
Computer Graphics Proceedings, Annual Conference Series, 2004

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Chen Shen James F. O’Brien Jonathan R. Shewchuk

University of California, Berkeley

Abstract

This paper describes a method for building interpolating or
approximating implicit surfaces from polygonal data. The
user can choose to generate a surface that exactly interpo-
lates the polygons, or a surface that approximates the input
by smoothing away features smaller than some user-specified
size. The implicit functions are represented using a moving
least-squares formulation with constraints integrated over
the polygons. The paper also presents an improved method
for enforcing normal constraints and an iterative procedure
for ensuring that the implicit surface tightly encloses the
input vertices.

Keywords: Implicit surfaces, polygon soup, physically
based animation, surface smoothing, topological simplifica-
tion, simulation envelopes, point-based surfaces, surface rep-
resentation, surface reconstruction.

CR Categories: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface,
solid, and object representations; G.1.2 [Numerical Analy-
sis]: Approximation—Approximation of surfaces and con-
tours.

1 Introduction

Polygonal models occur ubiquitously in graphics applica-
tions. They are easy to render, easy to compute with, and a
vast array of tools have been developed for creating and ma-
nipulating polygon data. Unfortunately, polygonal data sets
often contain problems, such as holes, gaps, t-junctions, self-
intersections, and non-manifold structure, that make them
unsuitable for many purposes other than rendering. Even
when a polygonal data set does define a closed, manifold
surface, other difficulties such as excessive detail or bad-
aspect-ratio polygons, can preclude many uses. Data sets
containing these problems are so common that the term
“polygon soup” has evolved for describing arbitrary collec-
tions of polygons that carry no warranties concerning their
structure.

This paper provides a tool that can transform arbitrary
polygon data into a more useful form. We address this task
with a method for generating implicit surfaces that can inter-
polate or approximate a set of polygons. The user controls
how closely the surface approximates the input by selecting
a minimum feature size. Geometric details or topological
structures below this size tend to be smoothed away. Setting
the minimum feature size to zero forces exact interpolation
of the polygons. Additionally, if desired, we can cause an ap-
proximating surface to fit tightly around the input polygons

E-mail: {csh,job,jrs}@eecs.berkeley.edu

From the ACM SIGGRAPH 2004 conference proceedings.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee.
ACM SIGGRAPH 2004, Los Angels, CA
c© Copyright ACM 2004

Figure 1: Interpolating and approximating surfaces (green)
generated from polygonal original (brown).

while still ensuring that the input vertices are completely
enclosed by the implicit surface. Figure 1 shows interpo-
lating and approximating surfaces genrated from a complex
polygonal model with sharp edges and many small features.

An interpolating surface will exactly interpolate the in-
put polygons, but it will also extend to fill gaps and holes so
that the resulting surface will be “watertight.” This implicit
function can then be used directly for a variety of applica-
tions, such as inside-outside tests, that are better suited to
implicit representations. Alternatively, a clean polygonal
model can be extracted and used for applications that re-
quire such clean polygonal input.

Approximating surfaces will naturally smooth out geo-
metric features of the input data. Because we are using an
implicit representation, topological structures of the input
surfaces can also be smoothed away. This behavior makes
the method suitable as part of a model simplification pro-
cess when combined with an appropriate polygonization al-
gorithm.

We can also force the approximating surface to stay
“tight” around the original polygons while still smooth-

1



ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

ing away details and ensuring that all the original vertices
fall inside the approximating surface. This capacity allows
us to generate a family of increasingly smooth approxima-
tions that eventually converge to a circumscribing ellipsoid.
Among other uses, these simplified shapes can be used for
easily generating efficient simulation envelopes.

Our algorithm makes use of a scattered-data interpola-
tion method known as moving least-squares, commonly ab-
breviated MLS. The function defining our implicit surfaces
is specified by the moving least-squares solution to a set of
constraints that would force the function to a given value
over the surface region of each polygon, and that would over
the same region also force the function’s upward gradient to
match the polygon’s outward normal. Neither condition is
specified by simple point constraints: integrated constraints
are used over each polygon, and normals constraints directly
affect the function’s gradient. The degree of approximation
is controlled by simply adjusting the least-squares weighting
function, but the tightness of the surface and the require-
ment that the input vertices fall inside the implicit surface
both depend on an iterative procedure for adjusting the con-
straint values over each polygon.

The moving least-squares method has been used by other
researchers to define a surface as the fixed-point of an itera-
tive parametric fit procedure—for example, see [Alexa et al.,
2001]. Other than using the same general mathematical tool,
that approach and this one are unrelated. Unfortunately,
those surfaces are often referred to simply as MLS Surfaces
which may cause some confusion with the method described
here. We suggest that the term implicit moving least-squares
surface, or IMLS Surface be used to describe our method.

Our approach is, however, closely related to implicit meth-
ods based on partition-of-unity interpolants. (For example
see [Ohtake et al., 2003a].) Partition-of-unity and moving
least-squares interpolants use different notation, but they
are fundamentally alike. One key difference between our
formulation and prior ones is that our integrated constraints
differ significantly from collections of point constraints. We
also use improved normal and approximation procedures,
which are applicable to point constraints as well as to our
integrated constraints.

