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Many problems in computer graphics involve integrations of products of functions. Double- and triple-product integrals are commonly used in applications
such as all-frequency relighting or importance sampling, but are limited to distant illumination. In contrast, near-field lighting from planar area lights involves
an affine transform of the source radiance at different points in space. Our main contribution is a novel affine double- and triple-product integral theory; this
generalization enables one of the product functions to be scaled and translated. We study the computational complexity in a number of bases, with particular
attention to the common Haar wavelets. We show that while simple analytic formulae are not easily available, there is considerable sparsity that can be
exploited computationally. We demonstrate a practical application to compute near-field lighting from planar area sources, that can be easily combined with
most relighting algorithms. We also demonstrate initial results for wavelet importance sampling with near-field area lights, and image processing directly in
the wavelet domain.
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1. INTRODUCTION

Integrations of products of functions are common in computer
graphics and applied mathematics. For example, the reflection equa-
tion can be viewed as either a triple-product integral [Ng et al. 2004]
consisting of three factors: the lighting, BRDF, and visibility, or a
double-product integral where the BRDF and visibility are com-
bined into the light transport function. A common assumption is
that the illumination is distant, and each factor is represented in
basis functions such as spherical harmonics or wavelets.

Local area lights have long been used as not only a practical
modeling tool, but also an indispensable artistic device to set up a
mood for a scene, for example, comfortable couches in a living room
illuminated by a ceiling lamp (Figure 1(a)), or stretch chairs illumi-
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nated by the light from a circular light source (Figure 1(b)). Standard
double- and triple-product integrals, however, are not suitable for
near-field relighting. The basic problem is that the incident light-
ing varies across the scene, and needs to be evaluated at all points
in space. With proper parameterization, however, light propagation
from planar area sources can be formulated as an affine transforma-
tion of the original source radiance, as shown in Figure 1(c). We call
the transformed integrals affine double- or triple-product integrals
(Section 3).

We present the first theoretical and computational analysis of
affine double- and triple-product integrals in computer graphics. For
actual computations, we focus our analysis on Haar wavelets, which
have gained considerable attention in relighting. Haar wavelets are
simple, and superior in compactly representing all-frequency effects
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Fig. 1. (a) and (b): Our method enables relighting of scenes lit with near-field illumination. A planar area source can be moved, retextured, and reshaped at
real-time rates. Important effects like spatially varying shading on the floors in 1(a) and 1(b), soft shadows under the chairs in the close-up of 1(b), and colored
specularities on the cushions and tables in the close-ups of 1(a) and 1(b) are clearly visible. These effects are difficult to capture using only distant lighting,
as shown in Figure 8(c). (c): Area lighting can be formulated as an affine transform. For simplicity, we parameterize the light field using a spatial coordinate
x and an angular direction, given by the intercept v on a virtual plane, as shown in the diagram. The original area light is denoted as F(v), and the vertex’s
incident radiance as Lz,x (v), where z and x , respectively, are the vertical and horizontal coordinates of the vertex P1. The intensity at P1, Lz,x (v), is then given
by an affine transform (F(zv + x)) from simple trigonometry. Our main contribution is a novel theory of affine double and triple product wavelet integrals that
enables near-field area lighting to be used in almost any precomputation-based relighting framework.

such as natural lighting, specular BRDFs, and intricate shadowing,
often using only 1 ∼ 2% of coefficients [Ng et al. 2003]. Our
analysis approach can also be extended to non-Haar wavelets, as
discussed briefly in Section 7. Fundamentally, the problem we are
trying to solve is to find an efficient representation for wavelets that
are affinely transformed (scaled and translated). Wavelets, however,
are known for their lack of even translation invariance [Strang 1989].
For example, simply translating a Haar wavelet basis function one
pixel to the left would change its coefficients dramatically, causing
its power to spread across many different sub-bands.

Our main technical contribution is a novel affine double- and
triple-product integral theory for Haar wavelets, which is presented
in Section 4. The theory is developed primarily on 1D signals; since
2D and higher dimensional wavelets are simply products of 1D ba-
sis functions, a direct extension to higher dimensions is possible
(Section 4.4). Note that we focus on 1D affine transforms, namely,
scaling and translations, and therefore do not consider general rota-
tions and shears in 2D or 3D. As seen in our practical applications,
this provides a solid basis for a more general wavelet framework for
many rendering problems. In Section 7, we also discuss extensions
to non-Haar wavelets and nonlinear transformations.

The standard theory of double- and triple-product integrals is
expressed in terms of standard coupling and tripling coefficients,
respectively. Our theory studies the affine analogs, that must now
account not only for the different basis functions being coupled or
integrated, but also the scale and translation in the affine transform.
Affine coupling and tripling coefficients therefore gain two more
degrees of freedom and are, respectively, 4D and 5D functions for
1D signals. In Section 4.2, we show that these coefficients can be
boiled down to an intuitive 2D analytic core function, which we call
the canonical coupling coefficient M . The canonical coupling coef-
ficient exposes the inherent sparsity of the affine transform, which

can be exploited to develop efficient computational methods. This
is analogous to how standard tripling coefficients are theoretically
complex, but actually sparse in Haar wavelets [Ng et al. 2004].

Our theoretical development enables fast practical algorithms
for affine transforms in Haar wavelets. This overturns a commonly
held view that operations like shifts or scales are difficult in
the wavelet domain. One practical application of our theory is
relighting, and we take a significant step towards generalizing
wavelet-based relighting methods to near-field settings with planar
area light sources (Section 5; Figures 1, 8, and 9). There are also
applications to a variety of other problems that depend on wavelet
representations. Section 6 describes initial solutions for wavelet
importance sampling [Clarberg et al. 2005] with near-field area
lights, and image processing (dilation and translation) directly in the
wavelet domain. Section 7 briefly discusses extensions to non-Haar
wavelets and nonlinear transformations, and addresses relighting
with out-of-plane rotation and arbitrarily shaped 3D lights. Readers
more interested in implementation may want to first familiarize
themselves with the basic concepts introduced in Section 3, and
then focus on the applications in Sections 5 and 6, skimming
through the development of the theory in Section 4 as needed.

2. PREVIOUS WORK

Light transport analysis. Recent papers [Durand et al. 2005;
Ramamoorthi et al. 2007] have conducted a comprehensive analysis
of light transport in Fourier and gradient representations. As noted
in Durand et al. [2005], one of the main aspects is the propagation of
light from an area source, which can be written as an affine transform
(in much the same form as Figure 1(c)). Ramamoorthi et al. [2007]
characterized the basic mathematical operations of light transport,
noting that linear or affine transforms are a key element, but there is
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no simple formula in wavelets. By developing a framework for affine
double- and triple-product wavelet integrals, we take a significant
step towards a full computational framework for rendering in the
wavelet domain.

Double and triple product integrals. Much of the work in
relighting [Sloan et al. 2002; Ng et al. 2003] can be seen as double
product integrals of the illumination and the light transport function.
These integrals usually reduce to simple dot products in orthonormal
bases like spherical harmonics and Haar wavelets. Subsequently, Ng
et al. [2004] developed the triple-product integral framework to con-
sider the integration of the lighting, BRDF, and visibility, as needed
for changing both view and illumination. The same mathematics can
be applied to efficiently multiplying two wavelet signals [Beylkin
1992a]. Most recently, these results have been generalized to prod-
ucts of multiple functions [Sun and Mukherjee 2006]. Our work can
be viewed as an important generalization of the standard double-
and triple-product integral framework to affine double- and triple-
product integrals. We also briefly discuss nonlinear transformations
in Section 7.

Affine transforms of basis functions. Affine transforms of
Fourier basis functions are well known [Bracewell et al. 1993].
Spherical harmonics can be analytically rotated, as often used for
environment maps [Sloan et al. 2002]. However, the standard affine
transform usually considered in the spatial domain has no simple
analog in the spherical domain; therefore, we do not consider spher-
ical harmonics in this article. Researchers have approximated the
affine transform using a combination of spherical rotations and a
spherical scaling operation [Wang et al. 2006a]. This approxima-
tion is limited to only midrange illumination, since the distortion
tends to be too severe in the near field.

Wavelets lack translation invariance, and have no simple formula
for affine transforms. Beylkin [1992b] and others have studied the
concurrent wavelet decomposition of all integer (not continuous)
circulant shifts of a signal. In comparison, our goals are different
and more ambitious in that we want to consider a general continuous
affine transform (and not just all integer shifts). Nevertheless, we
are inspired by the sparsity indicated by Beylkin [1992b] and Wang
et al. [2006b] who studied wavelet rotations. We have developed a
fast algorithm for wavelet affine transforms, even when no simple
analytic formula exists.

