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Fig. 1. We compute the surface of the volume (orange) swept by a moving space shuttle (top left). Instead of hunting everywhere in the cold, dark, vastness of
space and time, our continuation algorithm traces along a 2D submanifold of a 3-manifold embedded in 4D, reducing the problem’s dimension.

Given a solid 3D shape and a trajectory of it over time, we compute its

swept volume – the union of all points contained within the shape at some

moment in time. We consider the representation of the input and output

as implicit functions, and lift the problem to 4D spacetime, where we show

the problem gains a continuous structure which avoids expensive global

searches. We exploit this structure via a continuation method which marches

and reconstructs the zero level set of the swept volume, using the temporal

dimension to avoid erroneous solutions. We show that, compared to other

methods, our approach is not restricted to a limited class of shapes or trajec-

tories, is extremely robust, and its asymptotic complexity is an order lower

than standards used in the industry, enabling its use in applications such as

modeling, constructive solid geometry, and path planning.
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1 INTRODUCTION

A moving 3D object sweeps over space as a brush would sweep

over a 2D canvas. The set of points that appear at some moment

inside of the moving object constitute its swept volume. Hence, solid
swept volumes lift the 2D brushstroke metaphor to the 3D-modeling

setting (see Fig. 1), and we refer to the shape being swept as a brush.
In 3D sculpting, the complement of the solid swept volume describes

the removal of material by a moving chisel (see Fig. 2). Meanwhile,

the swept volume of a robot or reconfigurable mechanism can be

used to ensure safe clearance free of collisions.

Extracting a high-quality representation of the two-dimensional

surface of a solid swept volume has proven to be an elusive prob-

lem. Nowadays, there are millions of polygonal meshes online with

staggering detail, and modern mesh processing is mature for down-

stream tasks. It is particularly vexing to lack an extraction algorithm

for an accurate mesh approximation of a moving mesh. Exact meth-

ods devolve into fragile and intractable surface meshing and Boolean

operations for models found in the wild. The common response in

practice (e.g., Adobe Medium) is to convert an input brush to an

implicit representation (e.g., signed distance field) and then stamp
the brush at discrete moments in time. The pesky choice of temporal

resolution necessary for a smooth-looking output not only depends

heavily on the complexity of the input brush and the input motion

(see Fig. 3), but also frustratingly on the accuracy of the grid used

for surface extraction. While simple to implement and parallelize,

stamping suffers from performance complexity that scales with

volume (O(n3)) despite outputting a surface (O(n2)).
In this paper, we consider the problem of extracting a high-quality

mesh of the surface of the volume swept by an arbitrary input solid

shape along an arbitrary trajectory. We propose a method which
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Fig. 2. Subtracting the swept volume of complex brush shapes enables artistic control during 3D carving. 3D model by KellyBC under CC BY-SA 3.0.
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Fig. 3. Our method (green, center left) avoids the stroboscopic artifacts of the stamping at fixed time steps - the only previous work similar in generality
(center right). Stamping and then doing gradient descent in time for each spatial point without our continuation algorithm (right) also presents artifacts
despite incurring a significantly higher computational cost. Scrub to the timestamp listed after any icon in our supplemental video for an animation.

leverages the power of an intermediary implicit representation with-

out inheriting the drawbacks of stamping. Our key insight is that

each point on the surface of the swept volume has an associated

“timestamp,” corresponding to the moment in which the signed dis-

tance to the moving brush is minimized. This timestamp, viewed

as a scalar field over R3, is piecewise continuous. We propose to

“walk” along the two-dimensional surface of the swept-volumewhile

tracking the small changes in timestamp value. By optimizing for

the optimal timestamp (i.e., when the brush was closest) adaptively

for each point, we ensure an alias-free output. Our approach can be

understood as an application of the method of numerical continua-
tion. Large swathes of 3D space are never even visited, resulting in

an appropriately output-sensitive runtime (scaling with the sweep’s

surface complexity, generally O(n2)).
Our method is extremely robust, and we have not encountered

