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Abstract

The enormous flexibility of the modern GPU rendering pipeline as well as the availability of high-level shader
languages have led to an increased demand for sophisticated programming tools. As the application domain
for GPU-based algorithms extends beyond traditional computer graphics, shader programs become more and
more complex. The turn-around time for debugging, profiling, and optimizing GPU-based algorithms is now a
critical factor in application development which is not addressed adequately by the tools available. In this paper
we present a generic, minimal intrusive, and application-transparent solution for debugging OpenGL Shading
Language programs, which for the first time fully supports GLSL 1.2 vertex and fragment shaders plus the recent
geometry shader extension. By transparently instrumenting the shader program we retrieve information directly
from the hardware pipeline and provide data for visual debugging and program analysis.

Categories and Subject Descriptors (according to ACM CCS): 1.3.4 [Computer Graphics]: Graphics Utilities — Soft-
ware Support 1.3.8 [Computer Graphics]: Methodology and Techniques — Languages D.2.5 [Software]: Software

Engineering — Testing and Debugging

1. Introduction

Graphics processing units have evolved into highly flex-
ible, massively parallel computing architectures and have
reached a level of programmability roughly resembling their
CPU counterparts. Recent advances include full integer
arithmetics, unlimited program instruction count, and gen-
uine dynamic flow control. Simultaneously, this progress in
hardware technology was followed by the introduction of
suitable high level shading languages, i.e. HLSL, Cg, and
GLSL, nearly as powerful as traditional CPU programming
languages. In addition, they offer also advanced features,
like vector and matrix data types, reflecting the underly-
ing SIMD architecture of the GPU. The high computational
power of modern graphics processors combined with the
ease of these high level programming languages allow for
more and more complex algorithms to be implemented on
the GPU as well as enabling a widening range of applica-
tions to benefit from the use of graphics hardware as a nu-
merical co-processing unit. Accordingly, shaders tend to be-
come more and more complex.

However, the development environment, in particular de-
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bugging and code analysis tools, did not keep up with the
rapid advances of the hardware and software interface. As
a result, developers typically spend quite a large amount of
time locating and debugging programming errors. Thus, the
availability of effective debugging means is essential for fast
and efficient shader code development.

In comparison to a traditional debugger for sequential
CPU programs, the special characteristics of graphics hard-
ware pose additional challenges for a shader debugger. Most
important, there is no direct access to the hardware, i.e. there
is no specific low-level debugging interface. Second, it has
to deal with the intrinsic parallelism of the graphics hard-
ware that requires to deal with thousands or even millions of
threads running in parallel.

In general, current solutions for shader debugging can be
divided into two basic approaches: software emulation and
shader code instrumentation. The former uses a software im-
plementation of the rendering pipeline in order to emulate
the execution of shader programs according to the specifica-
tion of the shading language. This allows for direct control
of program execution and provides access to arbitrary data
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content. The main drawback of this approach is that debug-
ging is not performed on the target hardware and results may
therefore not correspond to actual hardware values. In con-
trast, shader code instrumentation will provide true hardware
values, but access to the data is complicated. Since there is
no direct access to the individual processing elements, the
only possibility to get data back from the GPU is to read back
the final result of a shader invocation, i.e. vertex attributes or
pixel color. Accordingly, it is common practice in shader de-
velopment to use printf-style visual debugging by manually
rewriting the (fragment) shader to return the value of interest
as its final output and to interpret the resulting images. How-
ever, in the context of multi-pass algorithms involving oft-
screen render targets or if debugging full floating-point pre-
cision data, the direct display of intermediate results is often
not sufficient and a fair amount of code changes to the host
program is required to permit readback of rendering results
to main memory. This is even worse for vertex and geometry
processing units, as they do not output directly displayable
content and debugging those shaders may require additional
changes in subsequent stages of the rendering pipeline. Fur-
thermore, this manual Edit&Continue style of debugging is
tedious and error prone.