Near field relighting and image processing. Relighting tech-
niques have been developed from the basic approach introduced by
Nimeroff et al. [1994] and Dorsey et al. [1995] to much recent work
on Precomputed Radiance Transfer (PRT) [Sloan et al. 2002]. In
terms of our application, the most closely related works are meth-
ods extending PRT to near-field and dynamic settings. Spherical har-
monic gradients [Annen et al. 2004] and scaling [Wang et al. 2006a]
try to approximate the effects of midrange illumination. Spherical
harmonic exponentiation [Ren et al. 2006] can render near-field
soft shadowing effects in real time, but has to use sphere sets to
approximate geometries so that affine transforms are avoided. As a
precursor, Mei et al. [2004] proposed decomposing the illumination
into directional lights and searching through precomputed spherical
radiance transport maps to render dynamic scenes. Zhou et al. [2005]
then developed precomputed shadow or source radiance fields1 to
support all-frequency effects, but this cannot support very high sam-

1The radiance function of Zhou et al. is 5D, consisting of all possible spatial
locations and angular directions. This is just the light field from the source,
and a simpler 4D representation, including possibly directly in the wavelet
domain, should be possible. However, the 4D representation is very difficult

Notations Descriptions Acronyms

v, u Integration variables
s, o Scaling and offsetting variables
li, ti Level and offset of a wavelet ψi(v)
F(v), G(v) Functions in pixel domain
H(v),W (v) Functions in pixel domain
Φi(v) Orthonormal basis function
ψi(v) Wavelet basis function
Ci j Standard Coupling Coefficient SCC
Ci jk Standard Tripling Coefficient STC
Di j(s, o) Affine Coupling Coefficient ACC
Di jk(s, o) Affine Tripling Coefficient ATC
M(r, c) Canonical Coupling Coefficient CCC
r, c Radius and center of the trans-

formed mother wavelet in the CCC

Fig. 2. Notations used in the article.

pling rates nor general changes in the lighting (such as editing the
pattern of an area source in lighting design). Kristensen et al. [2005]
also extend PRT to local lighting using unstructured light clouds.
Overall, these methods have to assume predetermined lights, allow-
ing changes of only light positions or scale intensities. In contrast,
our method first assumes planar area sources, allowing near-field re-
lighting with dynamic editable lights, and eliminating the need for
lighting-dependent precomputations and storage. In Section 7, we
discuss a possible extension of our algorithm to general out-of-plane
rotation and arbitrarily shaped 3D lights.

Other applications shown at the end of the article include wavelet
importance sampling the product of the area lighting and general
BRDFs for Monte Carlo offline rendering systems, which has previ-
ously only been applied to distant environment maps [Clarberg et al.
2005]. In addition, we also explore image processing. A number of
image operations such as additions and multiplications can already
be performed directly in the wavelet domain [Drori and Lischinski
2003; Kutil 2005]. Our algorithms extend these operations to
dilations and translations, which can be cast as affine transforms.

3. AFFINE DOUBLE AND TRIPLE PRODUCT
INTEGRALS

In this section, we introduce affine coupling and tripling coefficients.
We use 1D wavelets for simplicity in our analysis (we will see that
our results extend directly to higher dimensions in Section 4.4).
Notation used in this article is shown in Figure 2.

3.1 Standard Coupling and Tripling Coefficients

Double- and triple-product integrals can be written respectively as

H (v) =
∫

F(v)G(v)dv, (1)

H (v) =
∫

F(v)G(v)W (v)dv, (2)

where H , F , G, and W are functions in the spatial or angular do-
main. For example, in relighting applications, v could be the inci-
dent angle, H could be the reflected radiance, and F , G, and W

to unpack in real time for relighting applications that may require the full
incident illumination field at any given pixel. By directly propagating lighting
from the area light source, we bypass the need for these higher-dimensional
representations.
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could correspond to the lighting, visibility, and BRDF, respectively.
For compact representation, it is common to expand them in basis
functions. The double-product integral becomes

H (v) =
∫ ( ∑

i

Fi�i (v)

)( ∑
j

G j� j (v)

)
dv

=
∑

i

∑
j

Fi G j

∫
�i (v)� j (v)dv

=
∑

i

∑
j

Fi G j Ci j , (3)

Ci j =
∫

�i (v)� j (v)dv, (4)

where �(v) are some set of orthonormal basis functions. We denote
Ci j as the Standard Coupling Coefficient, or SCC.

Similarly, the triple-product integral becomes

H (v) =
∫ ( ∑

i

Fi�i (v)

)( ∑
j

G j� j (v)

)( ∑
k

Wk�k(v)

)
dv

=
∑

i

∑
j

∑
k

Fi G j Wk

∫
�i (v)� j (v)�k(v)dv

=
∑

i

∑
j

∑
k

Fi G j WkCi jk, (5)

Ci jk =
∫

�i (v)� j (v)�k(v)dv. (6)

We denote Ci jk as the Standard Tripling Coefficient, or STC.

3.2 Affine Coupling and Tripling Coefficients

The SCC and STC only apply well to functions that are “fixed” and
“static.” We now consider functions that are affinely transformed.
Without loss of generality, we assume F(v) is scaled and translated
to F(sv + o). With respect to the illustration in Figure 1(c), the
offset o corresponds to the horizontal position x , and the scale s to
the vertical distance z. This leads to an important variation of the
standard double-product integral, which we call the affine double-
product integral:

H (s, o; v) =
∫

F(sv + o)G(v)dv

=
∫ ( ∑

i

Fi�i (sv + o)

)( ∑
j

G j� j (v)

)
dv

=
∑

i

∑
j

Fi G j Di j (s, o), (7)

Di j (s, o) = ∫
�i (sv + o)� j (v)dv. (8)

We denote Di j (s, o) as the Affine Coupling Coefficient, or ACC.
Just as standard triple-product integrals are used for multiplication,
the same machinery as Eq. 8 is useful for affinely transforming a
function. In fact, Eq. 7 is equivalent to an affine transform of F
followed by a standard double-product integral with G.

Similarly, the affine triple-product integral can be written as

H (s, o; v) =
∫

F(sv + o)G(v)W (v)dv

=
∫ ( ∑

i

Fi�i (sv + o)

)( ∑
j

G j� j (v)

)( ∑
k

Wk�k(v)

)
dv

=
∑

i

∑
j

∑
k

Fi G j Wk Di jk(s, o), (9)

Di jk(s, o) = ∫
�i (sv + o)� j (v)�k(v)dv. (10)

We denote Di jk(s, o) as the Affine Tripling Coefficient, or ATC.

3.3 Discussion of Properties

Properties of SCC and STC. Because of the orthonormal re-
lation between two different basis functions, the SCC reduces to
a Kronecker delta function, Ci j = δi j , and has exactly N nonzero
terms, where N is the total number of basis functions. The STC is
slightly more complicated. For general orthonormal bases, the com-
plexity (i.e., number of nonzero coefficients) of the STC is O(N 3).
Sparsity exists for bases with special structures [Ng et al. 2004],
for example, the complexity is O(N ) for pixel bases, O(N 2) for 2D
Fourier series, and O(N log N ) for Haar wavelets. The complexities
of the SCC and STC are recapped in Section 4.3. In addition, note
that both the SCC and STC are symmetric. We have

Ci j = C ji , Ci jk = Cperm(i jk), (11)

where perm(ijk) is any permutation of the triplet (i, j, k).

Properties of ACC and ATC. By contrast, the ACC and ATC
both gain two more degrees of freedom, since there are two new
arguments: the scale s and the offset o. In fact, the SCC and STC
are special cases of the ACC and ATC, when the scale is 1 and the
offset is 0.

Ci j = Di j (1, 0), Cijk = Dijk(1, 0) (12)

The ACC and ATC do not preserve the same symmetries of the SCC
and STC. For example, the ACC follows this more complex identity.

Dij(s, o) = 1

s
D ji

(
1

s
− o

s

)
. (13)

Relation between ACC and ATC.

LEMMA 1. For any orthonormal basis, the ATC can be repre-
sented using the the ACC and STC as

Dijk(s, o) =
∑

l

Dil (s, o)Cljk. (14)

The proof is in Appendix A, and follows from expanding
�(sv + o) in terms of �(v) and then using associativity. Lemma
1 indicates that the computational complexity of the affine tripling
coefficient Di jk(s, o) relies on those of the ACC and STC. Lemma 1
also suggests a way of evaluating the ATC using the ACC and STC.

4. COMPLEXITY OF AFFINE COUPLING AND
TRIPLING COEFFICIENTS (ACC & ATC)

In this section, we study the computational complexity of the affine
coupling and tripling coefficients (ACC and ATC), determining their
numbers of nonzero terms in a number of bases. In wavelets, we fo-
cus on the Haar basis for its simplicity. We present the main results
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that are essential for understanding the key insights and implement-
ing the theory, leaving many detailed mathematical derivations for
the appendices.

4.1 General, Pixel, and Fourier Bases

In general orthonormal bases, the complexities of the ACC and ATC
are O(N 2) and O(N 3), respectively (they can be lower for some
values of s and o). This can be contrasted to the linear complexity
of the SCC, and highlights the fact that the original orthonormal
relation between different basis functions no longer holds under an
affine transform.

Pixel basis functions, in mathematical terms, are disjoint and dis-
crete step functions. A unique aspect of the pixel basis is that both
the integration and product of multiple different pixels is zero. This
leads directly to the linear O(N ) complexity of the ACC and ATC.
A detailed account of the complexity analysis is in Appendix B. De-
spite its simplicity, the pixel basis is a poor basis for compression,
which often outweighs its efficiency in calculation.

The Fourier series is mostly preferred in theoretical analysis and
has a well-known 2D affine theorem [Bracewell et al. 1993]. Adapt-
ing this theory to 1D (Appendix B), we show that the ACC in the
Fourier basis can be mapped to the SCC, and thus has the same lin-
ear O(N ) complexity. The specific mapping depends on the scale
s and offset o. Similarly, the complexity of the ATC in the Fourier
basis can be determined as O(N 2) using Lemma 1 (Appendix B).

Spherical harmonics are the extension of the Fourier basis to
the sphere. They are not considered in this discussion, since no
standard operation in the spherical domain directly maps to the
affine transform.

4.2 Haar Wavelets

We present our main theoretical contribution in this section, deriving
the complexities of affine coupling and tripling coefficients in Haar
wavelets. Readers interested in implementation may wish to skip to
the summary of complexities in Section 4.3 on a first reading.

