
optimization (Figure 2c). Our key insight here is to not only use the
SfM point clouds, but also our surface approximation, yielding new
samples that are centered around the true surface. This strategy
guides the network to explain the rendered color with near-surface
samples, leading to more accurate geometric fitting.

Finally, while established benchmarks and evaluation schemes
exist for controlled datasets, such benchmarks with ground truth
geometry do not exist for Internet collections. Therefore, we intro-
duce Heritage-Recon, a new benchmark dataset derived from the
public catalog of free-licensed LiDAR data available in Open Her-
itage 3D, a repository of open 3D cultural heritage assets.” We pair
this unique data source with Internet-derived image collections and
SfM models from the MegaDepth dataset [Li and Snavely 2018], per-
forming additional processing steps such as model alignment and
visibility checking. We also carefully design an evaluation protocol
suited for such large-scale scenes with incomplete ground truth (as
even LiDAR scans may not cover the entirety of a scene visible from
imagery). Evaluating on Heritage-Recon, we demonstrate that our
approach surpasses classical and neural reconstruction methods in
terms of efficiency and accuracy.

2 RELATED WORK

Image-based 3D reconstruction aims at estimating the most likely
3D shape (and possibly appearance) of an object or a scene given
a set of captured 2D photos. In this section, we summarize prior
work ranging from classical to modern approaches, highlighting
work most closely related to our own.

Multi-view reconstruction. Multi-view 3D reconstruction meth-
ods take images and estimate geometry with a variety of represen-
tations, including point clouds, depth maps, meshes, or volumetric
implicit functions [Furukawa and Hernandez 2015]. Many clas-
sical multi-view stereo (MVS) methods reconstruct geometry by
estimating a depth map for each image followed by depth fusion
to obtain dense point clouds [Furukawa and Ponce 2009; Goesele
et al. 2006; Hedman et al. 2017; Schonberger et al. 2016]. Surface
reconstruction algorithms such as Poisson reconstruction [Kazh-
dan et al. 2006; Kazhdan and Hoppe 2013] and Delaunay triagula-
tion [Labatut et al. 2009] can then be applied to these point clouds
to produce meshes. Recently, learning-based multiview depth es-
timation methods have achieved state-of-the-art performance on
numerous benchmarks by taking advantage of data-driven priors
and physical constraints [Darmon et al. 2021; Gu et al. 2020; Huang
et al. 2018; Liu et al. 2019; Yao et al. 2018, 2019].Since these methods
perform depth estimation, point cloud fusion and mesh extraction
stages separately, they are sensitive to outliers or inconsistencies in
depth maps and can yield noisy or incomplete reconstructions. In

“ https://openheritage3d.org/
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(a) Sphere-based sampling

(b) Voxel-guided sampling

(c) Surface-guided sampling

Figure 2: Comparison between sphere-based sampling and our proposed sampling strategy. Sphere-based sampling (a), used in
NeusS, generates samples scattered throughout the unit sphere and spanning the whole scene, with the result that most samples lie in empty
regions and are hence unnecessary. We propose voxel-guided sampling (b) to avoid unnecessary samples by sampling only within a sparse
voxel volume around surfaces estimated from SfM point clouds (only a subset of voxels are shown for clarity). To further increase the
sampling density around surfaces, we additionally propose a surface-guided sampling strategy (c), where we store SDF values from previous
training iterations in the sparse voxels, and generate samples within a smaller range centered around the estimated surface positions. Note
that each successive region of the volume considered by each sampling strategy from (a) to (b) to (c) is progressively smaller as suggested by

the 2D blue and red bounding boxes.

contrast, our approach models the full scene using a global repre-
sentation and optimizes both appearance and geometry end-to-end
via neural rendering. Other methods also directly estimate the 3D
surfaces [Bozi¢ et al. 2021; Murez et al. 2020; Sun et al. 2021b], but
require ground-truth 3D reconstructions for training and cannot
generalize beyond the training data (e.g., from indoor scenes to
outdoor scenes) due to their data-dependent nature.