Our algorithm has five primary components:

• A scattered data interpolation scheme that, in addi-
tion to simple point constraints, allows integrated con-
straints over polygons.

• A method for enforcing true normal constraints that
does not produce undesirable oscillatory behavior.

• An adjustment procedure that causes the implicit sur-
face to fit tightly around the input polygons while still
ensuring that the input vertices are completely enclosed
by the implicit surface.

• A hierarchical fast evaluation scheme that makes the
method practical for large data sets.

• Optional preprocessing to remove unwanted geometry
and enforce consistency among the input normals.

2 Background

The work most closely related to ours appears in [Ohtake
et al., 2003a]. They use a partition-of-unity method to
build a function whose zero-set passes through, or near, a
set of input points. Using a procedure originally proposed
by [Turk and O’Brien, 1999], they place zero-constraints at
each input point, and they also place a pair of additional
non-zero point constraints offset in the inward and outward
normal directions. To keep the method feasible for large
data sets, they use a fast hierarchical evaluation scheme.
The partition-of-unity formulation they use and the moving
least-squares formulation that we start with are essentially

identical: they both belong to a family of meshless interpo-
lation methods that also includes the element-free Galerkin
method and smoothed particle hydrodynamics. We refer the
reader to [Belytschko et al., 1996] for a discussion of the re-
lationships between these different formulations. The two
most significant differences between our work and [Ohtake
et al., 2003a] are that we use integrated polygon constraints,
and that we use a significantly improved method for enforc-
ing normal constraints. We also describe a different hierar-
chical evaluation scheme and an iterative method for gener-
ating useful approximating surfaces.

Moving least-squares interpolation is also a part of the
non-linear projection method used in [Alexa et al., 2001],
[Alexa et al., 2003], and [Fleishman et al., 2003]. This pro-
jection method defines a surface as a function of a set of
points, but the moving least-squares fit is used as part of
a non-linear projection that differs substantially from the
implicit-surface based method described here.

The technique of defining a surface implicitly using a func-
tion constrained to match a set of input points is fairly
widespread. In [Savchenko et al., 1995], [Turk and O’Brien,
1999], [Carr et al., 2001], and [Turk and O’Brien, 2002]
the function is represented using globally supported radial
splines. This class of functions has the nice property that
one can make definite statements about a solution’s global
behavior. These radial splines have also been used to match
polygon data by [Yngve and Turk, 2002]. While they were
able to achieve results that roughly matched the input poly-
gons, the resulting implicit surfaces still deviated substan-
tially from the input. Different, locally supported func-
tions were used in both [Muraki, 1991], [Morse et al., 2001],
and [Ohtake et al., 2003b] for fitting an implicit surface to
clouds of point data. In addition to representing function
as sums of continuous basis functions, [Museth et al., 2002]
and [Zhao et al., 2001] have used level-set methods for fitting
surfaces to point clouds. Other function representations in-
clude signed-distance functions [Cohen-Or et al., 1998], and
medial axes [Bittar et al., 1995]. The text, [Bloomenthal,
1997], also describes several other methods for representing
implicit surfaces.

Some of the applications that can be addressed with our
method have also been addressed with other methods. An
enormous amount of work has been done on smoothing ex-
plicit representations of polygonal models, two early exam-
ples of which include [Taubin, 1995] and [Desbrun et al.,
1999]. Work in that subarea is now quite advanced and
methods are available that can preserve sharp features while
still smoothing away noise. (For a single recent example,
see [Jones et al., 2003].) We can also generate envelopes
around input objects and similar ideas have been explored
in [Cohen et al., 1996] and [Keren and Gotsman, 1998]. The
problem of rectifying polygonal models has been investigated
in [Nooruddin and Turk, 2003]. In [Nooruddin and Turk,
2000] the same researchers also looked at methods for re-
moving unwanted interior structure from a polygon model.

3 Methods

The primary tool we work with is a scattered data inter-
polation method known as moving least-squares. With this
method we can create an implicit surface that either inter-
polates or approximates a given polygonal surface. In this
section, we describe how we set up and apply constraints
that allow us to generate and control the behavior of the
implicit surface.

For the sake of clear exposition, we will start by describ-
ing a moving least-squares method for defining implicit sur-
faces using simple point constraints. We will then describe
how that method can be extended to include integrated con-
straints defined over polygonal regions. Once we specify the

2



Computer Graphics Proceedings, Annual Conference Series, 2004

framework we use for defining our functions, we will describe
how we enforce normal constraints, adjust the tightness of
the surface around the input, and preprocess the data to
avoid unwanted internal structures.

During our discussion of the implicit moving-least squares
formulation, we keep the description of basis and weighting
functions general. However, although our implementation
supports a wide range of function choices, we have found
that simple weighting functions and constant basis functions
are computationally inexpensive, yet they produce results
just as good as more expensive choices. For other problems,
different choices of weighting and basis functions may be
useful.