any failure case where it has produced an erronous result. Further-

more, our output surfaces consistently match the quality of methods

specialized for specific classes of trajectories (see Figs. 4 & 5). Aside

from its robustness, the power of our approach is in its generality,

across a few respects: First, the input “3D brush” to our method

could be any solid shape representation that admits a continuous

implicit function, such as analytic signed distance functions, approx-

imate signed distance functions (e.g., arising from constructive solid

geometry operations or ShaderToy-esque metric manipulations),

and robust winding-number [Jacobson et al. 2013] signed distances

from triangle meshes and point clouds. Second, the input trajectory

could be any representation of a rigid motion (beyond translations,

screws and splines), but also encompasses articulated rigid bodies

(effectively a union of each body’s sweep) and Minkowski sums

(generalizing 1D trajectory curve to a high-dimensional parametric

space). Finally, the output of our basic method is the sweep’s surface,

retrieved via applying dual contouring [Ju et al. 2002] to the sparse

set of voxels containing it. This avoids regions of space deep inside

or outside the swept volume. This output sensitivity generalizes to

directly contouring interactions with swept volumes such as con-

structive solid geometry operations (see Fig. 18). With the modern

resurgence of implicit modeling (e.g., Adobe Medium, nTopology,

Dream PS4, Claybook, Neural Implicits [Davies et al. 2021; Park et al.

2019]), our formulation via implicit functions affords flexibility not

available with purely explicit methods.

We demonstrate the effectiveness and generality of our method

through a variety of applications spanning 3D modeling, visual

effects, and robotics clearance tasks.We further compare ourmethod

to the state of the art and report superior performance-over-accuracy

ratio and surface quality.

2 WHY YET ANOTHER SWEPT VOLUME METHOD?
Computational methods for swept volumes are nearly as old as

computer-aided design itself. Early work focused on accurately

predicting the subtractive modeling processes of CNC milling [Sun-

gurtekin and Voelcker 1986; Wang and Wang 1986]. Over the past

decades, a wide variety of techniques for constructing swept vol-

umes have appeared in the CAD, graphics, and robotics literature,

with periodic surveys (e.g., [Abdel-Malek et al. 2006]). In this section,

we describe how existing methods fall short for critical scenarios.

Since all points on the surface of a solid’s sweep must originate

from a point on the brush surface, it is natural to consider whether

these points can be explicitly parameterized given a parametric or

explicit representation of the brush surface. However tempting, ex-

actly classifying a rigidly moving polyhedron (i.e., piecewise-flat)

involves not just constructing ruled surface patches for each edge

and face [Weld and Leu 1990], but also trimming their mutual inter-

sections to remove components not contributing to the final surface

[Blackmore et al. 1999]. Arrangements for planar meshes are already

daunting, with very recent progress in robust algorithms relying on

exact arithmetic [Zhou et al. 2016] or predicates [Cherchi et al. 2020].
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Fig. 4. Our method indistinguishably reproduces exact translational poly-
hedral sweeps, while stamping exhibits aliasing defects. 3D model by Ceh
Jan under CC BY-SA 3.0.

These are not applicable to the ruled surfaces of a polyhedral sweep.

Pure rational translations can be computed exactly [Zhou et al. 2016]

(see Fig. 4) and screw motions can be well approximated with screw-

specific analysis [Rossignac et al. 2007] (see Fig. 5), but these do

not generalize to all motions or all classes of brushes. The situation

worsens when compositing sweeping operations with other solid

operations such as Booleans or offsetting [Pavic and Kobbelt 2008].

One option is to approximate surface patches after each operation

with point clouds [Peternell et al. 2005], triangle meshes [Abrams

and Allen 2000], or distance fields [Kim et al. 2004; Zhang et al. 2009],

relying on meshing, ad hoc flood filling or contouring to assemble a

final output surface mesh. These explicit methods accumulate error
in a hard to control manner.

Campen and Kobbelt [2010] approximate the surface of swept

volumes of polyhedra by first discretizing the input motion as

piecewise-linear vertex displacements and then generating a su-

perset of candidates from this motion. These must be trimmed and

stitched to form the output. Intersections must be conducted ro-

bustly to ensure a watertight output mesh. Special purpose culling

rules must be used to avoid the intractable problem of handling all

possible intersections. Although code is not available for a direct

comparison, we are not confident that this method will be robust

in the presence of many intersections, such as in our Fig. 8. Fur-

thermore, our algorithm accepts any input rigid motion without

approximating it, we are not limited to polyhedral inputs and we

remove the need for an elaborate post-facto cleanup.