Reconstruction in the wild. Internet photo collections, espe-
cially those capturing tourist attractions around the world, are
a popular data source in 3D vision and graphics. Because of their
abundance and diversity of viewpoints, appearance, and geometry,
prior research has used such data in a range of problems, including
SfM [Agarwal et al. 2011; Schonberger and Frahm 2016; Snavely et al.
2006], MVS [Frahm et al. 2010; Furukawa et al. 2010; Goesele et al.
2007; Schonberger et al. 2016], time-lapse reconstruction [Martin-
Brualla et al. 2015a,b; Matzen and Snavely 2014] and appearance
modeling [Kim et al. 2016; Li et al. 2020; Martin-Brualla et al. 2021;
Meshry et al. 2019; Shan et al. 2013]. In particular, NeRF-W [Martin-
Brualla et al. 2021] models the scene with neural radiance fields,
which are suitable for synthesing novel-view images but cannot
produce high-quality surface reconstrucions. In contrast, our ap-
proach models the scene with a surface-based representation and
directly produces smooth and accurate 3D meshes.

Neural implicit representations. Neural implicit representations
have recently shown great promise for 3D modeling due to their
intrinsic global consistency and continuous nature. These prop-
erties allow for efficient representation of scene appearance and
geometry with a high degree of detail. These representations have
been applied to a variety of applications including shape generation
and completion [Chabra et al. 2020; Mescheder et al. 2019; Park
et al. 2019; Peng et al. 2020], novel view synthesis [Li et al. 2021;
Mildenhall et al. 2020; Park et al. 2021; Wizadwongsa et al. 2021],

camera pose estimation [Lin et al. 2021; Yen-Chen et al. 2021], and
intrinsic decomposition [Boss et al. 2021a,b; Zhang et al. 2021b,a].

Most neural implicit representations are optimized from 2D im-
ages using differentiable rendering, and can be roughly categorized
into two types: surface rendering (e.g., [Niemeyer et al. 2020; Yariv
et al. 2020]) and volume rendering (e.g., [Kondo et al. 2021; Martin-
Brualla et al. 2021; Mildenhall et al. 2020], see [Dellaert and Yen-
Chen 2020] for a comprehensive survey). While surface rendering
methods allow for more accurate modeling of geometry, most prior
methods require additional constraints, such as ground truth masks.
On the other hand, volume rendering techniques have shown im-
pressive results for image-based rendering of complex scenes, but
due to their soft volumetric properties it is hard to extract accurate
surface geometry from such representations. More recently, several
methods unify surface and volumetric representation, enabling re-
construction of accurate surfaces without requiring masks [Oechsle
et al. 2021; Wang et al. 2021; Yariv et al. 2021]. In our work, we
extend the representation proposed in NeuS [Wang et al. 2021] such
that it can accommodate unconstrained Internet photo collections.

In contrast to recent work on landmark- or city-scale neural
rendering [Martin-Brualla et al. 2021; Rematas et al. 2022; Xiangli
et al. 2021], which mainly addresses novel view synthesis, our work
focuses on modeling geometry from unstructured Internet photos.
We demonstrate that our approach enables efficient, accurate, and
highly detailed surface reconstructions of landmarks.

3 METHOD

To model the shape and appearance of a 3D scene, we propose an
approach inspired by recent work on neural radiance fields that
can reconstruct a 3D scene as the weights of a neural network by
optimizing for image reconstruction losses [Mildenhall et al. 2020].
In particular, we use the latent appearance modeling introduced in
NeRF in the Wild (NeRF-W) [Martin-Brualla et al. 2021] to model
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3D scenes from unconstrained Internet collections with varying
lighting. Furthermore, to model accurate surface geometry, we
extend the scene representation proposed in NeuS [Wang et al.
2021] and represent the scene using two neural implicit functions
d and ¢; encoded by MLPs. Given a point x € R in the scene, a
viewing direction v € S? and an image index i, we have:

d = MLPspE(x), (1
¢i = MLPcoLoR (%, v, €i), )
where {ei}ll.i , are appearance embeddings corresponding to each

input photo, optimized alongside the parameters of MLPs.
We use the function d to approximate the signed distance to the
true surface S, represented as the zero level set of this function:

S = {x]d(x) = 0}. 3)

The function ¢; models the appearance of 3D point x as it appears
in a given image i, allowing for the varying appearance of each
input image. The MLP parameters and appearance embeddings
are learned by optimizing color consistency between real photos
and rendered images via a volume rendering scheme: Given a ray,
{r(¢) = o+ tv|t > 0} with o denoting the camera center, we can
render that ray’s expected color C;(r) corresponding to image i as:

Ci(r) = /0 +Oow(t)c,~(r(t),v, e;)dt, (4)

where w(t) is an unbiased and occlusion-aware weight function,
as further detailed in [Wang et al. 2021].

Note that dynamic objects, which are prominent in Internet col-
lections, can significantly impact model performance. The model
proposed in NeRF-W [Martin-Brualla et al. 2021], for instance, incor-
porates a transient head to distinguish between static and dynamic
parts of the scene. To reconstruct accurate geometry, a different
approach is required, as the transient head dominates the rendered
color, leading to all scene structures modeled as view-dependent
transient effects rather than geometry. We discuss our solution and
additional design choices in Section 3.2.

3.1 Efficient Sampling during Training

NeusS uses a hierarchical importance sampling strategy to generate
sample points on each ray during the optimization phase. For each
scene, NeuS defines a unit bounding sphere to separate the back-
ground and foreground parts of the scene. The coarse sample points
are sampled regularly along a ray between the two intersection
points of the ray and the bounding sphere. Fine-level samples are
iteratively generated based on samples from the previous iteration.
This simple strategy works well on lab-captured datasets like
DTU, where the camera views are distributed uniformly on a hemi-
sphere. However, it is extremely inefficient for “in-the-wild” scenar-
ios with large-scale scenes, where the camera views are distributed
non-uniformly and are often front-facing. To give an example, if
we were to follow NeRF-W, which uses 1024 samples for both the
coarse and fine levels per ray for training, then using the same
number of samples for training the NeuS model would result in
an estimated ~10 days of training with 32 GPUs. Instead, we in-
troduce a hybrid voxel- and surface-guided sampling strategy to
improve training efficiency, as detailed in the following sections. A
visualization of different sampling strategies is shown in Fig. 2.
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Figure 3: Comparison of fine-level samples from our surface-
guided sampling and the sphere-based hierarchical sam-
pling used in NeuS. We visualize samples from rays correspond-
ing to pixels in the red box shown in the image on the right. The
hierarchical sampling in NeuS (upper left) uses a redundant set of
fine-level samples (1024 in total), while surface-guided sampling
(lower left) uses much fewer samples (24 in total). At the last itera-
tion of fine-level sampling, samples from surface-guided sampling
(lower right) are denser and closer to the surface than those from
NeusS (upper right), guiding the network to fit the surface geometry

accurately with more details. The sampled points are generated
from trained models. The mesh is shown for clarity only.

Voxel-guided sampling. To speed up training, we first remove
unnecessary training samples by reducing the search space from
the entire unit sphere to a smaller spatial envelope that contains
the true surface position. Specifically, we observe that rough initial
surface estimates are provided by the sparse point cloud that StM
produces alongside the estimated camera poses. Therefore, at the
start of training we generate a sparse volume Vg, from the sparse
SfM point cloud. This sparse volume is expanded via a 3D dilation
operation to ensure that most of the visible surfaces are encom-
passed by this volume. The sampling range of a given ray can then
be reduced to the in- and out-intersection points between each
ray and Vg, and n, points are sampled during this stage. We call
this sampling technique voxel-guided sampling. Related sampling
strategies have been explored in recent work [Liu et al. 2020], but
rather than pruning from a dense voxel grid, our method makes use
of the already available 3D information from SfM as more explicit
guidance for reducing the search space for point sampling. More-
over, we found that the constructed sparse voxels provides a rough
separation of the scene into foreground and background regions,
and by removing rays that do not intersect the sparse voxels (e.g.,
background rays in the sky), the number of required training rays
can often be reduced by over 30%.