3.1 Value Constraints at Points

Assume that we have N points located at positions pi, i ∈
[1 . . . N ], and we would like to build a function, f(x), that
approximates the values φi at those points. For a standard
least-squares fit we would solve bT(p1)

...
bT(pN )

 c =

 φ1

...
φN

 , (1)

where b(x) is the vector of basis functions we use for the
fit, and c is the unknown vector of coefficients. Unless this
system is under-constrained, it can be resolved efficiently
using the method of normal equations and solving an M×M
linear system, where M is the number of basis functions
(i.e., the lengths of b and c). For example, if we wished
to fit a plane we would choose b(x) = [1, x, y, z], or simply
b(x) = [1] if we just wished to fit a constant. The resulting
function is

f(x) = bT(x) c . (2)

For the moving least-squares formulation, we allow the fit
to change depending on where we evaluate the function so
that c varies with x. We do so by weighting each row of
Equation (1) by w(‖x − pi‖), where w(r) is some distance
weighting function, which gives us w(x,p1)

. . .
w(x,pN )

 bT(p1)
...

bT(pN )

 c =

 w(x,p1)
. . .
w(x,pN )

 φ1

...
φN


(3)

where w(x,pi) = w(‖x− pi‖).
By selecting an appropriate weight function, a variety of

interpolating or approximating behaviors can be achieved,
even with low-order basis functions. In general, a weight
function that approaches +∞ at zero will cause interpola-
tion. We use the weight function

w(r) =
1

(r2 + ε2)
. (4)

The parameter ε allows a degree of control over the function’s
behavior which we discuss later.

Giving matrices names and explicitly noting their depen-
dence on x, Equation (3) becomes

W (x) B c(x) = W (x) φ . (5)

The resulting normal equations are

BT (W (x))2 B c(x) = BT (W (x))2 φ (6)

and we can evaluate the fit function’s value using

f(x) = bT(x) H−1 BT (W (x))2 φ , (7)

Figure 2: The column on the left shows the results gener-
ated using integrated polygonal constraints. The middle and right
columns show the results generated with different densities of scat-
tered point constraints.

m v−

v+

0 1αα2αn

x x x

m m m.

.

Figure 3: The quadrature scheme used over a triangle.

where
H = BT (W (x))2 B . (8)

The derivatives with respect to x of the fit function can be
evaluated using

f ′(x) = (bT)′(x) H−1 BT (W (x))2 φ −
bT(x) H−1H ′H−1 BT (W (x))2 φ +

bT(x) H−1 BT ((W (x))2)′ φ ,

(9)

where
H ′ = BT ((W (x))2)′ B , (10)

and the derivative of (W (x))2 is obtained by simply taking
the derivative of the squared weighting function along the
matrix’s diagonal.

3.2 Value Constraints Integrated over Polygons

Although the formulation in the previous section works well
for point constraints, the input data we are concerned with
consists of polygons, and for each of these polygons we want
to constrain the fit function over its entire surface. If we
were not interested in interpolating the polygons, we could
approximate the desired effect with point constraints scat-
tered over the surface of each polygon. Aside from poten-
tially requiring a very large number of points, scattered point
constraints work reasonably well for approximating surfaces.
However, interpolating surfaces and surfaces that approx-
imate closely show undesirable bumps and dimples corre-
sponding to the point locations. (See Figure 2.) In particu-
lar, bumps and dimples occur unless ε is substantially larger
than the spacing between points.

To achieve good results, what we would like to do is to
scatter an infinite number of points continuously across the
surface of each polygon. Notice that Equation (6) can be
rewritten as an explicit summation over a set of point con-
straints,(

N∑
i=1

w2(x,pi) b(pi) bT(pi)

)
c(x) =

N∑
i=1

w2(x,pi) b(pi)φi

(11)
In this form it becomes clear how we can apply constraints
continuously over each polygon’s surface.

For a data set of K polygons, let Ωk, k ∈ [1 . . .K], be the
kth input polygon. The parenthesized term of Equation (11)

3



ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

and the term on the right are replaced by integrals over the
polygons and we have(

K∑
k=1

Ak

)
c(x) =

K∑
k=1

ak (12)

where Ak and ak are defined by

Ak =

∫
Ωk

w2(x,p) b(p) bT(p) dp , (13)

ak =

∫
Ωk

w2(x,p) b(p)φk dp , (14)

p is the integration variable ranging over the polygon, and
φk is the constraint value. We can choose φk to be constant,
or we can choose φk to vary polynomially over each poly-
gon. For later use, it is convenient to define terms with the
weighting function omitted:

Ãk =

∫
Ωk

b(p) bT(p) dp , (15)

ãk =

∫
Ωk

b(p)φk dp . (16)

The integrals will be infinite when ε = 0 and the eval-
uation point x lies precisely on a polygon. In this case,
f(x) has a removable singularity at x; we can skip the least-
squares step and simply set f(x) to the value φk dictated by
the polygon. It is possible that two polygons intersect at a
point where their constraints disagree, in which case f has
an essential singularity at that point. Evaluating at or near
such points in a numerically stable fashion is difficult. How-
ever, we can sidestep the issue by setting ε to an extremely
small number, far below the smallest feature size relevant to
a given application.