It should be noted that for moving polyhedra, if we insist on a

polygonal mesh as the eventual output, then by design we have to

accept some approximation error. We should not care whether that

error comes from attempting to triangulate exact surface-patches,

or contouring an implicit function. We do care that the error is

controllable (e.g., by choosing the resolution of the underlying rep-

resentation), creases are well approximated, and the construction is

robust and efficient.

Compared to explicit representations, a sweeping implicit is sim-

ply stated mathematically. If the input brush solid is the set of points

x ∈ R3 such that some continuous function f : R3 → R is negative

(f (x) < 0), then the swept volume along some time-parameterized

rigid motion T : [0, 1] → SE(3) is represented as a new implicit func-

tion taking the minimum of the brush’s implicit evaluated relative

to the motion over time:

f ⋆(x) = min

t ∈[0,1]
f
(
T(t)−1x

)
. (1)

[Rossignac et al. 2007] Fig. 1
(screw motions only)

ours
(screw motion)

ours
(non-screw motion)

Fig. 5. Our method replicates the main result of Rossignac et al. [2007],
while generalizing beyond their restricted class of motions.

[Zhang et al. 2009] Fig. 1 Ours

Fig. 6. Our results are visually identical to those of Zhang et al. [2009], but
our method is more general and can work on sweeps theirs cannot.

Specifically, if f is a signed distance function then f ⋆ will be an

upper bound on the signed distance to the sweep (exact outside,

underestimate inside, cf. [Quílez 2020]).

Since the input and output are both implicits, swept volumes slide

neatly into the larger implicit modeling and rendering frameworks

[Wyvill et al. 1986]. However, the simplicity of Eq. (1) crumbles

under scrutiny when turning to implementation. For special combi-

nations of brush functions (e.g., compositions of a small number of

analytic functions) and motion parameterizations (e.g., polynomial

splines) root finding can be employed to solve Eq. (1) [Schmidt and

Wyvill 2005; Sourin and Pasko 1995]. In contrast, the “R-functions”

used by Sourin and Pasko [1995] avoid minimization during ag-

gregation. While simplifying some derivations, their analogous f ⋆

has distorted values away from the zero level-set, precluding direct

extraction of positive offset surfaces, especially useful in carving

or robotic clearance problems. Even within their restricted settings,

numerical root finding is employed at each evaluation point with

some aspect of global search to avoid local minima. Lacking our

continuation-based method, they scale poorly to general inputs and

local minima leave outputs riddled with defects (see Fig. 3).

One way to sidestep the pitfalls of numerical root-finding is not

to do it. Instead, one can march at constant time steps, and for each

time step fill-in all implicit values at that time step (e.g., on a grid),

a method we refer to as stamping. Stamping lies in direct compar-

ison to us, as it is compeletely general (f must only be defined

at any point x and moment in time t ), and in fact applicable to a

larger set of scenarios (e.g., non-rigid deformations). However, we

demonstrate superior surface quality and performance trend. Indeed,

combined with grids of precomputed f values and adaptive back-

ground grids, stamping can be streamlined for memory efficiency

[Von Dziegielewski et al. 2012], but ultimately scales poorly with

volume, O(n3) [Garg et al. 2016; Menon et al. 1994; Schroeder et al.

1994]. Furthermore, the choice of the sampling rate is non-trivial:

Sampling too densely in time fills in values deep inside the swept

volume as the surface of the brush marches forward. Sampling too

sparsely leads to temporal aliasing becoming visible (see Fig. 3). This

issue is aggravated by the fact that different points move at different

speeds (e.g., through a rotation), hence some spatial regions require
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Fig. 7. Given an input brush and motion, characteristic points (cf. [Peternell
et al. 2005]) trace true boundaries and false boundaries of the swept volume.
Previous explicit methods pose surface extraction of the swept volume as a
spatial arrangement problem. Instead, we conceptually consider the space-
time hypersurface (codimension one) and trace continuously along the
submanifold (codimension two). Any accidentally explored false boundaries
are corrected when approached from spatially equivalent points.

finer time sampling than others. Frustratingly, the speed of stamp-

ing necessary to get an alias-free surface after contouring (e.g., via

[Lorensen and Cline 1987]) depends on the choice of background

grid resolution. Thus, the number of time samples k in the runtime

complexity O(kn3) is effectively dependent on the grid resolution n
(observationally roughly O(n4)).