4.2.1 Wavelet and Scaling Functions. The normalized 1D Haar
basis [Stollnitz et al. 1996] is defined as

—The mother scaling and wavelet functions are

φ(v) =
{

1, for 0 ≤ v < 1
0, otherwise,

and

ψ(v) =
⎧⎨
⎩

1, for 0 ≤ v < 1/2
−1, for 1/2 ≤ v < 1
0, otherwise.

—A normalized wavelet basis ψ j (v) at level l j and offset t j is

ψ j (v) = 2l j /2ψ(2l j v − t j ),

which is a scaled and dilated copy of the mother wavelet.

4.2.2 Haar Canonical Coupling Coefficient (CCC). The ACC
is a 4D function of the two subscripts i and j , the scale s, and
the offset o. Similarly, the ATC is a 5D function. Since accord-
ing to Lemma 1 the ATC can be reduced to the ACC, we first fo-
cus our analysis on the ACC. To reduce the dimensionality of the
ACC, we invoke the standard property of Haar wavelets as a multi-
resolution series and write wavelet basis functions in terms of the

mother wavelet ψ(v).

Dij(s, o) =
∫

ψi (sv + o)ψ j (v)dv

= 2
li +l j

2

∫
ψ(2li sv − ti + 2li o)ψ(2l j v − t j )dv (15)

To simplify Eq. (15), we make the substitution u = 2l j v − t j so that
transformations of the two mother wavelets can be merged into a
single combined transformation. We have

Di j (s, o) = 2
li −l j

2

∫
ψ(2li −l j su − ti + 2li o + st j 2

li −l j )ψ(u)du

= 2
li −l j

2

∫
ψ

(
u
2r

− c
2r

+ 1

2

)
ψ(u)du

Di j (s, o) = 2
li −l j

2 M(r, c) , (16)

where

M(r, c) =
∫

ψ

(
u
2r

− c
2r

+ 1

2

)
ψ(u)du , (17)

r = 2l j −li −1

s
, and c = 2l j −li ti − 2l j o + 2l j −li −1

s
− t j . (18)

We call M(r, c) the Canonical Coupling Coefficient, or CCC. The
CCC encapsulates the core structure of the ACC. Variables r and
c dictate the combined transformation in wavelet ψ( u

2r − c
2r + 1

2 ).
Intuitively, they are, respectively, the radius and center of the trans-
formed wavelet ψ( u

2r − c
2r + 1

2 ), as shown in Figure 3(a).

Property 1. The evaluation of the 4D affine coupling coefficient
reduces to a combination of a few simple function computations and
an estimate of the 2D analytic function M(r, c) called the canonical
coupling coefficient, as described by Eq. 16. Variables r and c are
given by Eq. 18. M(r, c) is a sparse, piecewise linear, and symmetric
function.

In its analytic form, M(r, c) is a branching function as shown in
Figure 4. The calculation of M(r, c) is equivalent to determining
the overlapping relation between the original mother wavelet ψ(u)
(denoted as β) and the transformed one ψ( u

2r − c
2r + 1

2 ) (denoted
as α). Their overlapping relation depends on their relative positions
(centers) and sizes (radii). We group their overlapping relations into
six cases and show them in Figure 3. For brevity in exposition, we
assume that α’s radius is smaller than that of β, and α is located
on the left. Our analysis will still hold when α’s radius is actually
larger or it is located on the right, since β can then be viewed as
“the transformed wavelet” and exchange roles with α. In all cases,
M(r, c) can be computed in no more than 9 lines of code (Figure 4
also cross-references the six cases in Figure 3).

4.2.3 Properties of Haar CCC. M(r, c) has special structures
and important properties that can be exploited for computation. In
Figure 5, we plot M(r, c) in both r and c dimensions to better
expose many such properties. We examine a few important ones
here:

Sparsity. M(r, c) is sparse. As shown in Figure 5, M(r, c) is
nonzero over only very limited ranges of the radius r and the cen-
ter c. In particular, M(r, c) is zero when the right endpoint of the
transformed wavelet is less than 0 (meaning c + r < 0), or the left
endpoint is greater than 1 (meaning c − r > 1). In these cases, the
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3. The canonical coupling coefficient M(r, c) is an integration of two
wavelets denoted as α and β, with α being affinely transformed, as shown in
(a). Variables r and c correspond to the radius and center of the transformed
wavelet α. (b)–(g) show different overlapping relations of wavelets α and
β. Variables maxr and minr are, respectively, the bigger and smaller of the
radii of the two wavelets, and sr and dr their sum and difference. The red
arrows show the distance d.

two wavelets do not overlap and their integration is 0. These two
boundary conditions compactly combine to |c − 0.5| > r + 0.5.

M(r, c) = 0, when |c − 0.5| > r + 0.5 (19)

Since the ACC reduces to the CCC, the ACC will be sparse if many
combinations of i, j, s, and o make r and c fall into the zero ranges.
We will discuss the complexity of the ACC formally in Section 4.2.4.

Piecewise linearity. M(r, c) is a piecewise linear function.
As depicted in Figure 5, M(r, c) has only a limited set of slopes
{0, ±1, ±2 ± 3} in both r and c dimensions. This is because the
partial derivatives of M(r, c) with respect to r and c are just combi-
nations of a few mother wavelets ψ(u). These mother wavelets are
valued at three break-points (c − r , c + r and c, as in Figure 3(a))
of the transformed wavelet ψ( u

2r − c
2r + 1

2 ). The derivation of the
partial derivatives is in Appendix C.
∂ M(r,c)

∂c = 2ψ(c) − ψ(c − r ) − ψ(c + r ) = {0, ±1, ±2, ±3}, (20)
∂ M(r,c)

∂r = ψ(c − r ) − ψ(c + r ) = {0, ±1, ±2} (21)

Consequently, the ACC is also piecewise linear, and its gradient is
easily computed from that of M(r, c) using the chain rule.

Symmetry. M(r, c) is symmetric. In the c dimension, as shown
in Figure 5(a), M(r, c) is reflection symmetric about 0.5. This reflec-
tion symmetry is also used in computation in Figure 4 as the calcu-
lation depends not on c directly, but on d = |c − 0.5|. d = |c − 0.5|
is reflection symmetric about 0.5. In mathematical terms, we have

M(r, 0.5 + c) = M(r, 0.5 − c). (22)

In the r dimension, M(r, c) also has a certain degree of symmetry.
When r is above 1, we can invert its value to below 1 by changing

//c and r are respectively the center and radius of the transformed wavelet.

//d is the distance between the centers of the two wavelets.

//sr and dr are respectively the sum and difference between the two radii.

1. d = |c 0.5|; sr = r + 0.5; dr = |r 0.5|;

2. maxr = max(r, 0.5); minr = min(r, 0.5);

3. if (d > = sr) M = 0; // Fig. 3B

4. else if (d > = maxr) M = d sr; // Fig. 3C

5. else if (d > = max(dr, minr)) M = dr d; // Fig. 3D

6. else if (d > = min(dr, minr))

7. if (dr > = minr) M = 0; // Fig. 3E

8. else M = sr 3d; // Fig. 3F

9. else if (d < = min(dr, minr)) M = 2(minr d); // Fig. 3G

Fig. 4. Analytic formula of M(r, c) in pseudocode. Branches correspond to
different overlappings between the two wavelets, as illustrated in Figure 3.

the integration variable in Eq. (16) to w = u
2r − c

2r + 1
2 .

M(r, c) = 2r M
(

1

4r
,

1

2
+ 1

4r
− c

2r

)
(23)

Derivations of these symmetry properties are in Appendix C.
Due to these symmetries, we only store a nonrepeating quarter
([0 < r ≤ 1, −r ≤ c ≤ 0.5]) of the nonzero range of M(r, c) and
save three-fourths of the storage space.

Boundedness. M(r, c) is both upper and lower bounded, which
makes it ideal for quantization and encoding in hardware textures.

max
(
M(r, c)

) = 2min(r, 0.5) ≤ 1,

min
(
M(r, c)

) = −min(r, 0.5) ≥ −0.5

4.2.4 Complexities of Haar ACC and ATC. The number of
nonzero ACC terms varies significantly with the scale and offset.
We first show empirically in Figure 6 the O(N log N ) complexity
of the ACC in Haar wavelets. Complexities for general wavelets are
discussed in Section 7, and are found to be similar to the Haar case.
In Figure 6(a), we plot the numbers of nonzero ACC terms versus
the total numbers of the wavelets for 50 randomly generated sets
of scales and offsets. Seven representative curves out of the 50 are
highlighted, and their numerical values are tabulated in Figure 6(c).
To better illustrate the logarithmic behavior part of the O(N log N )
complexity, we divide all curves by N and plot them again in Fig-
ure 6(b). Note that O(N log N ) is just an upper bound. The actual
complexity of the ACC is comparable to that of standard tripling
coefficients (STCs) developed by Ng et al. [2004]. The O(N log N )
complexity can also be mathematically proved by determining the
upper bound of the total overlapping pairs between the two wavelet
trees, one of which is affinely transformed. We give the detailed
proof in Appendix D. In practice, indices of nonzero ACC terms can
be picked either using Eq. (19) (the sparsity property of the CCC), or
from a compact pretabulated table, as implemented in Section 5.3.2.

To compute the complexity of Haar ATC, we invoke the standard
property of Haar wavelets that the product of two wavelets is either
the finer wavelet up to a scale if they overlap, or zero otherwise.
Therefore when wavelets overlap, the ATC reduces to the ACC, and
subsequently to the CCC according to Property 1. When wavelets do
not overlap, the ATC is simply zero. Based on this key observation,
we derive Property 2 that relates the ATC to the CCC.