Computing these integrals is conceptually straightfor-
ward. Each entry of the matrix b bT and the vector b is
a polynomial in p, the weight function we have chosen is
a rational polynomial in p, and each of the components of
the matrices can, of course, be computed independently. For
a one-dimensional integral (i.e., constraints over edges) the
integrals have closed form solutions. (See Appendix A.) Un-
fortunately, we have not been able to find closed-form solu-
tions of the two-dimensional integrals.

The obvious solution to this problem would simply
approximate the integrals using a standard quadrature
method. Unfortunately, this solution performs poorly for the
same reason that scattering point constraints does: unless
the distance between quadrature points is significantly less
than ε the resulting surface will have dimples and bumps.
The culprit responsible for this behavior is the weighting
function. Its singularity, or near singularity, at zero, causes
severe problems for standard quadrature schemes. These dif-
ficulties extend to Monte-Carlo schemes, which explains the
problems encountered with scattered points. The method
we use is aware of the singular nature of the weighting func-
tion and it accounts for that contribution without under-
weighting the contribution from the rest of the triangle.

Let m be the point in Ωk that is closest to the evaluation
point, x. (See Figure 3.) If this point is on the interior of
Ωk, we split the triangle into three triangles each of which
has m as one of its vertices. If the point lies on an edge,
the triangle is split into two triangles. If the point lies on an
existing vertex, the triangle is not split. The integral over
the original triangle is the sum of integrals over each of these
sub-triangles. Each sub-triangle has m as one of its vertices,

and the other two vertices are denoted v+ and v− such that
w(x,v+) ≥ w(x,v−).

To compute the sub-triangle area integral we separate
it into two successive one-dimensional integrals as shown
in Figure 3. The outer one integrates along the edge from m
to v− using a special numerical quadrature rule. The inner
one integrates along the barycentric iso-lines that are par-
allel to the edge from m to v+, using the one-dimensional
analytical solution.

The outer, numerical integration uses the Newton-Cotes
trapezoidal rule with irregularly spaced samples. If the edge
from m to v− is parameterized from zero to one with zero
corresponding to m, the samples occur at 0, αn, . . . , α1, α0.
We arbitrarily use α = 2/3, and n is proportional to the
logarithm of the edge length. The integral should be ap-
propriately scaled by the sub-triangle area. This scheme
captures the behavor near the potentially singular location,
m, without neglecting the rest of the triangle.

3.3 Normal Constraints

The two previous sections describe how we can implement
constraints on the value of the moving least-squares func-
tion at discrete points and over polygonal patches. How-
ever, if we attempt to define a surface by only requiring it
to take a given value on its surface, we will not obtain use-
ful results. Previous researchers, for example [Ohtake et al.,
2003a], have implemented pseudo-normal constraints with a
technique originally suggested by [Turk and O’Brien, 1999].
This technique places a zero constraint at a point on the sur-
face, a positive constraint offset sightly outside the surface,
and a negative one slightly inside.

Unfortunately, this approach does not work as well as one
might like. The additional constraints influence the func-
tion’s gradient only crudely, and they can cause undesirable
oscillatory behavior as the evaluation point moves away from
the surface. This behavior is illustrated in the lower half
of Figure 4. It occurs because when the distance between
the evaluation point and the surface point is much larger
than the offset distance, the inside and outside constraints
effectively cancel each other out. Even if only outside (or
only inside) constraints are used, they will still effectively
merge to a single average valued constraint far away. Heuris-
tics, such as those described by [Ohtake et al., 2003a], can
suppress some of the spurious behavior, but the value of the
function far from the surface will not be useful. Further-
more, these quasi-normal constraints cause severe problems
when used with the approximation procedure described in
the next section.

Figure 4: A one-dimensional example showing the height field
generated from four position and normal constraints. The first
(top) image shows the result with our method, and the arrows
indicate the outward normal directions. The second shows an
expanded view demonstrating far-field behavior. The third and
fourth images show the results generated by pseudo-normal con-
straints with linear and quadratic basis functions. The small dots
indicate the placement of the inside and outside pseudo-normal
constraints.

4



Computer Graphics Proceedings, Annual Conference Series, 2004

Figure 5: A two-dimensional example comparing interpolating
and approximating results. The center images show input con-
straints as dotted lines and the contour as a solid line. The outer
images show the resulting function as a height-field.

One of our key innovations is to impose normal constraints
by forcing the interpolating function to behave like a pre-
scribed function (in the neighborhood of a polygon), as op-
posed to a prescribed constant value. In other words, instead
of using the moving least-squares method to blend between
constant values associated with each polygon (or point), we
blend between functions associated with them. This method
exhibits little undesirable oscillation.

If n̂k is the normal associated with polygon Ωk, we define
the function Sk(x) that describes how that polygon wants
the interpolant to behave as

Sk(x) = φk + (x− qk)T n̂k (17)

= ψ0k + ψxk x+ ψyk y + ψzk z , (18)

where qk is an arbitrary point on the polygon Ωk, and ψ0k,
ψxk, ψyk, and ψzk are resulting polynomial coefficients. In-
terpolating between these functions reduces to simply inter-
polating the ψ coefficients just as we would normally inter-
polate a constant value φk.