Surface-guided sampling. In order to train the geometry MLP
d to accurately fit the 3D surface, it is beneficial to generate as
many samples around the true surface as possible. NeuS achieves
a high sampling density through multiple iterations of fine-level
importance sampling, which gradually guides samples towards the
surface position. This strategy is time-consuming, since a large num-
ber of unnecessary samples must be generated by passing through
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the geometry MLP d for multiple iterations. A visual illustration
can be found in Fig. 3.

Therefore, we propose a surface-guided sampling strategy that
further increases sample density around the true surface. In partic-
ular, after the training is bootstrapped by voxel-guided sampling,
we leverage the surface position estimates from the previous train-
ing iteration to generate new samples. To achieve this, we cache
the SDF predictions from previous iterations inside sparse voxels
Vache> and query the surface position from this cache at each train-
ing iteration. V,che is an octree built upon Vg, with a depth level
of £. With the queried surface position X, we query a number ng of
samples within a narrower range (X — 5, X + t5) around the surface
position. V,che is updated periodically during training to ensure
that the stored SDF values are up-to-date.

The cached surface positions provide a good approximation of
the true surface position, leading the network to improve upon
previous estimations. Surface-guided sampling guides the network
to explain the rendered color with samples around the true surface
position, allowing the network to fit geometry more accurately.
As shown in ablation studies, without surface-guided sampling,
training is unable to converge to the same degree of accuracy even
given sufficient time.

Hybrid sampling. Using only surface-guided sampling will result
in artifacts around voxel borders since there is insufficent super-
vision for empty space. To avoid this problem, we use a hybrid of
voxel- and surface-guided sampling. Note that the voxel-guided
samples are much sparser than the surface-guided samples since
they are generated within a much larger search range. We use
another iteration of importance sampling after surface-guided sam-
pling to ensure a good sampling density, bringing the total number
of samples along each ray to ny + 2 X ns.

3.2 Additional Details

Handling transient objects. We empirically found that, if we di-
rectly use the dynamic object modeling strategy proposed in NeRF-
W (i.e., a transient NeRF head), the transient NeRF will dominate
the rendered color. As a result, all scene structures will be modeled
as view-dependent transient effects by NeRF instead of by the ge-
ometry MLP d, since d converges more slowly compared to NeRF.
We instead use segmentation masks to remove rays belonging to
dynamic objects during training.

Supervision signals and handling the textureless sky. Follow-
ing NeuS, we use an £; loss to supervise the rendered color images
(LcoLor) and use an eikonal term Lggg to regularize the SDF.
Since the textureless sky lacks motion parallax, directly using a
background NeRF for foreground-background separation as in NeuS
will lead to reconstructions contained in spherical shells. The re-
maining background rays in Vs, (mostly sky) are labeled with
semantic masks and penalized as free space with Lpask. Since
the semantic masks for the background are not perfect and often
contain foreground scene structures, we only apply Lmask with
a small weight, which we found empirically can remove the sky
while keeping foreground structures intact. Please refer to NeuS
for further details on LcoLor, LreG and Lmask.
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Figure 4: Alignment quality of the LiDAR scan on Branden-
burg Gate. We render the LiDAR-scanned point clouds as depth
maps by projecting the points to a set of camera views in the aligned
SfM coordinate frame. The rendered depth maps are color-coded
by depth (warmer colors are closer) and overlaid with the corre-
sponding images. The accuracy of the alignment can be observed
in, for instance, the agreement of image and depth edges.