Property 2. The Haar ATC, as defined in Eq. (10), is evaluated
using the canonical coupling coefficient as follows.
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Fig. 5. (a) Canonical Coupling Coefficient M(r, c) in the c dimension (the horizontal axis is c−0.5 to better demonstrate the symmetry) for all different ranges
of the radius r . The red labels represent line slopes, while the black labels are measurement marks along the axes; (b) M(r, c) in the r dimension for c ≥ 0.5.
The horizontal axis is the radius r of the transformed wavelet. When c ≤ 0.5, M(r, c) can be computed using the symmetry M(r, c − 0.5) = M(r, 0.5 − c).
This graph illustrates a number of important properties of M , such as its sparsity, piecewise linearity, symmetries, and boundedness.
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Fig. 6. Complexity of affine Haar wavelet coupling coefficients for 50
randomly generated sets of scales and offsets. Figure 6(a) empirically shows
the O(N log N ) complexity of the ACC. Seven representative curves out of
50 are highlighted and their values listed in Table (c). Note that in Figure 6(a)
for most scales and offsets, the actual numbers of nonzero ACC terms fall
well below N log N (cyan line), and some even below N (when significant
offsets and scales transform a large portion of the wavelet tree out of [0, 1]).
The formal proof of the complexity of the ACC is in Appendix D.

—In Eq. (10), if basis functions � j (v) and �k(v) overlap,

Di jk(s, o) = 2
li −lm +ln

2 M(r, c), (24)

where n = min( j, k), m = max( j, k), and

c = 2lm−li ti − 2lm o + 2lm−li −1

s
− tm,

r = 2lm−li −1

s
.

—Otherwise, Di jk(s, o) = 0.

It can be shown that the complexity of the ATC in the Haar basis
is O(N log2 N ). We leave the proof in Appendix D. For interested
readers, Property 2 can also be verified using Lemma 1.

4.3 Summary of Complexities in All Bases

The following table summarizes the computational complexities
of the SCC, STC, ACC, and ATC in different bases. For general
orthonormal bases, there is no sparsity due to the lack of special
structures. The pixel basis, despite its simplicity, is a poor basis for
compression and hence undesirable for practical applications. The
Fourier basis is widely used in theoretical analysis, but is not good
at capturing all-frequency lighting (or visibility/BRDF) as shown
in Ng et al. [2003]. Haar wavelets are preferred in all-frequency
relighting and only need a handful of coefficients and basis func-
tions to achieve good approximations. To distinguish from N , the
total number of basis functions, we denote the number of terms re-
tained after compression as n. n is usually around 1 ∼ 2% of N
for wavelets. As shown in the following table, Haar wavelets have
linear or close-to-linear complexities ranging from n to O(n log2 N )
across all columns. In practice, we would need to compute far fewer
terms after compression than in the other bases. This makes Haar
wavelets ideal for many operations in practical applications. We also
show the complexities of ACCs and ATCs for general wavelets are
O(n log N ) and O(n log2 N ), respectively, in Section 7.

Bases SCC ACC STC ATC
General N O(N2) O(N3) O(N3)
Pixel N N N N
Fourier n n O(n2) O(n2)
Haar n O(nlog N) O(nlog N) O(nlog2 N)
General Wavelets n O(nlog N) O(nlog N) O(nlog2 N)

4.4 Generalization to Higher Dimensions

A high-dimensional Haar basis can be viewed as a product of multi-
ple 1D Haar wavelet basis functions for both standard and nonstan-
dard decompositions, as utilized by Clarberg et al. [2005]. Similarly
to a high-dimensional Fourier basis, a high-dimensional Haar basis
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can be written as

	i(v) =
Q∏

q=1

ψiq (vq ), (25)

where 	i is a Q-dimensional basis function, variables i and v are
Q-dimensional vectors, and iq and vq index into the qth dimension
of vectors i and v.

The ACC becomes

Dij(s, o) =
∫

. . .

∫
︸ ︷︷ ︸

Q

	i(sv + o)	j(v)dv

=
Q∏

q=1

( ∫
ψiq (sqvq + oq )ψ jq (vq )dvq

)
︸ ︷︷ ︸

1D affine coupling coefficient

=
Q∏

q=1

Diq jq . (26)

Similarly, the ATC becomes

Dijk(s, o) =
∫

. . .

∫
︸ ︷︷ ︸

Q

	i(sv + o)	j(v)	k(v)dv

=
Q∏

q=1

( ∫
ψiq (sqvq + oq )ψ jq (vq )ψkq (vq )dvq

)
︸ ︷︷ ︸

1D affine tripling coefficient

=
Q∏

q=1

Diq jq kq , (27)

where 	i, 	j, and 	k are Q-dimensional basis functions, and vari-
ables i, j, k, s, and o are vectors of Q elements. Eq. (26) and Eq. (27)
show that the high-dimensional Haar ACC and ATC, are products
of multiple 1D ACCs and ATCs, respectively. They enable scales
and translations in wavelets, but not rotations or shears.

The complexities of the high-dimensional ACC and ATC are re-
spectively O(n[ log N

Q ]Q) and O(n[ log N
Q ]2Q). If we denote the total

number of basis functions in 1D as Ñ , we obtain N = Ñ Q for higher
dimensions. Noting that log N = Q log Ñ and the complexities of
1D ACCs and ATCs are O(ñ log Ñ ) and O(ñ log2 Ñ ), multiplying
these complexities Q times respectively generates the complexities
of the high-dimensional ACC and ATC. For relighting, we will be
working with 2D ACCs, whose complexity is O(n log2 N ) from the
previous analysis. However, we show in Section 5.3 that we can
develop a more efficient algorithm with O(n log N ) complexity.

5. INTERACTIVE NEAR-FIELD RELIGHTING

We now develop our main practical application, showing how to
integrate our theory with the PRT framework to render near-field
lighting effects at interactive rates. Later Section 6 will present initial
results for wavelet importance sampling for near-field planar area
lights and image processing directly in the wavelet domain.

5.1 Basic Relighting Framework

In the reflection equation, the exitant radiance is

B(q,ωo) =
∫




L(q,ωi )V (q,ωi )ρ(q,ωi ,ωo)(ωi · n)dωi

=
∫




L(q,ωi )T (q,ωi ,ωo)dωi , (28)

where B is the reflected radiance as a function of the spatial location
q and outgoing direction ωo, L is the incoming lighting, ωi is the
incident direction, V is the visibility, ρ is the BRDF, and n is
the surface normal. Symbols in bold represent 2D vectors. Often
the visibility V , BRDF ρ and cosine term (ωi ·n) are combined into
the transport function T as shown in Eq. (28). Eq. (28) is a double
product integral of the lighting and the transport function, and is
often expanded in the Haar wavelet basis in actual computations.

In most relighting algorithms, distant illumination is assumed so
that L(q,ωi ) = L(ωi ) is the same for all vertices q. However, in
the near-field setting considered here, we need to propagate light
from the planar area source to each spatial location. We will show
next that this corresponds to an affine transform of the original area
source radiance. Thus, Eq. (28) becomes an affine double product
integral, and can be efficiently computed on the fly for each vertex
using the theory of Sections 3 and 4.

5.2 Light Propagation

We consider light propagation from an area light source in 1D as
shown in Figure 1(c). Extension to 2D planar sources in Section 5.3
is straightforward, as explained in Section 4.4. Note that we con-
sider propagation to surfaces only at the “front” of the light source;
surfaces at the back of the source will not be illuminated, and this
must be tested separately. The area light is F(v), and the incident
radiance at a vertex L(z, x ; v). Variables z and x are the vertical and
horizontal coordinates of the vertex. v is the intercept on a virtual
plane a unit distance away. From simple trigonometry, the incident
radiance can be written as

L(z, x ; v) = F(zv + x), (29)

which is an affine transformation of the original light F(v). z and x
respectively correspond to s and o previously used in the ACC.

It is worth making a note of the parameterization. In terms of the
more familiar angular coordinates, v = tan θ , and we must include
the correct angular/area measure for dv/dθ when changing the in-
tegration variable from θ to v. As is conventional, we incorporate
this into the transport function T (v). We emphasize that while our
parameterization is similar to the linearization used in, for instance
Durand et al. [2005], Eq. (29) is exact, and not an approximation.

The coefficients of the incident radiance Lk(z, x) can be computed
as

Lk(z, x) =
∫

F(zv + x)ψk(v)dv

=
∫ ( ∑

i

Fiψi (zv + x)

)
ψk(v)dv

=
∑

i

Fi Dik(z, x), (30)

where Fi are the wavelet coefficients of F . Eq. (30) propagates light
directly in the wavelet domain.

We emphasize that Eq. (29) and (30) simply express the incident
radiance at a given spatial location. The PRT algorithm can be treated
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Fig. 7. (a), (b), and (c) are renderings using our method with different face
sizes. (d) is the ground truth from a ray tracer, using a full representation
of the lighting environment at each vertex. (e) shows the coverage ratios of
the top face over the upper hemisphere with different sizes. In the graph,
the blue solid curve is the top face solid angle covered, and the green dotted
curve the energy of a centrally aligned Lambertian lobe. For a standard cube
map, its top face size is 2. Top face sizes 3 or 4 can generate visually accurate
results.

as a black box that takes this incident lighting L and applies the light
transport function T . Therefore, our method can be incorporated
into almost any PRT framework and representation for T , including
those that are view dependent.