In the special case where n̂k = 0, the normal constraints
are exactly equivalent to the original value constraints. As
a result we can easily mix constraints with and without nor-
mals.

In the case where we only use the constant basis function,
so that b(x) = [1], the fit from Equation (5) simplifies to w(x,p1)

...
w(x,pi)

 c1 =

 w(x,p1)
. . .
w(x,pN )

  S1(x)
...

SN (x)

 (19)

which has the very intuitive interpretation that the interpo-
lating function’s value at x is simply the weighted average
of the values at x predicted by each of the Sk(x).

We have found this approach to work well. Figure 4 illus-
trates that the undesirable behavior that occurs with quasi-
normal constraints does not occur with this method. Fur-
ther, this approach causes the surface normals to actually
take on the desired value at constraint points, whereas offset
constraints do not. For polygonal constraints, the normals
are interpolated so long as they are consistent with the poly-
gon’s plane. In addition to being useful with moving least-
squares, this normal constraint approach should also work
with other interpolation methods such as the radial splines
used in [Turk and O’Brien, 1999]. Because the magnitude of
the normal constraint grows linearly as the evaluation point
moves away, we must choose a weighting function that falls
off faster than linearly.

3.4 Interpolation and Approximation

When the weighting function parameter, ε, is set to zero, the
moving least-squares function will exactly interpolate con-
straint values. If we follow the general approach described

Figure 6: The first (top) row shows the result of applying
our iterative adjustment algorithm with different values of ε to
a polygonal scorpion model. The second row shows the original
and constructed surfaces together. The third row shows the re-
sult of only adjusting the surface to average values (no iterative
adjustment). The fourth row shows the result generated when no
correction is applied.

in [Turk and O’Brien, 1999] and [Ohtake et al., 2003a] of
constraining the function to be zero at input points or poly-
gons, supplying appropriate normal constraints, and extract-
ing the iso-surface f(x) = 0, then all the input polygons will
be parts of the resulting implicit surface.

If the polygonal surface contains gaps or holes, then the
implicit surface will extend beyond the input polygons to
generate a closed surface. As with previous methods that
accomplish hole filling using some form of implicit surface,
there is no guarantee that the results will satisfy any particu-
lar criteria. However, we generally find that these extensions
close gaps and holes in a useful fashion that produces results
simular to what a human might have selected.

If the polygon surface self-intersects, then the interpolat-
ing surface will have some form of saddle at the intersections.
This behavior is illustrated for a two-dimensional example
in Figure 5.

When ε is set to a non-zero value the weighting function
is no longer singular at zero, and the moving least-squares
function interpolates constraint values only approximately.
Examination of Equation (4) reveals that ε has the same
units as distance. It corresponds to a feature size parameter:
structures smaller than ε tend to be smoothed away by the
approximation.

While generating an approximate surface by simply set-
ting ε to some non-zero value works well to a limited extent,
it suffers from two problems. The first is that as epsilon is
set to larger values, the approximating surface has the ten-
dency to move away from the input data (Figure 6, bottom
row). For example, very large values of ε will smooth an
object to a simple sphere-like shape, but the sphere radius
may be several times the original object’s circumradius. The
second problem is that we cannot ensure that all the object’s
original vertices fall inside the implicit surface, and for some
applications this guarantee is important.

To correct the first problem we simply build a moving
least-squares function with the desired ε, sample its average
value over the input polygons, and then extract a surface at
that iso-value (Figure 6, third row). Although this procedure
may at first appear to require substantial extra work, the
additional work is actually not particularly significant. The
majority of computation is spent extracting the iso-surface,
and that task still only needs to be done once.

5



ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

By adjusting the iso-value we achieve a surface that, on
average, stays close to the input data, but with this con-
struction we expect that roughly half the original vertices
will fall outside the surface. To ensure that original ver-
tices lie inside the surface, we iteratively adjust the φ values
assigned to the vertices.

Initially, the φ values associated with each vertex are all
zero and the φ associated with each triangle is the constant
zero as well. If a vertex, v, protrudes outside the iso-surface
(i.e., f(v) > 0), we adjust its φ value by −γ f(v) where γ is
an adjustment rate parameter between zero and one (typi-
cally close to one). Once the vertices of a triangle have been
assigned different values, we linearly interpolate φ over the
triangle when computing integrals. This adjustment process
is done iteratively until no original vertex falls outside the
iso-surface. The final surface is guaranteed to enclose all in-
put vertices, as illustrated in the top two rows of Figure 6.
As with adjusting the iso-value, the majority of computa-
tion is still spent extracting the iso-surface, and that task
still only needs to be done once.

Variations on this iterative procedure for adjusting the φ
values could also be used to enforce other conditions. For
example, it could be used to guarantee that all points are
within some set distance of the iso-surface. Conditions could
be tested at points other than the initial vertices, and the
iterative procedure could also adjust the normal direction or
magnitude associated with each constraint.