4 THE HERITAGE-RECON BENCHMARK

To evaluate our method we need ground truth 3D geometry. How-
ever, to the best of our knowledge, there is no existing dataset
pairing Internet photo collections with ground truth 3D. Therefore,
we introduce Heritage-Recon, a new benchmark dataset, derived
from Open Heritage 3D. We first describe how we constructed the
dataset, including how the data was collected and processed (e.g.,
alignment to the SfM sparse point clouds), and later present the
metrics and evaluation protocol used in our experiments.

Data collection and processing. We obtained 3D LiDAR data
from Open Heritage 3D, which provides public, freely-licensed 3D
scans for hundreds of cultural heritage sites. We select four land-
marks, namely Brandenburg Gate (BG)T, Pantheon Exterior (PE):':,
Lincoln Memorial (LM)S and Palacio de Bellas Artes (PBA) for the
dataset. These landmarks were selected because they can be easily
paired with Internet image collections. The corresponding images
for BG, PE and LM were gathered from the MegaDepth dataset [Li
and Snavely 2018]. We collect images for PBA from Flickr, following
a similar procedure as described in prior works for the other land-
marks. The images for each scene are registered using StM [Schon-
berger and Frahm 2016] to obtain camera poses and a sparse point
clouds. For BG and PBA, the original LiDAR scans are very dense
and are over 100GB in size. These point clouds are downsampled
to a density of 2cm. A bounding box is manually selected for each
scan as the Region of Interest (ROI) to further reduce the size of
the point cloud.

Coordinate alignment. Since the SfM reconstructions and LiDAR
scans have different coordinate frames, they must be aligned before
evaluation. To align them, we first filter sparse points obtained
from SfM by their track length and reprojection error, and align the

i https://openheritage3d.org/project.php?id=d51v-fq77
* https://openheritage3d.org/project.php?id=t9sj-mf53
§ https://openheritage3d.org/project.php?id=90yg- 1054
1 https://openheritage3d.org/project.php?id=vdae-mrg9
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resulting point cloud to the LiDAR scan using ICP [Rusinkiewicz
and Levoy 2001] with carefully tuned parameters. The alignment
quality can be visually inspected in Fig. 4. We quantitatively check
the alignment quality by reprojecting a set of feature tracks from
SfM using depth maps rendered from the LiDAR scan. We observe
that the resulting reprojection error is less than one pixel across all
the scenes, an accuracy level comparable to SfM.

Visibility check. The LiDAR scans and the images cover different
portions of the scene. Only the regions of the scan visible to the
input images should be used for evaluation. We derive visibility
information for the LiDAR scans from the SfM point cloud, which
is guaranteed to be observable by the images. To maximize the
coverage of the true visible region, we use LoFTR [Sun et al. 2021a]
to run SfM and generate semi-dense point clouds. We filter the
LiDAR points by generating voxels around the SfM point clouds
with a relatively large voxel size.

5 EXPERIMENTS

5.1 Implementation Details

Training is first bootstrapped by voxel-guided sampling for 5000
iterations, after which surface-guided sampling is added. We use
8 layers with 512 hidden units for the geometry MLP and 4 layers
with 256 hidden units for the color MLP. The voxel size s of Vg,
for each scene are 2.8, 5.9, 2.0 and 1.0m for BG, LM, PE and PBA
respectively. The depth level ¢ of octree V,cpe is 10 for all scenes.
The sampling radius t; for each scene is defined as 16/2¢ times of the
voxel size s. We use n, = 8 and ng = 8 in all experiments. We use 8
NVIDIA A100 GPUs for all the experiments. For the final output
mesh, we only extract a mesh within V.