By substituting the angleωi with v using appropriate normalizing
weights (numerical cubature), we can write Eq. (28) as

B =
∫

L(z, x ; v)T (v)dv =
∑

i

∑
j

Fi Tj Di j (z, x), (31)

where Tj is the wavelet coefficient of the transport function T (v).

5.2.1 Parameterization. It is common to parameterize the
sphere S2 of directions using a cube map consisting of six faces.
Propagations of light to the six faces would require six affine trans-
formations. To speed up the computation, we make a trade-off by
using only the top face2, but expand its size to cover a larger solid
angle. The top face is aligned with the light plane. Our simplifica-
tion is motivated by the observation that in near-field settings for
most vertices, at least one of the lighting, visibility, or BRDF terms
would tend to peak at the top face and die out towards peripheral
regions. In addition, the cosine term (cosine of the incident angle)
reduces contributions towards grazing angles.

We make the top face adjustable so that a large or smaller solid
angle can be covered, as needed. The top face in the standard cube
map is assumed size 2. Figure 7 shows that midsized faces can cover
a sufficient portion of the hemisphere. For example, a size 10 top face
covers 82% solid angle of a hemisphere and captures 99% energy
of a centrally aligned Lambertian cosine lobe. The surface normal
is assumed to be normal to the planar light. Therefore, the top-face
approximation works best for the ground plane and other surfaces
oriented with their normals similar to that of the light source. Note
that the lighting from the planar source will itself peak at the top
face and reduce in intensity at other regions. This allows us to extend
the approximation to surfaces oriented in other directions as well.

2Similar plane-angle and plane-plane parameterizations have been used in
light field representations [Levoy and Hanrahan 1996; Chai et al. 2000].

In our experiments, sizes 3 or 4 suffice to generate visually accurate
results.

5.2.2 Assumptions and Limitations. We have assumed planar
area light sources, where the angular distribution of light is uni-
form. In Section 7, we discuss extending our relighting algorithm
to general 3D lights. We have not implemented, but show theoret-
ically (Appendix E) how to handle lights with angular variations
such as light fields using ATCs. As noted earlier, we use an ex-
panded top-face parameterization that may omit light incident at
grazing angles. Our method is general enough to allow interactive
scaling, translation, and horizontal rotation of lights and general
edits to the light textures. Horizontal rotations are achieved by sim-
ply rotating the light textures in the pixel domain, before applying
the wavelet transform. As in most wavelet-based relighting algo-
rithms, our algorithm does not support out-of-plane rotations of the
lighting. However, in Section 7, we discuss possible approaches to
incorporate out-of-plane rotation into our framework.

5.3 Rendering Algorithm

We present key computation steps and major rendering results in
this section. All renderings and time measurements are done on a
commodity 3.0 GHz Dual-Quad-Core PC with 4GB memory.

5.3.1 Log-Linear-Time Light Propagation. To propagate light,
we compute Eq. (30) in 2D,

Lk(z, x) =
∑

i

FiDik(z, x),

where x and z are 2D variables3, and i and k are, respectively, 2D
vectors of (i1, i2) and (k1, k2). Since we have to loop through all
subscripts i and k, we only evaluate the equation for nonzero 2D
ACC Dik(z, x). Variables z and x, respectively, correspond to the
scale s and the translation o. Recall that we use N to denote the total
number of basis functions and n for the number of terms retained
after compression. The total cost appears to be the O(n log2 N )
complexity of the 2D ACCs, which is derived in Section 4.4.

In fact, a better O(n log N ) algorithm exists if we separate 2D
ACCs as products of 1D ACCs and perform the computations in
each dimension in succession.

Step 1: ∀ i2, k1 Zi2k1 (z1, x1) =
∑

i1

Fi1i2 · Di1k1 (z1, x1)

Step 2: ∀ k1, k2 Lk1k2 (z1, z2, x1, x2) =
∑

i2

Zi2k1 · Di2k2 (z2, x2)

Zi2k1 is an intermediate variable that carries the accumulation result
from the first dimension. Step 1 involves looping over subcripts i1,
i2 and k1. For any given i2, over all i1 and k1, there are approxi-
mately O(

√
n log N ) nonzero Di1k1 (z1, x1) since the complexity of

1D ACCs is about the square root of that of 2D ACCs. Multiplying
the number of i2 which is about

√
n gives the cost for step 1 as

O(n log N ). Similarly, step 2 also takes O(n log N ) time, and thus
the total complexity of both steps is O(n log N ). This computation
is performed independently for all three color channels.

5.3.2 Precomputation and Rendering. Transport functions T
are precomputed similarly to Ng et al. [2003], except using the
expanded-top-face parameterization. Light propagation (Eq. (30))
involves computing the ACCs. There are two practical approaches,

3Since each vertex has only one depth from the light source, vector z’s two
elements are the same z1 = z2.
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Fig. 8. A diffuse scene of a fertility sculpture and three spheres lit by a simple textured area light. The light textures are shown in the top left corners. The
area sources are above the fertility sculpture, but cropped to save space. (a), (b), and (c): Images compare ray tracing, our method, and distant environment
map lighting, respectively. Compared to distant lighting in (c), we see that our method in (b) correctly captures the spatially varying shading on the floor and
sculpture and generates a result that is quite close to the ground truth. About 1% of source-level and 22% of target-level lighting coefficients are used in our
method. (d) Finally, we can edit the light texture and shape, and rotate it in real-time to obtain a distinct appearance in (d). (Note that rotations are limited to
horizontal in-plane rotations, and are performed simply in the pixel domain before transforming to wavelets. General out-of-plane rotations are not possible.)
This important tool for lighting design would not be possible with previous techniques like precomputed shadow and source radiance fields.

one relying on memory lookups and the other favoring faster
computation.

Memory based approach. It is easy to store all nonzero 1D
ACCs Dik(s, o) compactly in a 4D table and look up their values dur-
ing the computation. Due to the sparsity of ACCs, the cost to com-
pute and store the 4D table is minor. As shown in the following table,
nonzero ACCs for wavelet order 32 and at spatial resolution 256 only
takes 1.06 seconds to precompute and 18.66MB to store. Note that
the space and time cost scales close to linearly with the order of the
wavelets, confirming our analysis in Section 4.2.4. Precomputed
tables at all different orders and resolutions will be downloadable
from our Web site (http://www1.cs.columbia.edu/cg/adtpi).

Precomputation and Storage Cost in Memory-Based Approach
space (MB) “Spatial” Resolutions (s, o)

time (S) 64 128 256 512 1024

8
0.26MB 1.05MB 4.22MB 16.92MB 67.74MB

0.011S 0.044S 0.176S 0.708S 2.760S

16
0.56MB 2.25MB 9.03MB 36.24MB 145.09MB

0.029S 0.114S 0.457S 1.801S 7.093S

32
1.15MB 4.65MB 18.66MB 74.81MB 299.45MB

W
av

el
et

O
rd

er
s

(i
,j

)

0.066S 0.257S 1.059S 4.236S 16.871S

64
2.33MB 9.44MB 37.83MB 151.60MB 606.78MB

0.147S 0.589S 2.368S 9.498S 37.768S

Because of the independence of lighting coefficients across
vertices, light propagation can be easily parallelized on multicore
machines or clusters. We implement both single-thread and
multiple-thread rendering algorithms on a 3.0 GHz Dual-Quad-
Core machine using the boost library. To ensure workload balance
between threads, we choose a round-robin scheduling scheme
among a pool of tasks, each carrying a small number (512) of
vertices to compute. Compared to the single-thread, an eight-thread
implementation generates the exact same rendering result, but
improves the speed by about 6.5 times and easily obtains real-time
rates. Most of our relighting results are generated using the
multithread memory-based implementation.

Computational approach. For machines with faster computa-
tion, we tabulate M(r, c) (canonical coupling coefficient defined by
Eq. (17)) in a 2D texture and compute ACCs using Eq. (16). M(r, c)
is stored using simple angular discretization. Since M(r, c) is sparse
and symmetric (Section 4.2.2), the entire M table can fit into the L2

cache. A 256 × 256 M table in floating point only takes 0.25MB
space. In our experiment settings, the computational approach is
about half as fast as the memory-based approach.

5.3.3 Nonlinear Lighting Approximation. Realistic illumina-
tion can be well approximated using a handful of wavelet coeffi-
cients. Our model allows compression at two levels, of both the
original light F (source level) and the local incident radiance L
(target level), drastically speeding up the performance.

Source-level compression. At the source level, lighting coef-
ficients Fi are ordered, and the most significant ones are picked, as
in standard PRT. Using only 1% of source-level coefficients usually
generates accurate renderings for our test scenes, as shown in Fig-
ures 8 and 9. In general, the compression depends on the BRDF of
the receiver as well as the distance between emitter and receiver.

Target-level compression. Target lighting coefficients Lk vary
across all vertices and change as the light source is dynamically
updated. It is difficult to predetermine which target coefficients are
important, and generating and sorting them in real time is too expen-
sive. Instead, we assume a heuristic light F̃i and precompute lighting
predictions L̃k for a number of z and x values. The light predictions
L̃k are used to pick target lighting coefficients Lk at runtime.

L̃k(z, x) =
∑

i

F̃iDik(z, x). (32)

Rarely will the lighting predictions L̃k be exactly the same as the
actual lighting Lk . They will, however, roughly track how power
distributions of the wavelet coefficients under affine transformations
change with respect to spatial locations. We use a simple constant
light heuristic (a vector with only DC, [1, 0, 0, . . . ]) in our experi-
ments, and need about 20 ∼ 30% of target-level lighting coefficients
for visually accurate results, as shown in Figures 8 and 9.