An efficient shader debugging tool therefore must be able
to automatically instrument the shader code and host pro-
gram in an application-transparent manner. In particular, it
has to work without explicit code changes, i.e. does not re-
quire modification and re-compilation of the host program.

In this paper we present a generic, minimal intrusive,
and light-weight solution for debugging OpenGL Shading
Language programs directly on the target hardware, that
operates completely application-transparent. It supports the
full GLSL 1.2 specification for vertex and fragment shaders
including the recently introduced extension for geometry
shaders [NVIO6]. Shader debugging is performed on a per
draw call level and allows singlestepping and the inspection
of arbitrary variable content.

2. Related Work

Basic requirements for a versatile GPU debugger have been
defined by Purcell [Pur05] and more recently by Owens et
al. [OLG*07]. They conclude that a practical tool for GPU
debugging should provide essentially the same basic features
as a traditional debugger. These include variable watches,
program break points, and singlestep execution of the GPU
programs. Additional requirements arise from a graphics
programming point of view. A GPU debugger should use the
actual target hardware and not a software emulation, there
should be little to no interference with the GPU state, and
last it should maintain a certain degree of interactivity of the
debugged host program in order to allow user interaction.

Currently available debuggers for graphics applications
for the major graphics APIs, i.e. OpenGL and Direct3D, can

be roughly divided into two distinct groups: graphics calls
and state debuggers, and dedicated shader debuggers.

The first group includes Microsoft’s Direct3D profiling
and debugging tool PIX [Mic07] and a number of OpenGL
state machine debuggers, namely spyGLass [Mag02], Bu-
GLe [Mer04], GLIntercept [Tre04] and the commercial
gDEBugger [Gra04]. While all of these tools provide the
ability of API call tracing and logging as well as breakpoint-
ing (PIX and gDEBugger further allow to display various
performance counters and other profiling information), only
the PIX tool provides the possibility of shader debugging.
However, for shader debugging PIX relies on the software
emulation of the Direct3D reference rasterizer, i.e. no ac-
tual hardware values are debugged. In case of OpenGL some
of the above mentioned solutions provide Edit&Continue
shader editing, but currently no tool that we know of fea-
tures a full-fledged shader debugger.

On the other hand there are solutions that are specifi-
cally geared towards shader debugging. The Apple OpenGL
Shader Builder [App02] provides mechanisms to develop
and debug ARB vertex and fragment shaders in a closed en-
vironment. The first tool to automate fragment shader de-
bugging in the context of the target application was Shade-
smith [PSO3]. It introduced the so-called interactive deepen-
ing method, a technique for automatically generating a se-
quence of truncated debug programs for singlestep execution
of ARB assembly fragment programs without flow control.
Using Shadesmith requires slight source code modifications
of the host program. Furthermore, its frame level debugging
approach did not allow for debugging multi-pass algorithms.

Another approach that allows the analysis of the com-
plete rendering pipeline including vertex and fragment pro-
grams was proposed by Duca et al. [DNB*05]. Their system
is based on the Chromium [HHN™02] system to intercept
and record the OpenGL command stream and stores data
from the pipeline in a relational database. This allows subse-
quent queries for arbitrary elements of the captured OpenGL
state using a specialized query language. Debugging high-
level Cg shaders is facilitated by instrumenting shaders fol-
lowing an extented interactive deepening approach that al-
lows for handling dynamic flow control. Up to now, the pro-
posed system is the most complete solution for the analy-
sis of OpenGL programs. The availability of the complete
OpenGL stream offers ample opportunities for debugging
and profiling OpenGL applications. Unfortunately, the sys-
tems was never made publicly available.