3.5 Fast Evaluation

Näıve implementation of the moving least-squares function
would require work linear in the number of constraints for
each function evaluation. For large data sets, this näıve ap-
proach is completely infeasible. A similar problem arises
with the partition-of-unity method used in [Ohtake et al.,
2003a]. They address the problem using a hierarchical
evaluation scheme that caches approximations based on lo-
cal neighborhoods. Because partition-of-unity and moving
least-squares methods are essentially equivalent methods,
their hierarchical evaluation scheme could be used with our
method as well. We have, however, implemented a different
evaluation scheme which we describe briefly.

We observe that the primary expense for evaluating the
moving least-squares function is the cost of computing the
sums and integrals for Equation (12). Were it not for the
weighting function’s dependence on x, the terms would be
constant and the summation would only need to be com-
puted once.

For terms that peak near the evaluation point, the weight-
ing function changes rapidly. However, the weight function
changes only slowly for far terms. We can approximate
groups of the slowly changing far terms by first summing
them and then multiplying by their average weight.

For our hierarchical scheme, we first store the input tri-
angles in a K-D tree where each triangle is stored at one
of the leaf nodes. We then compute the unweighted inte-
grals, Equations (15) and (16), for each triangle and store
them, along with the triangle’s axis-aligned bounding box,
in the leaf nodes. The interior nodes store the unweighted
sums of their children’s integrals/sums, and a bounding box
that encloses the union of their children’s bounds. We also
store an area-weighted “center of mass” for each node.

To evaluate the contribution of a subtree, we test the eval-
uation point to see if it falls outside the subtree’s bounding
box by a distance greater than λ times the box’s diame-
ter. If it does, we use the sums stored at the subtree’s root
node with a weight computed using the distance between the
node’s center of mass and the evaluation point. If the evalu-
ation point is not sufficiently distant, we recursively test the
node’s children. Only when we find that a leaf node fails our

Figure 7: The top left image shows a polygonized version the
Utah teapot which contains holes (around lid and tip of spout),
and intersecting parts (handle and spout with body). The top
right image is a near-interpolating surface which fills the holes
and removes intersecting surfaces. The bottom row contains pho-
tographs of physical models built on a fused deposition machine.
The bottom right image shows a physical cutaway model.

distance test do we need to compute the weighted integral
terms for that node.

This scheme was easy to implement using existing K-D
tree collision detection code, and it allows us to work with
models consisting of several hundred thousand triangles.
The user can make a trade-off between speed and accuracy
by adjusting λ. Our examples were generated with λ be-
tween 0.01 (when ε = 0) and 0.1 (when ε is large).

3.6 Preprocessing

Although the methods we have described in previous sections
cope reasonably well with intersecting geometry and layers of
internal structure, it may still be useful to first remove some
of these polygons. In particular, our algorithm will happily
produce surfaces corresponding to internal structures, even
if only an exterior shell was desired. In these cases, we can
pre-process the input to remove polygons that are not visible
from the exterior using methods such as those in [Nooruddin
and Turk, 2003] and [Nooruddin and Turk, 2000].

The normal constraints depend on consistently oriented
normals. Unfortunately, many polygon models may have
normals that randomly point inward or outward. We force
normals on topological surfaces to point in a consistent di-
rection. We also orient the normals of any exterior-visible
polygon to point outward. If both sides of a triangle are
exterior-visible then we set that triangle’s normal to zero.

4 Results and Discussion

Figures 1, 10 and 11 show the result of applying our algo-
rithm to a variety of models using different values of ε. An-
imations showing continuous variation of ε from interpolat-
ing to extreme smoothing appear on the proceedings DVD.
Most of these models contain holes, self-intersections, non-
manifold structure, and other defects. The objects in brown
are the original polygonal models. Green objects are out-
put from our algorithm. For sufficiently large ε, all objects
converge to a circumscribing ellipsoid-like shape. As Fig-
ure 8 shows, the interpolating surfaces can reproduce small
features and sharp edges.

As Figure 7 shows, we can use this algorithm as an effec-
tive preprocessor before sending a model to a rapid pro-
totyping machine. The Utah teapot contains holes and
self-intersections that would cause the machine to produce
garbage output. A tightly approximating implicit surface
does not contain those problems and allows a successful