5.2 Baselines

We compare our approach to state-of-the-art classical and learning-
based MVS algorithms in terms of reconstruction quality and effi-
ciency. For classical methods, we compare against the COLMAP
dense reconstruction system [Schonberger et al. 2016], which is
based on patch-match stereo and Poisson surface reconstruction.
We use two different octree depths (11 and 13) in the Poisson re-
construction for comparisons, which we found to have the best
numerical accuracy and visual quality, respectively (see Fig. 7). For
learning-based approaches, we compare to Vis-MVSNet [Zhang
et al. 2020], which achieves state-of-the-art performance on MVS
benchmarks. We reconstruct meshes by fusing the depth maps
using COLMAP’s point fusion algorithm, followed by Poisson sur-
face reconstruction with octree depth=13. For completeness, we
also compare to NeRF-W [Martin-Brualla et al. 2021]. For each
scene, we first train a NeRF-W model, then create a pre-defined
camera path and render color and depth at each viewpoint using
the NeRF-W models. We feed the resulting RGB-D sequence into
KinectFusion [Izadi et al. 2011] from Open3D [Zhou et al. 2018] for
TSDF fusion to obtain a mesh.
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86.8 71.5 78.4
87.9 68.9 77.3
88.3 69.7 77.9

NeRF-W 7.6 11.5 9.2
Vis-MVS 85.6 14.5 24.8
<, colmap!! 81.4 59.0 68.4
iT colmap' 94.1 58.8 72.4
Ours & 85.3 73.2 78.8

Ours  85.9 73.779.3

67.3 34.2 45.3
63.8 53.0 57.9
70.7 74.0 72.3
78.0 75.9 76.9
80.8 80.2 80.5

82.182.182.1

28.8 8.3 129
68.2 42.3 52.2
73.8 69.4 71.5
81.6 83.6 82.6
77.1 73.2 75.1
79.9 77.9 78.9

79.5 40.5 53.7
98.0 64.4 77.7
99.2 63.7 77.6
91.3 80.8 85.7
92.8 76.6 83.9
93.0 77.1 843

NeRE-W 20 28 23
& Vis-MVS 263 4.2 7.2
2 colmap'! 27.4 18.8 22.1
= colmap’® 33.3 19.1 24.1
< Ours & 28.2 22.9 25.1

Ours 28.6 23.225.5

29 15 20
27 24 25
28 3.0 29
32 32 32
34 34 34

6.1 19 29
12.4 83 10.0
13.5 12.4 129
14.6 15.7 14.9
13.7 13.3 13.5
141 140 140

46.4 21.4 29.1
66.6 40.7 50.4
71.9 43.3 54.0
62.9 45.5 50.5
63.9 50.4 56.3
64.4 51.156.9

Table 1: Reconstruction Evaluation. We report precision (P),
recall (R) and F1 scores over the different datasets in Heritage-Recon.
We compare our reconstruction performance to NeRF-W [Martin-
Brualla et al. 2021], Vis-MVS [Zhang et al. 2020] and two variants of
COLMAP, as detailed in the text. For our method, “Ours” measures
performance after training converges and “Ours 4~ is an earlier
checkpoint, selected using the F1 score (taking the model that
yields 95% of the final value). We report performance over three
different thresholds (“Low”, “Medium”, “High”) and also report an
AUC metric that integrates performance over all thresholds (“All
(AUC)”). Best results are in bold, and second best are underlined.
As illustrated above, our method obtains the best or second best
performance in nearly all cases.

5.3 Evaluation

Metrics and evaluation protocol. We quantitatively evaluate
the reconstruction quality by measuring accuracy and complete-
ness, and evaluate reconstruction efficiency by measuring train-
ing/optimization time. Note that compared with object scenarios
such as those in DTU, our "in-the-wild" cases exhibit much larger
reconstruction errors and thus need multiple thresholds to reflect
the reconstruction quality at different scales. Therefore, we use
three different thresholds (Low, Medium, High) to measure per-
scene precision, recall, and F1 scores. These thresholds are selected
as follows: We first select a maximal threshold 6iax to compute the
AUC (F1) metric, which integrates the F1 scores from 0 to 6max. The
maximal threshold is selected as the first threshold that reaches a
F1-score of 80 on each scene. The Low, Medium and High thresh-
olds are then evenly sampled between (0, max). To better indicate
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Figure 5: Training speed in comparison to “Ours 4. As illus-
trated above, for larger scenes (e.g., PBA), the baselines can be up
to 14x slower compared to our model that is optimized for training
speed. In contrast, our best model yields a slowdown of up to 3X.

robustness and overall accuracy of each approach, we additionally
compute the area under the curve (AUC) of precision, recall and F1
score curves by sweeping the error thresholds. More details on the
evaluation protocol is presented in the supplemental material.