Due to the stream execution model of graphics hardware,
debugging GPU programs is also closely related to debug-
ging multi-threaded or distributed programs. There are a
number of debugging tools available [The07, All07, Tot07]
that extend the traditional sequential debugging paradigm to
support the debugging of parallel tasks. While these solu-
tions are well suited for debugging parallel programs in a
typical development environment consisting of few dozens
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Figure 1: System architecture of our GLSL debugging environment.

of processors, their use is limited in the case of massively
parallel execution with thousands of threads. Debugging a
fragment shader program on a very small viewport already
results in tens of thousands of independent threads. On the
other hand, debugging a GPU program is much simpler
with respect to the underlying execution model. Unlike a
distributed parallel system, where inter-process communi-
cation and asynchronous events pose the major challenge
for debugging, the independent execution model of the GPU
makes things much easier.

3. System Overview

The proposed debugging architecture splits into two main
components that communicate by means of exchanging es-
sential debug information, e.g. debug commands, status in-
formation, and debug data.

The first componnets is a library running in the process
space of the debugged host application, which enables us to
instrument the host application for debugging GLSL shaders
in arbitrary OpenGL programs without the need to recom-
pile or even having the source code of the host program
available. The concept is based on interactively intercept-
ing all OpenGL calls evoked by the application during pro-
gram execution with full access to all function parameters,
thus enabling among other things the retrieval of shader
source code. Depending on the current state of the debug-
ger this allows for either running the host program unaltered
with only little performance overhead or stopping and step-
ping through the execution of the target program on a per
OpenGL function call level. The later is used to identify a
single draw call as target operation for shader debugging. In
addition, the instrumenting library establishes a debugging
environment, i.e. float buffer objects, in the graphical con-
text of the host application that permits not only the retrieval
of the requested debug results but also assures that subse-
quent program execution is not affected by the debugging
process.
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The second component is the actual debugger application
that can be further divided into two large modules. First, our
GLSL shader code instrumentation performs automatic code
manipulation. An OpenGL shading language parser is used
to create an intermediate representation for a given shader
that serves as basis for identifying the program execution or-
der, variable scope determination, and the manipulation of
shader source code in a syntactically and semantically cor-
rect manner. The compiler back-end is a GLSL code gener-
ator that reconstructs valid shader programs from the inter-
mediate language. Second, a graphical debugging interface
allows to control program execution of both the host appli-
cation and the target shader, to select the draw call of inter-
est from the OpenGL command stream, to specify debug re-
quests for shader variable data, and to provide capable anal-
ysis and interaction methods for the generated debug results.
Figure 1 gives a brief overview of the main components of
our system and their interaction.

Based on these components the general control flow for
debugging a GLSL shader program is as follows. For the
draw call of interest the source code and execution environ-
ment of the currently bound GLSL shader is read back from
the OpenGL state and passed to the shader code analysis
module. We build an intermediate representation that serves
as basis for scope determination, debug code insertion, and
program control flow determination. Then, for each debug
step in the shader program, an augmented debug shader is
generated from the intermediate representation and inserted
into the OpenGL state of the host application. Now the draw
call is replayed and the debug result is read back and trans-
fered to the debugger application.

4. Shader Code Analysis

In order to establish a basis for shader code instrumentation
for a high-level shader language with dynamic flow control,
it is necessary to fully analyze the syntactic structure of a
shader program and to build an intermediate representation,
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i.e. a parse tree. This tree fully replicates the syntactic struc-
ture of the program string and provides the basis for auto-
mated code manipulation. In the context of Cg shaders this
approach was sucessfully applied by Duca et al. [DNB*05]
for debugging purposes. In our case we use a heavily up-
dated and extended version of 3DLabs’ OpenGL Shading
Language Compiler Front-end [3DI105].

The main focus of 3DLabs’ original code is the rapid
development of cross-platform compilers for low-level ma-
chine specific code generation. As the intended back-ends
are highly vendor and hardware specific no actual imple-
mentation of a code generator is supplied. Applying this
to shader debugging, the back-end is supposed to recon-
struct valid GLSL shader code, which requires additional
program information to be stored in the intermediate parse
tree. Most importantly, this affects preprocessor directives,
variable declarations as well as user defined struct data
types. The former needs to be preserved since preprocessor
statements expose direct compiler control that should affect
not only the debug compilation process, but also succeeding
compilation of the generated code. The later requires addi-
tional data to be stored, e.g. structure names, which is not
necessary in the context of machine level code generation.
To this end, the intermediate representation was extended to
allow for syntactically valid and semantically equivalent re-
construction of a given shader in the compiler back-end.