5.4 Results

We demonstrate three scenes: fertility (39,391 vertices, Figure 8),
chairs (59,995 vertices, Figures 1(b) and 9(a)–(c)), and couches
(68,046 vertices, Figures 1(a) and 9(d)–(f)). All scenes have static
geometries and are rendered using PRT, with near-field lighting
effects generated using our method. The chairs, tables, and couches
have specular materials with precomputation done per vertex [Ng
et al. 2003]. The fertility scene is diffuse and can be viewed from
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Fig. 9. Two specular scenes rendered with near-field sources using our
method. Light textures used are shown in the upper left corners, and their
sizes and positions vary. In the chair scene, note the sharper and larger
shadows underneath the chairs when the light is small and close (a), and
smaller and softer shadows when the light is larger and far away (b). Also note
in the couch scene how light editing (change texture, reshape) from (d) to (e)
influences specular reflections on the tables and cushions. Figure 1(a) follows
(e) but resizes and rotates the light. (c) and (f) render both specular scenes
from another view point with a different light texture. Specular rendering
from a different viewpoint requires a separate precomputation. Close-ups
can be found in Figure 1. Performance numbers are reported in Figure 11.

different angles. Please note that our technique is orthogonal to many
PRT calculations and can certainly be used with view-dependent
methods such as BRDF in-out factorization [Wang et al. 2004; Liu
et al. 2004] or other approaches. In all cases, we can interactively
edit the light.

5.4.1 Near-Field vs. Distant Lighting Effects. In Figure 8(b),
we light a diffuse fertility scene with near-field lights. Spatially
varying shadings and colored soft shadows on the floor are clearly
visible. In contrast, Figure 8(c) shows a rendering using the standard
environment mapping technique,4 which fails to capture the shading
variations on the floor or sculpture that are critical to the mood of
the scene.

In Figure 9, we render two specular scenes with a number of lights
at different positions. In particular, when the light is closer to the
floor in Figure 9(a) (as compared to Figure 9(b)), shadows of both

4The incident lighting at the center of scene is used as the “environment
map” and fed to all vertices for shading computations.

Fig. 10. Approximation errors of the source-(graph (a)) and target-(graph
(b)) level compressions. Four representative light textures with different
levels of high frequencies are used. The horizontal axes are on a log scale.

chairs expand sideways and the specularity on the table focuses.
In Figures 9(d)–(e), we can clearly observe how editing the light
texture, as well as its shape and size, changes the specular highlights
on the tables and cushions. These effects are hard to capture with
distant illumination. Close-ups are found in Figures 1(a) and 1(b).

5.4.2 Light Editing. We develop a prototype light editing and
design system, which allows artists to edit the lights in a more intu-
itive and interactive way. An artist can move, resize, or horizontally
rotate the light. Note that these operations on the light source are all
performed once per frame in the pixel domain, before transforming
the lighting into wavelets and propagating to the vertices. Lights
can also be textured. Image processing methods such as blending,
filtering, warping, and painting can be easily applied to edit the light
texture. Because the cost of compressing the edited light texture into
wavelets in real time is minor, changes can be immediately reflected
in the realistically rendered images using our algorithm. For exam-
ple, starting from Figure 9(d), we first paint and reshape the light to
obtain Figure 9(e), and then resize and rotate the light to generate
the image in Figure 1(a). Note the generality of our system to han-
dle textured and editable/reshapeable light sources in Figures 8 and
9, which cannot be addressed by previous near-field lighting tech-
niques like precomputed source radiance fields [Zhou et al. 2005].

5.4.3 Accuracy Analysis and Validation. We compare the
ground-truth image from a ray tracer in Figure 8(a) with our re-
sult in Figure 8(b). We also showed a ground truth comparison in
our didactic example of a knot scene in Figure 7. Since we only use
a finite plane to parameterize the upper hemisphere, light incident
at grazing angles is omitted, resulting in dimmer shading for some
boundary vertices and the lack of grazing angle specularities. Also,
lighting coefficients are compressed at both the source and target
levels. Thus, energies at certain frequencies may be lost. Neverthe-
less, Figures 7 and 8 clearly demonstrate that our results show little
visual difference from the ground truth, but now can be rendered at
real-time rates. Similar results hold for our other images.

Lighting approximation error. Figure 10 shows the approxi-
mation errors for different compressions at both source and target
levels. A few representative light textures used in the renderings are
included in the accuracy analysis. Note that the horizontal axes in
Figure 10 are on a log scale. The approximation accuracy improves
quickly with increasing numbers of coefficients used. In addition,
the target-level compression is less efficient than the source-level,
requiring more coefficients for the same level of accuracy. This
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Fig. 11. Rendering performance with different compressions. For each
scene, the upper row contains the performance numbers using the multi-
thread implementation, and the lower row for the single-thread implemen-
tation. All performance is measured on a 3.0 GHz Dual-Quad-Core PC with
4.0 GB memory. The second and third performance columns correspond to
realistic compression levels for accurate rendering, and achieve real-time
rates for both the single-thread and multithread algorithms.

inefficiency is due to the fact that we rely on a constant heuristic
light to predict significant lighting coefficients after the affine trans-
formation. Our experiments show that 1% of the source-level and
20 ∼ 30% of the target-level lighting coefficients (using a constant
light heuristic) usually suffice to generate visually accurate results.

5.4.4 Performance. All images are rendered at 1200 × 900 res-
olution and a wavelet order of 32. The rendering speed depends on
a number of factors such as the total number of vertices, numbers
of the retained source- and target-level lighting coefficients, and
the complexities of the scene materials. In Figure 11, we report the
rendering performance for the fertility, chair, and couch scenes. As
shown in the second and third performance columns (which corre-
spond to the common compression usage), our algorithm provides
real-time performance, as also seen in the supplemental video that
can be accessed through the ACM Digital Library.

5.5 Discussion and Comparison to Previous
Near-Field Relighting Methods

In comparison with previous techniques, our method offers signifi-
cant design flexibilities and achieves effects that are otherwise hard
to capture. Annen et al. [2004] and Wang et al. [2006a] pioneered
rendering midrange illuminations, using, respectively, spherical har-
monic gradients and scaling. Lights are assumed some distance away
from the scene so that the lighting can be smoothly interpolated and
its propagation (affine transformation) approximated. Our work can
be seen as extending these methods to near-field settings, as shown in
Figure 8. Moreover, our technique can also render specular scenes,
such as the chair and couch scenes in Figure 9. Zhou et al. [2005]
and Kristensen et al. [2005] made important advances in near-field
rendering of both diffuse and specular scenes. The light content,
however, is built into the precomputations and has to remain static
during rendering. Designers can move the light or change its inten-
sity, but cannot edit the light shape or texture. Our method can be
seen as an important generalization of their techniques, and allows
light editing to be fully integrated with any PRT framework. For ex-
ample, interactively painting the lights and changing their shapes, as
done in Figures 8(d) and 9, or quickly flipping through several arbi-
trary light textures during relighting, as demonstrated in the video,
are all feasible with our method. Finally, Annen et al. [2004], Wang
et al. [2006a], and Kristensen et al. [2005] base their methods on the
spherical harmonic basis and cannot capture all-frequency effects.

6. OTHER APPLICATIONS

Besides our main problem of PRT near-field relighting, affinely
transformed wavelets and wavelet integrals have many other poten-
tial applications in rendering, image and signal processing, and nu-

Fig. 12. A gold dragon under a near-field area source rendered using
wavelet importance sampling. The ground-truth rendering is at the top left.
To compare near-field and distant lighting effects, we also show an image
rendered using uniform environment lighting at the top right. The color of
the environment lighting is the average of the textured area light used in the
near field. Shading variations and shadows are clearly different under the
two lighting conditions. Under near-field lighting, the dragon exhibits high
color contrast and strong directional specular reflections, while the shading
under environment lighting is significantly diffused out. In the close-ups,
for the same number of samples (8), we compare the result of our method
with those by standard wavelet importance sampling but assuming that the
light is distant (distant lighting is used to generate important samples, but
shading is calculated using the area light), and light importance sampling
(light sampling). Order 64 wavelets are used for all three sampling meth-
ods. Our method converges to the ground truth an order of magnitude faster,
exhibiting substantially less noise at this sample count.

merical analysis. As a first proof of concept, we demonstrate initial
examples of wavelet importance sampling with near-field lighting
for offline Monte Carlo rendering, and image dilation and translation
directly in the wavelet domain for image processing.

6.1 Wavelet Importance Sampling

Clarberg et al. [2005] have shown that importance sampling the
product of the BRDF and the distant lighting can greatly reduce
the variance in Monte Carlo rendering. However, their method is
limited to distant environment map lighting, since lighting-BRDF
products are computed using standard triple product integrals. Our
theory enables a direct extension to the near-field setting, with planar
area sources. We pretabulate BRDFs as 4D functions as done in
Clarberg et al. [2005]. For each pixel, we affinely transform the
original light source into the local incident radiance using Eq. (30)
of Section 5, in a very similar fashion as for relighting. We then
multiply the wavelet coefficients of the local radiance with those
of the BRDF using the standard triple product wavelet integral [Ng
et al. 2004]. Thereafter, we perform hierarchical wavelet warping
to obtain importance samples, used for Monte Carlo estimation.
Distinct from Clarberg et al. [2005], we use the standard wavelet
decomposition and an expanded-top-face parameterization, as we
do in Section 5 for relighting.