Comparisons. The quantitative and qualitative comparisons with
baselines are shown in Table 1 and Fig 7, respectively. For our
proposed approach, we report two results: (i) the model after full
convergence (ours) and (ii) fast model with early stopping (ours
#). Our approach achieves the best or second best quantitative
performance in nearly all scenes and across all thresholds. NeRF-W
yields poor reconstruction performance as rendered depth maps
are inconsistent across different views (while relatively accurate
on individual views). The inconsistent back-projected point clouds
will cancel each other’s contribution to the surface position during
TSDF fusion, leading to poor reconstruction quality. Even though
colmap!® outperforms our method on PE and PBA, our visual qual-
ity is significantly higher than colmap!3, as shown in Fig. 7. In
addition, our method achieves the overall best completeness as evi-
denced by its higher recall scores. Our representation and learning
objective can even yield filled-in geometry in regions with insuffi-
cient observations, while the baselines fail to do so. To summarize,
our method achieves significantly better visual quality than the
baselines while being competitive numerically.

Reconstruction time. We compare the reconstruction time of
different methods in Fig. 5. As the figure illustrates, our proposed
approach can optimize scenes significantly faster, in most cases also
if we consider our models obtained after full convergence (“Ours”).
The point fusion in COLMAP operates on the CPU and takes the
largest portion of the total time, highlighting the advantages of our
method as an end-to-end surface reconstruction method.

Ablation studies. We conduct ablation studies to validate the ef-
fectiveness of our proposed sampling techniques. Fig. 6 shows a
comparison of hybrid sampling to sphere-based sampling and pure
voxel-guided sampling. Hybrid sampling consistently achieves the
best F1 AUC score across almost all time steps, and remains no-
ticeably better than the baselines even after substantial training
time. To achieve an F1 AUC of ~3.2, pure voxel-guided sampling
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Figure 6: Ablation studies. We visualize the reconstructed
meshes (zoomed in to the head region) and plot the curves of perfor-
mance w.r.t. training time for sphere-based sampling, voxel-guided
sampling and hybrid sampling on the Lincoln Memorial (LM). Hy-
brid sampling leads to significantly better training speed while
consistently achieving the best F1-AUC accuracy and visual quality.

requires 2~3X longer training compared to hybrid sampling, and
sphere-based sampling is incapable of achieving this accuracy in a
reasonable time. Additional ablation studies are presented in the
supplemental material.

6 LIMITATIONS AND CONCLUSION

Limitations. Our approach inherits limitations from NeRF-like
methods. For example, inaccurate camera registration can affect
final reconstruction quality. In addition, since our model only learns
surface locations from known image observations without imposing
domain-specific priors, it can fail to produce accurate geometry in
unseen regions.

Conclusion. We presented a new neural method for high-quality
3D surface reconstruction from Internet photo collections. To ef-
ficiently learn accurate surface locations of complex scenes, we
introduce a hybrid voxel-surface guided sampling technique that
significantly improves training time over baseline methods. In the
future, we envision a full inverse rendering approach, as well as
the ability to model scene dynamics across different time scales.
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Ours Ours# colmap™ colmap3 NeRF-W Vis-MVS
Figure 7: Qualitative results on the Heritage-Recon dataset. As illustrated in the full rendered meshes and the zoomed-in selected
regions (in orange), our models yield more complete and higher quality meshes. Zoom in for details. Interactive visualizations can be found
at the project page.
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