In addition, the available system was updated to support
current graphics hardware. Unfortunately, development for
the original compiler front-end stopped with support for
GLSL 1.10. Therefore, functionalities exposed by GLSL
version 1.20, e.g. non-square matrices, handling of arrays
as first class objects, etc., had to be integrated follow-
ing the language specification. At last, we included the
recent extensions for NVIDIA’s G80 hardware, namely
the EXT_gpu_shader4 and NV_geometry_shader4
specifications [NVI06]. To achieve compatibility for shader
code that relies on vendor specific enhancements to GLSL,
such as additional implicit type casts, we added support
where changes were documented or perceived.

5. Shader Instrumentation

The requirements for shader code instrumentation in the
context of automated debugging are threefold. First of all,
manipulations to valid input code, i.e. shaders that comply
with the GLSL specification and its extensions, must re-
sult in syntactically correct output, preserving the semantic
structure of the input program in all parts that are not directly
affected by the debugging process. In detail, required code
additions must not induce any side effects to output regis-
ters, except for what is necessary to pass the target data val-
ues to the debugging environment. Particularly, with regard
to fragment shaders, manipulation of the alpha and depth
output are not permissible, as they influence the subsequent
per-fragment tests. Furthermore, code manipulation should

be minimal to assure a maximum degree of similarity to the
input program, in particular with respect to hardware limi-
tations such as nesting limits. Finally, the code instrumenta-
tion is required to allow debugging of any variable in scope
at arbitrary code positions on an expression level.

In contrast to interactive deepening, we do not terminate
the program reconstruction and execution directly after the
debug target, but always restore the complete input shader.
This ensures that subsequent calculations that may affect per
element tests, e.g. depth or alpha test, are still performed by
the instrumented code. In order to output debug values, a
newly inserted varying is used in case of vertex and geom-
etry shaders, while for fragment programs it is necessary to
use at least one color channel of a bound render target. As
GLSL features read-write access to output registers, early
manipulation of an output register at the requested debug po-
sition may introduce side effects to the execution of succeed-
ing parts of the code. Therefore, we define a global variable
to buffer the debug result until it is safe to write its content
to a result register, i.e. until the program control flow termi-
nates. For all newly added variables we assure unique names
to avoid scope collisions by appending random suffixes, if
necessary.

The additional code introduced to assign a requested vari-
able to the debug register is in most cases directly added
in front of the target statement by using the sequence (, )
operator. This method proved to be the most flexible and
generic. As the sequence operator can be used in place for
any single expression, its operation order from left to right
is well-defined, and the return type and value are defined by
the right-most operand, which will all become relevant later
on. An example for basic shader code instrumentation, with
automatically added code marked in boldface, is shown here:

float dbgResult;
void main () {
dbgResult = gl_Color.x,
gl_FragColor = gl_Color % 2.0;
gl_FragDepth = gl_FragColor.x;
gl_FragColor.x = dbgResult;
}

5.1. Conditionals

In contrast to traditional debuggers for serial programs, not
all threads necessarily need to follow the same program
path. For inhomogeneous cases the user has to decide which
branch should be followed. To be able to base this deci-
sion on current variable content, debugging needs to be per-
formed after the evaluation of the conditional test itself,
given that side effects of the test possibly cause the target
variable to change. On the one hand, adding the required
debug expression after the conditional statement using the
sequence operator would result in a wrong evaluation of the
test and thus breaks the semantic equivalence with respect to
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the original program. This is due to the fact that the right-
most operand determines the result value, which would be
the newly added expression. On the other hand, code inser-
tion can not be moved inside the branch body for condition-
als that do not affect all elements, as it is the case for condi-
tionals without an e1se branch.