Contouring static implicit functions invites a similar discussion of

volumetric (e.g., [Lorensen and Cline 1987]) versus output-sensitive

complexity (e.g., [Bloomenthal 1988; Wyvill et al. 1986]). Bloomen-

thal casts the tracing of the output surface in the context of the

method of numerical continuation (see, e.g., [Allgower and Georg

2003]). The core idea being that once a point x is found such that

f (x) = 0 the necessarily continuous surface must cross grid cells

neighboring x. Checking only neighbors of previously identified

surface points avoids visiting the full volume of space. Our method

is in essence a continuation method, applied to the minimization

problem (Eq. (1)). However, we apply the continuation not to the

minimum itself, but to its corresponding argmin:

t⋆(x) = argmin

t ∈[0,1]
f
(
T(t)−1x

)
. (2)

This stems from our core observation: t⋆ is piecewise-continuous

over space, enabling our continuation method to propagate argmin

values, in turn resulting in a robust and efficient algorithm.

3 SUBMANIFOLDS IN SPACETIME
For simplicitiy, let us discuss swept volumes over a 2D example,

where visualization is simpler. In Fig. 7, we show a prototypical

self-intersecting motion of a solid brush creating a swept 2D “vol-

ume”. Turning the plane sideways and adding a new dimension

for time, we visualize the motion’s spacetime surface. If we imag-

ine shining a light from above, then the swept volume is the solid

shadow captured on the spatial plane. The occluding contours and

silhouettes represent false and true boundary curves of the swept

volume, respectively. Each curve is composed of continuous parts

of the corresponding spacetime curves.

Our goal will be to walk along just the low-dimensional subman-

ifold of curves on the spacetime surface and output a continuous

discretization of the true swept-volume boundaries.

If our brush can be represented with an implicit function f , then
for any point x in the dark region in Fig. 7 corresponding to the

swept volume there exists some time t such that f (x, t) < 0 (by

slight abuse of notation, we define f (x, t) := f
(
T(t)−1x

)
). The true

and false boundaries are both places where there exists a time t
such that f (x, t) = 0. Further, at these moments in time necessary

optimality conditions will hold: ∂ f /∂t = 0. However, only for true

boundaries will t be the global minimizer (i.e., t = t⋆(x), see Eq. (2)).

time

f(x, t) = 0

x

f(x, t ) < 0

For example, consider a point x
on a red false boundary, correspond-

ing to the time t when f (x, t) = 0.

Since this point also lies deep in the

dark (f < 0) swept volume, there

must exist some other moment in

time t⋆ where f reaches its minimal

(negative) value: f (x, t⋆) < 0.

time

x

f(x, t ) = 0

A point x on the true boundary

curve will reach f = 0 at its globally

optimal time t⋆. There will not ex-
ist any other moment in time where

f becomes negative. Our method

seeks to identify all true boundaries

by continuously walking in space-
time while avoiding overexploring

false boundaries. These contours are one dimension less than the

full swept volume, so our prospect for performance savings is high.

space

approximate

     dense

In contrast, naively stamping at dis-

crete moments in time can be understood

as a poor approximation of both the true

and false boundaries. Stamping ignores

the continuity and low dimensionality of

the spacetime entities and proceeds in

the spatial domain. Even ignoring that

approximate true boundaries are aliased

revealing the discretization, stamping litters the interior of the swept

volume with candidate false boundaries. Each stamp contributes

new false boundaries that must be trimmed away by subsequent

stamps. As these become dense, performance suffers asymptotically.

x
t

Our novel idea is to conduct a self-

correcting contouring of the codimen-
sion twomanifold pre-image of the swept

volume boundary in d + 1 spacetime
rather than directly in d-dimensional

space. Inductively, assuming we have al-

ready identified some point (x, t⋆) lying
on this manifold, we conduct a discrete

step-and-project in both space and time to identify a neighboring

point also lying on the manifold. Once all points are determined,

we may simply throw away the auxiliary time values. Conducting

the step-and-project operation requires care, but we will see that

working in spacetime greatly simplifies our algorithm.

With our crucially different understanding in place, we may now

describe how we efficiently conduct contouring in spacetime en-

suring a geometrically and topologically valid output. Our two-

dimensional picture holds analogously when we lift the problem
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Without propagation
(fixed seed) Without propagation (random seed) Our full algorithmWith propagation, no backtracking
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Fig. 8. An ablation study of our algorithm shows the deterioration in results by omitting the propagation of t⋆ and using fixed (left) or random (middle) time
seeds, or omitting the correction steps in our algorithm (second to right). Our method (right) recovers the correct surface.