6



Computer Graphics Proceedings, Annual Conference Series, 2004

Model Fig. P. In ε V. Out Time ε V. Out Time ε V. Out Time ε V. Out Time

Heavy Loader 1 37 0 2000 11:42 0.05 800 64:06 5 62 72:48 30 30 92:34

Teapot 10 6.3 0 1000 5:50 0.8 300 10:28 10 53 22:02 60 26 42:31

Cow 10 5.8 0 1000 5:37 0.8 300 8:04 7 61 23:35 120 23 58:19

Bunny 10 69 0 1500 8:13 0.4 400 19:34 10 50 41:36 60 28 72:23

Dragon 10 870 0 2000 12:23 0.6 400 82:21 7 46 89:54 30 21 97:04

Scorpion 10 78 0 1500 9:54 0.6 400 67:50 5 65 61:06 30 26 80:55

Intersecting Star 11 0.05 0 1000 4:44 1 300 5:18 10 48 7:03 110 28 8:20

Machine Part 11 0.8 0 1000 4:45 0.8 300 5:54 7 60 8:50 120 29 20:21

Deck Chair 11 3.9 0 1000 5:01 0.8 300 8:29 10 55 27:06 120 30 52:36

Armchair 11 3.4 0 1000 4:56 0.4 300 7:53 7 62 28:28 120 28 41:09

Cube Shape 11 0.01 0 1000 4:44 0.8 300 5:01 10 45 3:06 80 25 1:52

Table 1: This table lists the computation times and ε parameter for the examples used in this paper. The columns P. In and V. Out
list the number (in thousands) of polygons in the input model and the number (in thousands) of vertices in the output surface. We
measure ε in thousandths of the diagonal length of the object’s bounding box. Computation times (minutes:seconds) measure total time
on a 3 GHz P4 beginning with reading the input model and ending with writing the polygonized output surface. Column groups match
the ε values used for the examples shown in the figures.

Figure 8: The far-left image shows a closeup view of the original
polygons for the heavy-loader’s back grill. The center-left image
shows the resulting interpolating surface, and the center-right a
slightly approximating one. The far-right image shows a rear
view of the interpolating surface for the entire loader. The dented
appearance near sharp edges is a polygonization artifact.

Figure 9: The heavy-loader shown top left contains many defects
that make it unsuitable for simulation as a deformable object.
The approximating surface, top center, fully encloses the original
model. The tetrahedral finite-element model, top right, can be
used as a simulation envelope to model the effect of an impact,
lower left and lower right.

build. Additionally, because building a solid teapot would
waste material, it is desirable to include an inner surface.
We generated the inner surface of the cutaway teapot by
taking the same MLS function used to create the outer sur-
face and computing another iso-surface for a lower iso-value.
These photographs demonstrate that our method produces
surfaces that can be used to generate structurally sound
physical models.

Deformable object simulations based on the finite element
method have found widespread use in video games and film
production. Unfortunately, self-intersections, topological in-
consistencies, holes, and triangles with bad aspect ratios ren-
der most graphics models ill-suited for use as a finite element
mesh. Even meshes that are free of these problems may con-
tain far too many elements to be practical for simulation.
We can still animate these objects by embedding them in

a suitable, enclosing, deformable mesh. As demonstrated
by Figure 9, the tight, smooth, enclosing surfaces that can
be generated with our method make excellent simulation en-
velopes.

Currently, we are using the polygonizer described in [Bloo-
menthal, 1994] for extracting iso-surfaces. It works well for
smooth surfaces, but extracting small features requires a
very fine resolution and produces models with an inordinate
number of polygons. Our polygonal models produce useful
envelopes after being passed though surface simplification
software (see Figure 9), but extracting them is time con-
suming and requires substantial storage. (See Table 1.) We
are currently considering better methods for surface extrac-
tion based on the algorithm from [Boissonnat and Oudot,
2003]. The surfaces for the heavy-loader shown in Figures 1
and 8 were extracted using a partial implementation of that
algorithm.

Acknowledgments

We thank the other members of the Berkeley Graphics
Group for their helpful criticism and comments. We espe-
cially thank Ravi Kolluri for his help with polygonization,
Adam Bargteil for help with the heavy-loader simulation,
Carlo Séquin for his help with the fused deposition machine
used to make the teapots, and Okan Arikan for help render-
ing. Images in this paper were rendered with Pixie. This
work was supported in part by NSF CCR-0204377, Cali-
fornia MICRO 02-055, and by generous support from Pixar
Animation Studios, Intel Corporation, Sony Computer En-
tertainment America, the Okawa Foundation, and the Alfred
P. Sloan Foundation.

References
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and

Silva, C. T. 2001. Point set surfaces. In IEEE Visualization 2001,

21–28.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and

Silva, C. T. 2003. Computing and rendering point set surfaces.

IEEE Transactions on Visualization and Computer Graphics 9,

1 (Jan.), 3–15.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl,

P. 1996. Meshless methods: An overview and recent developments.

Computer Methods in Applied Mechanics and Engineering 139 ,

3–47. Special issue on meshless methods.

Bittar, E., Tsingos, N., and Gascuel, M.-P. 1995. Automatic recon-

struction of unstructured 3d data: Combining a medial axis and

implicit surfaces. Proceedings of Eurographics 95 , 457–468.

Bloomenthal, J. 1994. An implicit surface polygonizer. In Graphics

Gems IV. 324–349.

7



ACM SIGGRAPH 2004, Los Angels, CA, August, 8–12, 2004

Figure 10: A collection of polygonal models processed with our algorithm. [Continued on next page.]

Bloomenthal, J., Ed. 1997. Introduction to Implicit Surfaces. Mor-

gan Kaufmann Publishers, Inc., San Francisco, California.

Boissonnat, J. D., and Oudot, S. 2003. Provably good surface sam-

pling and approximation. In Proceedings of the ACM SIGGRAPH

Symposium on Geometry Processing, 9–18.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright,

W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction

and representation of 3d objects with radial basis functions. In

Proceedings of ACM SIGGRAPH 2001, 67–76.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agar-

wal, P., Jr., F. P. B., and Wright, W. 1996. Simplification en-

velopes. In Proceedings of ACM SIGGRAPH 1996, 119–128.