As the usual way of inserting the debug code cannot be
applied in this special case, the proposed solution uses a
temporary, locally defined variable to buffer the result of the
conditional test. Again, by utilizing the characteristics of the
sequence operator, the conditional test is evaluated before
the shader instrumentation while the resulting value of the
used sequence is assured to equal the original conditional
statement. This is illustrated in the following code fragment.

bool dbgCond;
if (dbgCond = ((i++) < 10),
dbgResult = float(i), dbgCond) {
i =20;

5.2. Loops

Since GLSL exposes no built-in loop counters, debugging
statements at a specific user defined iteration inside loops,
i.e. statements for which the corresponding call stack holds
elements enclosed by a loop structure, iteration requires the
definition of a debug loop counter per nesting level. Having
these counters defined at global scope allows for debugging
a specific iteration even if the target is not directly an element
of the loop body anymore, as it occurs by stepping into user-
defined functions.

There are two alternatives for adding loop-aware debug
code. One is inserting an 1 £ block that restricts its body to be
evaluated only if the loop counter matches the requested it-
eration. The disadvantages of this approach are twofold. The
if statement cannot be used in place for arbitrary expres-
sions and insertion of debug code would increase the nesting
level and may exceed the hardware given limit. Instead we
propose to use the logical-AND (& &) operator that evaluates
the right-hand operand only if the left-hand operand evalu-
ates to true. An additional true expression is appended to
the debug assignment to assure scalar Boolean return type.
An equivalent construct is possible using the selection (2 :)
operator. Both do not increase the nesting level and are very
likely to map to conditional write masks on graphics hard-
ware, as indicated by NVIDIA’s cgc compiler.

int dbglter0;

dbglter0 = 0;

for (i = 10; i > 0; i——, dbglter0++) {
(dbglter0 == 5 &&
(dbgResult = float(i), true)),
f += f;
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5.3. Function Calls

To debug a called function only at a single distinctive in-
vocation, the complete function is duplicated and renamed.
‘We use this approach in favor of adding conditional code to
the function body, as changes are thus limited to the debug
call stack and evaluation of non-debugged calls remain com-
pletely unaffected by additional code.

In addition to the function call itself already its param-
eters can induce side effects, which requires to place code
after execution of all parameters, but still before the actual
function call. This problem is similar to debugging condi-
tionals, as it is described above. The key element is to buffer
the rightmost in parameter and insert code after its evalua-
tion. This is sufficient, as inout and out parameters need
to be I-values in GLSL and thus cannot feature side effects.

void F(inout int pl, int p3, out int p4);

int dbgParam;
F(i, (dbgParam = (k += j),
dbgResult = k, dbgParam) , k);

6. Host Application Instrumentation

As already mentioned, instrumenting the shader code is only
part of the proposed solution. Since graphics applications of-
ten employ a number of different shader programs, it has to
be possible for the user to select the one of interest. Fur-
thermore, since the execution of a shader program is trig-
gered solely by rendering geometry, a shader debugger must
also provide a method for selecting the draw call of interest.
This means that at least part of the functionality of conven-
tional OpenGL state machine debuggers is required. Most
importantly, a possibility for interactively stepping through
OpenGL calls as they are invoked by the application.