Input

Ours (100 seeds) Ours (10 seeds) Ours (1 seed)

416k voxels visited 422k voxels visited 424k voxels visited

Fig. 9. Our algorithm is robust to the number of initial seeds in our queue,
even in a sweep with self-intersections. 3D model by Jenna Stoeber under
CC BY-NC-SA 4.0.

to moving solid brushes in 3D, so long as we carefully track co-

dimensionality. Spacetime is now 4D, and our moving brush ex-

trudes a hypersurface (3-manifold in 4D spacetime). Its cast shadow

is again 3D (codimension zero) caught in space. Rather than walk

along curves in spacetime, we will grow outward along the two-

dimensional (codimension two) submanifold spidering around the

spacetime hypersurface.

4 NUMERICAL CONTINUATION METHOD
We assume we receive as input an implicit representation f of the

solid 3D brush (in Section 5, we demonstrate how working with

implicits as input seamlessly enables many other input representa-

tions) and a function T(t) describing the rigid motion of the brush

over a unit duration of some fictitious time. We next describe and

discuss the continuation method we use to extract the 2-manifold

embedded in 4D spacetime consisting of the spatial swept volume’s

surface coupled with the extra temporal coordinate t⋆.

4.1 Voxel grid representation
Our raw output is an implicit representation of the swept volume’s

surface, represented via a sparse voxel grid in 3D. The main param-

eter of our method is the grid resolution, i.e., the spacing between

points on the grid, h ∈ R+. Internally, we also store a 4th coordinate

representing t⋆, denoted t⋆i for vertex xi , to distinguish it from the

unknown ground truth t⋆(xi ). Similarly, we denote the value of the

implicit for the vertex as f ⋆i .

Both the voxels and the vertices of the voxel-grid play a role in

our computation. On one hand, the vertices store the computed

values (i.e., t⋆i , f
⋆
i ) and can be thought of as semidiscrete objects

in 4D. Their location in space is discretized by the step size h (and

fixed), while they are endowed with a continuous time value (which

we modify via optimization). On the other hand, the voxels are used

as the “implicit volume element” - we query them and evaluate

each voxel’s 8 vertices’ values to infer whether the zero levelset (the

surface) passes through it or not, and to decide whether to progress

to its neighboring voxels.

We determine whether the surface passes through a voxel by

checking whether f ⋆i changes sign over the voxel’s 8 vertices –

since we only sample grid points, vertices rarely if ever land exactly

on the surface of the swept volume: i.e., in general f
(
xi , t⋆i

)
, 0.

This is not a problem as we merely need to track for which edges
{xi , xj } of the grid does f ⋆i change sign: by continuity, there must

exist some x ∈ {xi , xj } for which f
(
x, t⋆(x)

)
= 0 [Lorensen and

Cline 1987]. We only include voxels that exhibit this sign change in

our output, making it immediately digestible by off-the-shelf sparse

contouring methods (e.g., [Bloomenthal 1988; Ju et al. 2002]).

4.2 Method
Our method is in essence a region-growing method reconstructing

the 2D surface in 4D space. Each probe outward from the fron-

tier of the reconstructed surface consists of a discretized spatial

step (moving on the grid to a neighboring voxel) and a continuous

optimization for the temporal coordinate, to project it back to t⋆.
Additional rules stop the region growing at points straying away

from the reconstructed surface, and backtracking to correct wrong-

ful assignments (a minimum is discovered to be local rather than

global). Fig. 8 shows an ablation study of our algorithm.

For region growing, we keep a (non-priority) queue of voxels to

visit. Each voxelv on the queue also holds an initial guess of its tem-

poral component tv (to be used as initialization in the optimization

of the voxel’s vertices’ values). We visit voxels as we pop them from

the queue. We begin by assuming we have a small number of seed
locations (x, t⋆) known to be on the surface of the swept volume

(i.e., f (x, t⋆) = 0).