We demonstrate a near-field rendering of a gold dragon under
an area light source in Figure 12. We observe visual effects such
as highly contrasted and spatially varying shadings that are hard
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Fig. 13. Zooming in on a building in a picture of Berlin. The top left is
the original image. The red box at the top contains zoomed images using
up-sampling in the pixel domain and our method. All image resolutions are
512 × 512. Our method is visually as accurate as the pixel domain method,
but more than 15 times faster. More results with different compressions at
both the source and target levels (src and dst) are shown in the column
beneath the red box. In the bottom left graph, we plot the performance
curves of our method with different compressions. Each curve corresponds
to either the source- or the target-level compressions (one level per curve).
The horizontal axis is on a log scale. Time measurements of the pixel method
include decompression and recompression of images encoded in wavelets.

to obtain with distant lighting. In the close-ups, we compare the
results of our method with those of standard wavelet importance
sampling, but assuming the light is distant (distant lighting), and
light importance sampling (light sampling). With only 8 samples per
pixel, our method can significantly reduce the noise and generate
results that are visually indistinguishable from the ground truth.

6.2 Image Dilation and Translation

Many image operations such as convolution, masking, and zoom-
ing involve basic operators like dilations (scales) and translations.
Using our theory, images compressed using wavelets can be scaled
and translated directly in the wavelet domain, instead of first requir-
ing decompression into the pixel domain. If needed, for example,
images are streamed from a remote server, and image dilations and
translations can also be performed in a multiresolution fashion.

The basic equation for image scaling and translation remains the
same as Eq. (30). F(v), originally the area light, becomes the source
image and L(v), the incident radiance, becomes the target image.
Variables z and x, respectively, describe the amount of dilation and
translation. As before, compression of wavelet coefficients can be
performed at both the source and target levels.

An example result is shown in Figure 13, where we zoom in on a
building in a photograph of Berlin, and plot the performance curves
with different compressions for the source and target. As shown in
the red box, our method is visually as accurate as the brute-force
up-sampling in the pixel domain, but more than 15 times faster. With
more compression (two bottom right images), the speedup can be
up to 60 times, at the cost of losing some details in the final images.
Accuracy analysis can be referred to Figure 10 in Section 5. Along
with other wavelet domain image operations such as additions and
multiplications, we believe our work is a significant step towards a
complete wavelet domain toolbox for image processing.

7. LIMITATIONS AND FUTURE EXTENSIONS

In this section, we address three important limitations of our model,
and suggest future directions for extending our theory to general
non-Haar wavelets and our relighting algorithm to out-of-plane ro-
tation and 3D shaped lights. The implementation of these extensions
is left as future work. We also briefly discuss the difficulty involved
in nonlinearly transforming functions in wavelets and compare their
complexities to that of the affine transform.

7.1 General Non-Haar Wavelets

In general, wavelet basis functions are defined as scaled and trans-
lated copies of their mother wavelets. By definition, they should have
the same tree structure as the Haar wavelets. As a result, our analysis
and derivation of the canonical coupling coefficient (CCC) in Sec-
tion 4.2.2 for Haar holds for general wavelets. The affine transforma-
tion in general wavelets can be similarly reduced to a 2D analytic
function M(r, c). Since we only relied on the tree-structured and
nonoverlapping properties of Haar wavelets, which are also true for
general wavelets, in analyzing its ACC and ATC complexities (Ap-
pendix D), similar analysis quickly leads us to O(n log N ) ACC and
O(n log2 N ) ATC complexities for general wavelets. The constants
in the complexities will be larger because of greater wavelet sup-
port. Moreover, depending on the structures of the mother wavelets,
the properties of the CCCs for general wavelets such as sparsity,
piecewise linearity, symmetry, and boundedness may also be differ-
ent and their calculation is likely to be more expensive than that in
Haar. However, our implementation in Haar wavelets, as explained
in Section 5.3.2, is a general approach and can be similarly applied
to general wavelets.

7.2 Relighting with Out-of-Plane Rotation
and 3D Lights

There is a feasible approach to extend our technique to general out-
of-plane rotation and arbitrarily shaped 3D lights. The theory and
the algorithm we presented in Sections 4 and 5 allow us to propagate
parallel planar lights to relight a scene. When the light is rotated out
of the plane, we can first project the light back onto the original
plane towards the shading vertex using the standard camera per-
spective projection model. We then propagate the projected light to
the shading vertex using our theory of affine transformations. The
perspective projection and affine transformation together yield the
correct transformation for the rotated light. This approach has two
more benefits. First, perspective projections can be quickly done on a
GPU. To minimize texture read-back cost, multiple projected results
can be packed into a larger texture and then read back all at once.
Second, though the perspective projection depends on the shading
vertex, we only need to sample the rotated light for a sparse set
of angles to obtain an accurate estimation, for example, 10 × 10
sampling grid. Lighting in between the sampling points can be
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interpolated. In essence, we create a sparse light field represen-
tation in the original plane for the rotated light. Relighting with a
light field can be achieved by our theory and is described in detail in
Appendix E. Using perspective projections and a sparse light field
representation, we avoid the more expensive nonlinear transforma-
tion for out-of-plane rotation. The same projection approach can be
extended to arbitrarily shaped 3D lights, such as a torus, an ellip-
soid, or a shining buddha. The construction of the light field will
slow down the rendering performance. However, the light field only
needs to be constructed once per rotation. To further improve the
speed, the sparse light field representation can be precomputed and
tabulated for runtime lookups. In fact, light rotation around the ver-
tical axis then is equivalent to “rotating” the set of projected textures
in the azimuth angle.

7.3 Nonlinear Rotation in Wavelets

The out-of-plane rotation of lights actually corresponds to rotating
the wavelet frame. For theoretical interest, we look at nonlinear ro-
tations directly in the wavelet domain. Wavelet rotation is much
more complex as it requires complicated coupling between the spa-
tial and angular dimensions and their nonlinear transformations.
We use a simple case as an example and assume a 1D light along
the x-axis. Rotating the light around the zero point (x = 0) α de-
grees would achieve out-of-plane light rotation. Projecting the light
back onto the x-axis yields a light field and requires computing
L(x, v) = F( x

cos α+v sin α
), where x is the spatial location and v is the

intercept with the virtual parallel plane that is a unit distance away
as before. When expanded in wavelets, the coefficients of the light
field can be written as

L jk =
∫

L(x, v)� j (x)�k(v)dxdv

=
∫ (∑

i

Fi�i

(
x

cos α + v sin α

))
� j (x)�k(v)dxdv

=
∑

i

Fi Ri jk(x, v, α), (33)

where

Rijk(x, v, α) =
∫

�i

(
x

cos α + v sin α

)
� j (x)�k(v)dxdv. (34)

The light field represented in wavelets can then be propagated using
our theory. In this derivation, we clearly see that the tripling coeffi-
cient Ri jk(x, v, α) is much more involved and includes complicated
coupling between x , v, and α. In general, if we denote a general
nonlinear transformation as Tn(x, v, α), the nonlinear tripling coef-
ficients in 1D can be written as

Ri jk(x, v, α) =
∫

�i (Tn(x, v, α))� j (x)�k(v)dxdv. (35)

Depending on the transformation involved, these nonlinear tripling
coefficients may or may not have analytic expressions. However,
because of the tree structure of wavelets, we expect them to still
be sparse and have complexities at roughly the same order as the
ATC. In fact, Wang et al. [2006b] rotate an environment map over a
sphere for relighting by computing coupling coefficients of a similar
nature. Spherical harmonic scaling [Wang et al. 2006a] also relies on
similar coefficients but computed in the spherical harmonic basis. As
inspired by Wang et al. [2006a, 2006b], one possible approach for us
to implement these nonlinear functions in wavelets is to precompute
and tabulate Ri jk(x, v, α) sparsely, and then quickly interpolate their
values at runtime. By studying the calculation and complexities

of more complicated coupling and tripling coefficients in different
bases, we hope more general and complicated frequency and wavelet
domain operations can be developed in the future.

8. CONCLUSIONS AND FUTURE WORK

We have presented a novel theory of affine double and triple prod-
uct integrals. In particular, we have analyzed the sparsity of affine
coupling and tripling coefficients in the Haar wavelet basis, show-
ing that they have nearly linear complexity, which leads to efficient
algorithms for computing affine transforms in Haar wavelets.

Besides being of substantial theoretical interest, our framework
has important practical implications. We develop some of the first
methods for including near-field lighting effects in all-frequency
PRT algorithms. A planar area source can be translated, dilated,
rotated in its plane, and have its texture edited, all while the scene
is rendered in real time; local lighting is propagated to each vertex
via an affine transform of the source radiance directly in wavelets.
Our method can be viewed as an enabling tool that allows near-field
lighting effects to be integrated with most PRT algorithms.

Future work in relighting can follow many avenues. Better heuris-
tics can be experimented with for more efficient lighting compres-
sion. Relighting with more general illumination sources like light
fields and dynamic textures can be explored. More general analytic
local light models should be investigated.

Our theory can also be applied to many other applications that de-
pend on wavelet representations. As a proof of concept, we demon-
strate implementation of wavelet importance sampling with near-
field lights for offline Monte Carlo renderers. We also show the
practical utility of our theory in dilating and translating images di-
rectly in the wavelet domain for image processing. We believe that
we have only scratched the surface of applications, and predict many
future developments in graphics and applied mathematics.

Finally, our work reveals the fundamental sparsity of some basic
wavelet operations (dilation and translation). This opens up a fresh
perspective in approaching many other operations that have tradi-
tionally been viewed as difficult to compute directly with wavelets.
Together with standard double- and triple product integrals (mul-
tiplication), more complicated operators can be built, for example,
convolutions can be reduced to translations and multiplications. We
hope the basic mechanism and computational machinery we em-
ployed in developing our theory will give some insight and serve as
a stepping stone for constructing a more complete suite of wavelet
domain operations.