Acting as an interface between the host and the debugged
shader, the application instrumentation must provide the
means for replacing the original shader program by an in-
strumented one, to execute it, and to read back the debug re-
sults, thereby ensuring that the host application is oblivious
of these changes. In short, the general process of debugging
a shader for a given draw call is as follows:

1) Setup a debug environment (Sec. 6.1)
2) Record the target draw call (Sec. 6.2)
3) For each shader debugging request
Inject instrumented shader in OpenGL state
Replay draw call and read back debug result
4) Restore the original OpenGL state
5) Replay draw call to ensure correct continuation

For instrumenting the host application we use a combi-
nation of OpenGL command stream interception [BHHO0]
and the native ptrace debugger interface [Ins90] available
on Linux systems. However, our approach is not limited to
the Linux operating system. Other Unix systems as well as
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the MS Windows API provide equivalent functionality for
monitoring and controlling the execution of processes from
within a debugger. Ptrace is also used for transferring data
between the address spaces of the host application and the
graphical debugging environment. Additional communica-
tion between the debugger and the host application is han-
dled through a shared memory segment (see Figure 1).

OpenGL command stream interception is realized by a
shared library that provides function hooks, i.e. function def-
initions with the same signature, for all possible calls to the
OpenGL and GLX library. These wrapper functions are au-
tomatically generated from the interface declarations pro-
vided by the OpenGL and GLX C header files. Thus, the sys-
tem trivially supports all vendor-specific extensions known
at compile time. Mapping the debug library into the process
space of the host application through the preloading mech-
anism provided by the dynamic linking facility of the oper-
ating system causes its exported symbols to take precedence
over symbols of libraries occurring later in symbol lookup
scope and therefore allows us to intercept all calls to the
original OpenGL implementation. Again, a similar mecha-
nism exists for MS Windows, named DLL hooking [HB99].

Basically, each wrapper function is responsible for the fol-
lowing three tasks. First, it must provide the debugger tool
with information about the function that is called, i.e. the
function name and its parameters. Second, it has to be pos-
sible to call the original function and, eventually, commu-
nicate the potential result of the call or an error that might
have occurred to the debugger. And last, it has to provide
the means of performing an arbitrary number of additional
debug operations. This functionality is realized by suspend-
ing the normal execution of the debugged program imme-
diately after entering a wrapper function and switching to
a special debug command execution mode. First, the name
of the called function as well as the addresses of its func-
tion parameters and their respective types are stored in the
common shared memory segment. Then, a simple event loop
is entered. The debugger can now access the information
provided by the wrapper function and issue debug com-
mands. Among others this includes functionality for record-
ing the current call for later playback, replaying a previ-
ously recorded OpenGL stream, retrieving the currently ac-
tive GLSL shader program, injecting a new debug shader, or
reading back the results of a shader debug step. Most impor-
tantly, this also includes calling the original OpenGL func-
tion to guarantee proper operation of the host application or
evoking the function call with modified parameter values in
order to facilitate debugging.

Besides the described functionality for OpenGL call step-
ping, the preload library offers an additional immediate ex-
ecution mode that allows running the program without ac-
tually interrupting program execution until a stop command
from the debugger is received. This provides the possibility
of user interaction with the traced program.

6.1. Debug environment

The setup of the debug environment depends on whether a
fragment or a vertex or geometry shader is debugged. In case
of vertex and geometry shaders vertex data, i.e. the values
of varyings emitted by the respective GLSL shader, has to
be captured. This is accomplished by using the recently in-
troduced NV_transform_feedback [NVIO6] extension
that allows to capture vertex data prior to the clipping stage
of the rendering pipeline and to store it into vertex buffer
objects that can be subsequently mapped into main memory.
In order to capture correct data from a vertex shader, a po-
tentially active geometry shader has to be disabled. The cur-
rent primitive mode for transform feedback is either given
by the output primitive mode of the geometry shader being
debugged or by the primitive mode specified for the draw
call in question in case of a vertex shader.