We initialize our queue with the voxels containing the identified

seed locations lifted to spacetime with corresponding seed’s t⋆.
When popping a voxel v with time value tv from the queue, we

visit each of the 8 voxel vertices i to compute its associated t⋆i , and
compare it to any previously-computed value it stores. Consider

a vertex with spatial position xi . Since we wish to keep it fixed
to the voxel grid, we move the only degree of freedom available

— the temporal component — in order to bring the point as close

as possible to the codimension one hypersurface in 4D. We locally
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Fig. 10. For stamping, the number of fixed-time stamps required for a good
result is tied to the spatial resolution: while few stamps may look good for
coarse spatial resolutions, more and more stamps are required the finer the
resolution gets. Our method doesn’t present this undesirable behaviour. 3D
model by Perry Engel under CC BY-NC 4.0.

solve this 1D projection problem by conducting gradient descent to

minimize f (x, t) starting at tv . We simply employ a backtracking

line search [Boyd and Vandenberghe 2004]. Let the time value (the

argmin) resulting from gradient descent for this voxel corner be ti .
If this corner has never been visited before, then we set t⋆i ← ti
and f ⋆i ← f (xi , ti ). Otherwise, we’ve visited this corner before and
need to see whether we have a clash in our hypothesis for t⋆, which
we resolve as follows.

If the new implicit value at xi is smaller than the older one,

f (xi , ti ) < f ⋆i , then we’ve identified a correction, meaning the previ-

ous value stored was of a strictly-local minimum, and our new value

is the new candidate for the global minimum. Hence, we set t⋆i ← ti
and f ⋆i ← f (xi , ti ) and add all other voxels incident on this corner

to the queue endowed with time value ti . Adding the voxels back to

the queue initiates another front propagation that will recursively

reevaluate any corner that took part in the front stemming from the

wrongful local minimum. If the opposite condition holds, i.e., the

old implicit value is smaller than the new one, f ⋆i < f (xi , ti ), then
we are currently tracing a local minimum, so we re-add the current

voxel v to the queue with the cached t⋆i , to have its other corners

recomputed using this time value.

Lastly, if any corner of a voxel was updated, then we consider

each edge {i, j} of the voxel for which the signs of f ⋆i and f ⋆j differ.

All other voxels neighboring this edge are added to the queue twice

(once with t⋆i and once with t⋆j ). We restate the algorithm above in

pseudocode in the Appendix B.
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Fig. 11. Our method demonstrates superior performance over stamping,
typified by results in Fig. 10 using a background grid for implicit querying.

Ours
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Number of voxels

10-8 10-210-410-6

Stamping

Exact Solution

100

Fig. 12. Our algorithm’s produced SDF values are several orders of magni-
tude more accurate than a similar runtime stamping’s.

Interval basin caching. Voxels and grid vertices may be visited

many times during the queue processing. To avoid re-optimizing

the same time values over and over again for the same vertex, we

take advantage of the 1D nature of the t⋆ optimziation.

Consider that a vertex has previously started a descent with value

t0 and converged to the nearest local minimizer t1. If we visit this
vertex again and request to start a descent with a value t2 that lies
in the interval spanned by t0 and t1, then we can skip the numerical

descent and return t1 immediately as t2 must lie along the way

down from t0 to t1. In general, a vertex may collect many temporal

intervals. We may merge these using an interval tree as we progress,

keeping a map from interval “basins” to associated local minima.

Extracting initial seeds. Our continuation algorithm needs a few

initial “seeds”: spacetime points (x, t⋆) such that f (x, t⋆) = 0. Sim-

ilarly to Peternell et al. [2005], we look for points whose velocity

and normal vector are orthogonal, a necessary condition for lying

on the sweep’s surface. We sample time at coarse regular intervals

(we use 10 intervals for all examples). For each time ti , we draw 100

random points on the brush. For each point, if the orthogonality

condition is satisfied up to some tolerance (i.e., dot product less than

0.01), we add its corresponding voxel to the queue endowed with

time ti . Since we are sampling from a superset, we conservatively

compute many of these points (in our examples, 100) and start the

continuation from all of them.While necessary but not sufficient, we

have never encountered an example in which we failed to recover

the correct swept volume surface, even when significantly reducing

the number of initial seeds (see Fig. 9). If such example exists, we

conjecture seeding more aggressively resolves it.
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2D brush

1m53s
Our output

Fig. 13. Our method can robustly sweep thin, 2D curves, by sweeping a
small offset from them.

4.3 Discussion
Our method is guaranteed to terminate (queue only grows when

new minima are found and they are finite for a non-fractal f ), and
also guaranteed to output voxel data ensuring a contouring of a

closed surface (no crossing edges may appear on the sparse-voxel

boundary). This is little comfort as the same is true of stamping.