Cohen-Or, D., Solomovici, A., and Levin, D. 1998. Three-dimensional

distance field metamorphosis. ACM Transactions on Graphics 17,

2 (Apr.), 116–141.

Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Im-

plicit fairing of irregular meshes using diffusion and curvature flow.

In Proceedings of ACM SIGGRAPH 1999, 317–324.

Fleishman, S., Alexa, M., Cohen-Or, D., and Silva, C. T. 2003. Pro-

gressive point set surfaces. ACM Transactions on Graphics 22, 4

(Oct.), 97–1011.

Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-iterative,

feature-preserving mesh smoothing. ACM Transactions on Graph-

ics 22, 3 (July), 943–949.

Keren, D., and Gotsman, C. 1998. Tight fitting of convex polyhedral

shapes. International Journal of Shape Modeling, 111–126.

Morse, B., Yoo, T. S., Rheingans, P., Chen, D. T., and Subramanian,

K. 2001. Interpolating implicit surfaces from scattered surface data

using compactly supported radial basis functions. In Proceedings

of Shape Modelling International, 89–98.

Muraki, S. 1991. Volumetric shape description of range data using

“blobby model”. In Proceedings of ACM SIGGRAPH 1991, 227–

235.

Museth, K., Breen, D. E., Whitaker, R. T., and Barr, A. H. 2002.

Level set surface editing operators. ACM Transactions on Graph-

ics 21, 3 (July), 330–338.

Nooruddin, F. S., and Turk, G. 2000. Interior/exterior classification

of polygonal models. In IEEE Visualization 2000, 415–422.

Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of

polygonal models using volumetric techniques. IEEE Transactions

on Visualization and Computer Graphics 9, 2 (Apr.), 191–205.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P.

2003. Multi-level partition of unity implicits. ACM Transactions

on Graphics 22, 3 (July), 463–470.

Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2003. A multi-scale

approach to 3d scattered data interpolation with compactly sup-

ported basis functions. In Proceedings of Shape Modelling Inter-

national, 292–300.

Savchenko, V. V., Pasko, A. A., Okunev, O. G., and Kunii, T. L. 1995.

Function representation of solids reconstructed from scattered sur-

face points and contours. Computer Graphics Forum 14, 4 (Oct.),

181–188.

8



Computer Graphics Proceedings, Annual Conference Series, 2004

Figure 11: Additional polygonal models processed with our algorithm. [Continued from previous page.]

Taubin, G. 1995. A signal processing approach to fair surface design.

In Proceedings of ACM SIGGRAPH 1995, 351–358.
Turk, G., and O’Brien, J. F. 1999. Shape transformation using vari-

ational implicit functions. In Proceedings of ACM SIGGRAPH

1999, 335–342.
Turk, G., and O’Brien, J. F. 2002. Modelling with implicit surfaces

that interpolate. ACM Transactions on Graphics 21, 4 (Oct.),

855–873.
Yngve, G., and Turk, G. 2002. Robust creation of implicit surfaces

from polygonal meshes. IEEE Transactions on Visualization and

Computer Graphics 8, 4 (Oct.), 346–359.
Zhao, H.-K., Osher, S., and Fedkiw, R. 2001. Fast surface reconstruc-

tion using the level set method. In IEEE Workshop on Variational

and Level Set Methods, 194–202.

A Analytical Line Integrals

Our integrated constraints require solving integrals of the form∫
P (p)

R(p)
dp (20)

where P (p) and R(p) are functions in p. The functions P and R
are respectively determined by the basis functions and the weight-
ing function. For our choices, P is a constant or linear polyno-
mial, and R is a quadratic polynomial with restricted form. We

cannot do the two-dimensional integral analytically, but the one-
dimensional line integral one does have an analytic solution.

Once we have selected a direction for the line integration, the
integrals for the constant and linear terms of P appear in the
following forms: ∫ a

0

1(
(x + k1)2 + k2

)2 dx (21)∫ a

0

x(
(x + k1)2 + k2

)2 dx (22)

where k1 and k2 are constant with respect to the integration vari-
able, x.

The solutions to these integrals are

β
−a

√
k2(k1(a + k1)− k2)− (k2

1 + k2)((a + k1)2 + k2)

2(k2)
3
2 (k2

1 + k2)((a + k1)2 + k2)
(23)

and

β
a
√

k2(a + k1) + k1((a + k1)2 + k2)

2(k2)
3
2 ((a + k1)2 + k2)

(24)

respectively, where

β =

(
tan−1

(
k1√
k2

)
− tan−1

(
a + k1√

k2

))
. (25)

9


	1 Introduction
	2 Background
	3 Methods
	3.1 Value Constraints at Points
	3.2 Value Constraints Integrated over Polygons
	3.3 Normal Constraints
	3.4 Interpolation and Approximation
	3.5 Fast Evaluation
	3.6 Preprocessing

	4 Results and Discussion
	A Analytical Line Integrals