Reading back results from fragment shaders is realized
using the EXT_framebuffer_object extension which
in contrast to transform feedback is available on all cur-
rent graphics hardware. A single 32bit floating-point RGBA
color attachment is used to capture debug values. Addition-
ally a depth render buffer and if necessary a stencil buffer are
attached to the frame buffer object. To assure correct results
we have to take care of the per-fragment operations setup and
to disable all parts of the imaging pipeline that may affect
debug values. In order to correctly rebuild the target appli-
cations’ behaviour, per-fragment tests should operate iden-
tically regardless whether they work on the original target
or debug render buffer. For debugging purposes, however,
direct control of these tests is desirable, e.g. disabling the
depth/alpha test may be beneficial in certain cases. Therefore
the user can choose whether to copy alpha, depth, and stencil
from the currently bound framebuffer or to clear them to user
defined values for each shader step. Furthermore, the possi-
bility for enabling or disabling individual fragment tests and
blending is provided.

All OpenGL state changes required to read back debug
data are implemented in a way that is completely transparent
for the host application, i.e. the OpenGL state when leaving
the debug stage is the same as before entering it.

6.2. OpenGL Stream Recording and Playback

Debugging shader programs requires to repeatedly render
the geometry that triggers their execution. Although it pos-
sible to record and replay an arbitrary stream of OpenGL
commands [DNB*05], we restrict ourselves to track single
draw calls. This means that either a single OpenGL function
call,e.g. glDrawArrays, or an immediate mode stream of
OpenGL commands delimited by g1Begin and the corre-
sponding g1End call is recorded. Since an immediate mode
stream may alter GL state, it is also necessary to save those
parts of the state that may change inside such a block. Work-
ing on a per draw call level has several advantages. In com-
parison to relying on automatic or forced frame redraws,
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record and replay is much more fine-scaled and flexible, al-
lowing for debugging animations and multi-pass algorithms.

However, the draw call recording and playback method
has its own pitfalls that have to be avoided. Rendering the
same geometry multiple times invalidates OpenGL query
objects and produces incorrect results if the application uses
transform feedback mode, which results in incorrect be-
havior if program execution is continued after debugging a
shader. However, these problems can be solved by taking
special care of active query objects. In case of timer queries
the solution is simple: We just ignore them, since the sig-
nificance of timing results using an instrumented applica-
tion program is questionable anyway. On the other hand,
the result of occlusion or primitive queries might be cru-
cial for the correct operation of an algorithm. The solution
we propose is to keep track of active query objects. When
entering the shader debug stage, active queries are termi-
nated and their current values are saved. The queries are
restarted using the same query object names when leaving
the debug stage. Subsequent requests for QUERY_RESULT
now must return the sum of saved and current query re-
sult. Dealing with active transform feedback mode is similar.
Every time the host application calls BeginTransform-
FeedbackNV, it has to be checked whether a TRANS-
FORM_FEEDBACK_PRIMITIVES_WRITTEN_NV query
is already active. If this is not the case, we start our own
query. Thus, we can keep track of the number of primitives
actually written to the buffer. Of course, queries started by
the host have to be addressed as described before. An active
transform feedback can now be terminated when entering the
shader debug stage and it can be restarted using appropriate
buffer offsets obtained from the primitive queries on exit.

7. Practical Considerations

Using the proposed system for debugging a shader program
is similar to using a traditional source level debugger. How-
ever, there are some differences due to the special character-
istics of graphics hardware.

7.1. Interactive Shader Debugging

From a users point of view the typical workflow of a debug
session is split into two major tasks. First, by using a com-
bination of interactively executing the target application and
OpenGL call stepping, the draw call of interest for shader de-
bugging is selected. For improved usability there is support
for jumping to the next draw call, shader switch, or any user-
specified OpenGL function as well as for optionally stopping
program execution upon OpenGL errors. In addition to pure
program flow inspection, it is possible to directly manipu-
late the OpenGL state machine by editing function call pa-
rameters, e.g. changing shader program uniforms. Next, the
user selects a target shader and starts debugging by single
stepping through the code. Due to the parallel nature of the
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Figure 2: Using the loop analysis tool for comparing the ef-
ficiency of a volume rendering example with (left) and with-
out (right) early ray termination. Note the higher number of
fragments (y-axis) breaking out of the loop per iteration (x-
axis) in the first case.