The major difference for our method is that each update of a grid

vertex is a small finite step from its neighbor’s previously computed

optimal value, leveraging the piecewise continuity of t⋆. This is what
enables us to perform significantly fewer queries than stamping. In

fact, in Appendix A we show that under sufficient regularity, and

assuming that the implicit function is a signed distance field (as it

is in most examples in this paper), then given a desired accuracy

tolerance ε of the output, our method requires a number of queries

which is sublinear, O(log(1/ε)), while stamping requires a number

of queries which is linear, O(1/ε).
While it is possible to step over a globally optimal value and into

a nearby local minimum, we do not often observe this. Even if this

does happen once, all other neighbors still have an opportunity to

send an improvement.

Theoretically, a catastrophic sequence of missed global optimums

could lead to entire patches missing in the output (false positives)

or erroneously retained (false negatives). With even mild initial

seeding, we have never witnessed this in all of our experiments.

Compared to stamping, whose worst case behavior spans the

entire discretized swept volume, in the worst case, our method traces

all false boundaries, only to correct them later. We similarly do

not witness this. In our experiments false boundaries are briefly

explored but just as quickly corrected. If even a single point on a

false boundary component is corrected then the queue acts as a fast

breadth first correction for the whole patch.

5 EXPERIMENTS & RESULTS

5.1 Comparisons
We begin with a comparison to various previous techniques for

sweeping volume. Fig. 4 shows a comparison of our method to the

ground truth exact solution, which can be computed in this case

of a simple translation along a straight line. Our output is visually

identical, and furthermore has a significantly smaller error compared

Round torus

Square torus

Our outputOur output

Fig. 14. Our method effortlessly sweeps a torus changing shape over time.

1m57s

Fig. 15. Different geometric brushes produce different artistic profiles.

to stamping (see Fig. 12). In this and all other examples, inputs are

scaled to fit the unit cube.

In Fig. 6, we replicate the pièce de résistance from Zhang et al.

[2009], for which our general method yields the same output. Using

the same brush, we also show a sweep with a more elaborate tra-

jectory. In Fig. 5, we qualitatively match [Rossignac et al. 2007]’s

main result; they are limited to screw trajectories, while we show

our method’s output on other trajectories not possible with theirs.

In Fig. 3 we show a comparison to the stamping algorithm as well

as to an “improved” stamping which, at each grid corner, performs a

fixed number of gradient descent steps on Eq. (1) with equally spaced

initial guesses. Fast moving or thin components in the input lead to

geometric and topological artifacts, while our algorithm recovers

those delicate parts perfectly. Furthermore, the number of stamps

required to obtain a desirable output is not constant. As we show in

Fig. 10, an adequate number of stamps at one grid resolution leads

to staircasing artifacts in the other. Stamping more densely in time

alleviates that issue at the unacceptable price of a high number of

queries, significantly increasing the computational cost (see Fig. 11).

5.2 Geometric modeling via sweeping
Our method’s robustness and generality allows exploration of artis-

tic modeling using sweeps, as shown in Fig. 15. In Fig. 13 we model

the horn of a gramophone using a sweep of a 2D curve.

Our method is extremely general and opens up the option for

many applications– we can work on any time-evolving signed dis-

tance field (SDF), as long as it is differentiable with respect to time.

Fig. 14 shows an analytic SDF of a torus evolved from the classic
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Fig. 16. We capture trajectories with a real VR setup and then sweep differ-
ent letters’ mesh representations along them.

2m45s

Fig. 17. We sweep a ballet dancer’s motion, making use of scaling and
transparency (the latter, mapped to t⋆) to resemble an artistic motion trail.
3D model by Maryam Sadeghi under CC BY-SA 3.0.

circular torus at the bottom of the sweep, to a square L1-torus at
the top. The result is a vase with a round bottom and a square top.

Similarly, any trajectory can be used as long as it is differentiable

with respect to time: In Fig. 16, we interpolated between frames

captured by a virtual reality sculpting application, using Camtull-

Rom splines for translation and spherical linear interpolation for

rotation. Composing the rigid motion with time-varying scaling of

the brush is also easy to incorporate, as shown in Fig. 17.