APPENDICES

A. Proof of Lemma 1

By definition, the ATC is

Di jk(s, o) =
∫

�i (sv + o)� j (v)�k(v)dv. (36)

The integrand function �i (sv + o) can be viewed as a function of s
and o, and be expanded in basis �l (v) as

�i (sv + o) =
∑

l

( ∫
�i (su + o)�l (u)du

)
�l (v)

=
∑

l

Dil (s, o)�l (v). (37)
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Plugging Eq. (37) into (36), we obtain

Di jk(s, o) =
∫ ( ∑

l

Dil (s, o)�l (v)

)
� j (v)�k(v)dv

=
∑

l

Dil (s, o)
∫

�l (v)� j (v)�k(v)dv

=
∑

l

Dil (s, o)Cl jk . (38)

B. ACC and ATC in Pixel and Fourier Bases

Pixel basis. The ATC, according to Lemma 1, reduces to the
ACC because in pixel basis Ci jk equals 1 when i = j = k, and oth-
erwise is 0. As a result, the complexities of the ATC and ACC are the
same, and we only need to analyze the ACC Di j (s, o). Calculating
the ACC in the pixel basis is essentially equivalent to determin-
ing if the two pixels �i (sv + o) and � j (v) overlap. Without loss
of generality, assume that the original pixel basis is defined in the
range [0, 1] and there are N pixel basis functions in total. Each pixel
�i (sv + o) covers an area of 1/(s N ), and � j (v) an area of 1/N .
Any given � j (v), independent of the offset o, can overlap with at
most s + 1 basis functions �i (sv + o) due to the area constraint.
Taking all � j (v) into account, we obtain a maximum of (s + 1)N
overlapping pairs. Similarly, any given �i (v) can overlap at most
s−1 + 1 basis functions � j (v). Considering all �i (v) gives maxi-
mally (s−1 + 1)N overlapping pairs. Combining these two maxi-
mums, we derive an upper bound min

(
(s + 1)N , (s−1 + 1)N

)
of

the complexity, which can be proven tight easily. The tight upper
bound min

(
(s + 1)N , (s−1 + 1)N

)
is a function of the scale s, and

its maximum is 2N when s = 1. So we have proved the complexity
of the ACC and ATC in the pixel basis is O(N ).

Fourier basis. The complex form (I = √−1) of 1D Fourier
series basis functions on an azimuthal domain [0, 2π ] can be written
as

φp(v) = (2π )−1/2eI pv.

Based on the 2D affine Fourier theorem [Bracewell et al. 1993], we
recap the derivation for the 1D Fourier basis.5

Dpq (s, o) =
∫ 2π

0
�p(sv + o)�∗

q (v)dv

= eI po
∫ 2π

0
(2π )−1/2eI spv(2π )−1/2e−I qvdv

= eI poCsp,q = eI poδsp,q (39)

The ACC is mapped to a SCC. The specific mapping depends on the
scale s and the offset o. Therefore same as the SCC, the complexity
of the ACC in a 1D Fourier basis is O(N ).

To relate the ATC to the ACC, we start with Lemma 1.

Dnpq (s, o) =
∑

l

Dnl (s, o)Clpq

5Since the Fourier basis is complex, complex conjugates of basis functions are used in
ACCs and ATCs.

Substituting Dnl using Eq. (39) and Clpq =
√

1
2π

δl+p,q [Ng et al.
2004], we obtain

Dnpq (s, o) =
∑

l

eI noδsn,l (2π )−1/2δl+p,q

= (2π)−1/2eI no
∑

l

δsn,lδl+p,q

= (2π)−1/2eI noδsn+p,q , (40)

where δsn+p,q is nonzero when sn + p − q = 0. Since one of
the subscripts is uniquely determined by the other two, there
are only two degrees of freedom as opposed to three. So the
complexity of the ATC in the 1D Fourier basis is O(N 2). All our
analysis for the 1D Fourier basis can be easily extended to 2D and
higher dimensions because high-dimensional Fourier bases are just
products of multiple 1D bases.

C. Properties of the CCC

Piecewise linearity. We compute the partial derivatives of
M(r, c) with respect to c and r as follows.6

∂ M(r, c)

∂c
= ∂

∂c

∫
ψ

(
u
2r

− c
2r

+ 1

2

)
ψ(u)du

= −1

2r

∫ (
δ

(
u
2r

,
c − r

2r

)
+ δ

(
u
2r

,
c + r

2r

)

− 2δ

(
u
2r

,
c

2r

))
ψ(u)du

= −
∫ (

δ(u, c − r ) + δ(u, c + r ) − 2δ(u, c)
)
ψ(u)du

= 2ψ(c) − ψ(c − r ) − ψ(c + r )

∂ M(r, c)

∂r
= ∂

∂r

∫
ψ

(
u
2r

− c
2r

+ 1

2

)
ψ(u)du

= −1

2r 2

∫ (
δ

(
u
2r

,
c − r

2r

)
+ δ

(
u
2r

,
c + r

2r

)

− 2δ

(
u
2r

,
c

2r

))
(u − c)ψ(u)du

= −1

r

∫
(δ(u, c − r ) + δ(u, c + r ) − 2δ(u, c))(u − c)ψ(u)du

= −1

r
(−rψ(c − r ) + rψ(c + r ))

= ψ(c − r ) − ψ(c + r )

Symmetry. We derive the symmetry properties of M(r, c) in the
c and r dimensions as follows.

M(r, c + 0.5) =
∫ ∞

−∞
ψ

(
u − c − 0.5

2r
+ 1

2

)
ψ(u)du

= −
∫ ∞

−∞
ψ

(
u − c − 0.5

2r
+ 1

2

)
ψ(1 − u)du //ψ(u) = −ψ(1 − u)

=
∫ −∞

∞
ψ

(−w − c + 0.5

2r
+ 1

2

)
ψ(w)dw

//substitute w = 1 − u

6Kronecker delta is denoted as δ(x, y) here which equals 0 when x = y.
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=
∫ ∞

−∞
ψ

(
w + c − 0.5

2r
+ 1

2

)
ψ(w)dw

//ψ(0.5 + u) = −ψ(0.5 − u)

= M(r, 0.5 − c)

M(r, c) =
∫

ψ

(
u − c

2r
+ 1

2

)
ψ(u)du

= 2r
∫

ψ(w)ψ
(
2r (w − 0.5) + c

)
dw

//substitute w = u − c
2r

+ 1

2

= 2r M
(

1

4r
,

1

2
+ 1

4r
− c

2r

)

D. ACC and ATC in Haar Wavelet Basis

ACC. In the Haar wavelet basis, the ACC is nonzero only when
wavelets �i (sv+o) and � j (v) overlap with each other. Counting the
number of nonzero ACC terms reduces to determining the number
of overlapping wavelet pairs. Since wavelets are best organized in
a tree structure, we denote the two wavelet trees using I and J. The
basic structure of a wavelet tree is that two wavelets in the same
tree will overlap only if they are in the same tree branch. We start
by fixing a level and picking a wavelet for each wavelet tree: level
li and wavelet �i (sv + o) for tree I, and level l j and wavelet � j (v)
for tree J. Since respectively at levels li and l j there are 2li and 2l j

wavelets, the support of �i (sv + o) and � j (v) each must subtend
1/(s2li ) and 1/(2l j ) in area. Any given wavelet � j (v) at level l j in
tree J can overlap with at most s · 2li −l j + 1 wavelets �i (sv + o) at
level li in tree I due to the area constraint. Summing over all levels in
tree I, we get at most

∑
li

(s2li −l j +1) overlapping pairs between the
wavelet � j (v) and wavelet tree I. Since the formula just derived is
valid for any wavelet in tree J, we now sum over all wavelets � j (v)
in wavelet tree J and get a maximum of

∑
l j

2l j
∑

li
(s2li −l j + 1)

overlapping pairs between trees I and J. Similarly, we can start
from a given wavelet �i (sv + o) in tree I and obtain a maximum
of

∑
li

2li
∑

l j
(2l j −li /s + 1) overlapping pairs between trees I and

J. Combining these two maximums, we obtain an upper bound of
min(

∑
li ,l j

(s2li + 2l j ),
∑

li ,l j
(2l j /s + 2li )), which is tight for most s

and o. The upper bound’s maximum is 2N log N . So the complexity
of the ACC in the Haar wavelet basis is O(N log N ). Because of
compression, only a small subset (n out of N ) of wavelet coefficients
suffice to generate accurate results, and thus the complexity reduces
to O(n log N ).

ATC. As discussed in Section 4.2.4, the ATC in the Haar wavelet
basis reduces to an ACC when the nonzero segments of � j (v) and
�k(v) overlap, or is 0 otherwise. For a fixed j , there are at most
O(log N ) overlapping pairs of wavelets � j (v) and �k(v) because
to overlap k has to be either the same as j on the same level or on a
higher level and subsumes j . Therefore the complexity of the ATC
in the Haar basis is O(n log2 N ).

E. Relighting with Light Field

A general light field can be denoted as F(v1, v2) and the local in-
cident radiance L(z, x ; v) equals to F(x + zv, v). Similarly, this
relation can be written in wavelets using the ATC as

Lk(z, x) =
∫

L(z, x ; v)ψk(v)dv

=
∫

F(zv + x, v)ψk(v)dv

=
∫ ( ∑

i

∑
j

Fi jψi (zv + x)ψ j (v)

)
ψk(v)dv

=
∑

i

∑
j

Fi j Di jk(z, x). (41)
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