GPU, additional user interaction is required at program flow
decisions, i.e. conditionals and loops. At each flow control
instruction it is necessary to specify which execution path to
follow. In case of conditionals whether to step into the true or
the false branch or in case of loops if the loop should be left
or another iteration should be performed. These decisions
can be based on arbitrary debug data and are additionally
supported by a per element evaluation and visual representa-
tion of the corresponding condition. At any time during the
debug process the user can select variables from the current
scope and add them to the list of active watch variables. The
actual numerical values of watch variables can then be in-
spected on a per element level (vertex or fragment) or by
using specialized visual debugging tools. For fragment data
this currently includes an image viewer that maps floating-
point fragment data to a color image. While this is the canon-
ical solution for fragments, in case of vertex data such an
inherent geometrical analogy does not necessarily exists. So
far we offer two possibilities for inspection of vertex data:
table views and scatter plots. Figure 3 and 4 on the color
plate page show screenshots of typical debug sessions for
fragment and geometry shaders.

7.2. Advanced Analysis

Combined instrumentation of the host application and the
shader enables functionality that extends beyond traditional
debugging. As an example, we implemented an in-depth
loop profiling tool that summarizes statistical data for all it-
erations of a loop. This facilitates, for example, identifying
the critical path of a shader. Figure 2 shows an analysis of
the efficiency of early ray termination in a volume rendering
application.

7.3. Limitations

Although the presented approach is very general, there are
also some limitations. Most importantly, since shader in-
strumentation is done in a high-level language, it depends
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strongly on the correctness and reliability of the vendor-
specific GLSL compiler and on the assumption that code ma-
nipulation, if performed in a semantically correct way, does
not influence the program execution. In case of a driver or
hardware bug, results are totally unpredictable, i.e. the bug
may not manifest for the instrumented shader or, even worse,
it will be triggered by the instrumentation in the first place.
However, based on our practical experience current GLSL
compilers seem to be quite mature.

Other limitations concern our solution for debugging ver-
tex and geometry shaders. The necessary extensions are
currently only supported on the NVIDIA G80 architecture.
However, since Direct3D 10 requires similar functionality
for streaming out vertex data, we expect all upcoming GPUs
to support a comparable feature. Furthermore, it is not pos-
sible to debug vertex programs that operate on primitives
generated by the OpenGL display lists mechanism. As there
is no possibility of finding out what kind of primitives will
be submitted by the execution of a display list. However,
transform feedback mode requires specification of the out-
put primitive type.

8. Conclusion

In this paper we presented a system for debugging GLSL
programs that retrieves data directly from the hardware
pipeline. Our solution allows to debug the complete pro-
grammable OpenGL shader pipeline, including vertex, ge-
ometry, and fragment shaders. Furthermore, it improves on
the printf-style debugging approach still prevalent in today’s
shader development as it can not only be used for visual de-
bugging but also for program analysis. The proposed system
fits well into the shader development pipeline as it operates
completely application-transparent and does not require any
code changes or re-compilation of the host application. Our
implementation of the system is available for download from
the project web page.

Future work includes a MS Windows port of the applica-
tion instrumentation sub-system, a concept of break points
for the parallel execution model of shader programs, and
more advanced program flow analysis, e.g. control flow of
a single fragment/vertex, and statistics support, e.g. number
texture lookups per sampler.
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Figure 3: A typical debugging session: From the original application’s (top right) OpenGL stream a single draw call is selected
and the active fragment shader is debugged having shader source code, scope lists, variable data content, and graphical analysis
tools at hand. Status information of the currently debugged loop statement (bottom right) supports the user in program flow
decisions.
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Figure 4: Debugging a geometry shader: Data inspection is performed on a per input primitive level, showing for each input
primitive the resulting output primitives and their corresponding vertices. Variable content at the current debug position is
shown for each input primitive. Additionally, for already emmitted vertices the variable values at the time of emission are
shown. Questionmarks indicate output vertices that are not yet emitted.
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