5.3 CSG operations on sweeps
Beyond sweeps, our method can fit within other constructive solid

geometry (CSG) operations with sweeps. For example, in Fig. 18 we

subtract a sweep S generated by a moving brush B(t) of the Artifi-
cially Flavored Drink-Mix Man from an implicitly represented solid

mountainM . Naively, to get a new mountain with a hole punched

through it, N = M \ S , we could run our method to compute S and

then use a standard Boolean operation to perform the subtraction.

However, most of the sweep is far from the mountain and, thus,

does not affect the resulting N , so there is need to compute it all.

Instead, we can turn the order of operations on its head — we define

the time-dependent implicit function R(t) = min (−M,B(t)). We

run our continuation method with this implicit function directly.

Fig. 18 shows the total volume actually computed by our in green,

exhibiting its efficiency. The full red swept volume on the left is

shown only for trajectory visualization purposes.

CSG subtraction

Our outputQu
ery locations

Fig. 18. Most of the character’s swept volume does not intersect the moun-
tain. Thanks to our continuation algorithm, we can directly contour the CSG
subtraction without wasting computational time on the irrelevant parts of
the swept volume. Model by Perry Engel under CC BY-NC 4.0.

Input Intersection 2m37s

Fig. 19. The intersection between the path of a spaceship and a rock for-
mation is computed without necessary computing the swept volume of the
entire path, cutting runtime by a factor of 20. Model by Karl, CC BY-SA 3.0.

In Fig. 19 we show the computed intersection points of a Space

Wizard Vehicle’s path as it is attempting a risky maneuver through a

canyon. Only the red highlighted parts were used in the computation

of the intersection, speeding up the wall-clock computational time

by a factor of 15.6×: 344M distance queries (full swept volume)

down to just 24M queries (just intersection). The swept volume on

the left is shown only for trajectory visualization purposes.

In Fig. 20 the sweep of a pendulum is used to design a shape (pink

cylinder) that can rotate while letting the pendulum pass perfectly

pass through it. We perform a change of frame of reference so that

the pink ring is kept fixed and the rest of the world is rotating

around it (on top of the pendulum motion). We then compute the

subtraction of the pendulum from the pink ring directly.

Of course, CSG operations are useful operations for e.g., modeling,

such as carving a pumpkin using various brushes, as shown in Fig. 2.

5.4 Path planning
Sweeps can be useful for inferring that total volume that may be

potentially occupied by a moving object. In Fig. 21, the joint transfor-

mations of each rigid component are composed to create a complex

transformation. Our smooth swept volume reveals the space occu-

pied by this robotic arm: that is, the areas one should stay clear of

to avoid getting whacked.

In Fig. 23, we precompute the parking maneuvers of a car, to

yield a sweep that could guide other vehicles that aim to leave a

path for the car. In Fig. 24 we compute the Minkowski sum of a 3D

printer’s head with a rectangle, so as to infer the total volume its

various motions may take up. To accomplish this, we generalize our

minimization over 1D time t to the 2D rectangles uv coordinates.

While existing methods for exactly computing Minkowski sums of

triangle meshes often lead to expensive pruning and intersection

resolving operations (cf. [Campen and Kobbelt 2010; Cherchi et al.

2020]), our algorithm contours the zero level set directly.
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Input Swept volume (ours) CSG result Our output 2m50s

Fig. 20. Changing the frame of reference to that of a fixed wheel allows us to produce this result as a CSG subtraction of a single swept volume.

Input articulated rigid body Our output

2m12s

Fig. 21. An articulated rigid body can be seen as the union of several solids
moving with different trajectories. As such, it fits perfectly into our CSG
framework and we can compute its swept volume.

5.5 Sweeps on generalized implicit functions
Our method is readily applicable to other implicit functions. In

Fig. 22, the input is a neural implicit function reconstruction of a

chair [Davies et al. 2021]. Likewise, generalized winding number

[Barill et al. 2018] enables generating an implicit function from a

point cloud as shown in Fig. 25. As a matter of fact, some of our

input triangle meshes (like the car in Fig. 23 and the space shuttle

in Fig. 1) are non solid models made up of intersecting components,

but our use of the winding number-signed distance field makes our

algorithm robust to those intersections.

5.6 Timing and implementation details
We implemented our method in C++, relying heavily on the library

libigl [Jacobson et al. 2018]. We report timings conducted on a 2020

MacBook Pro with a 2.3 GHz Quad-Core Intel Core i7 processor

and 16 GB of memory. The main bottleneck in our algorithm is

the querying of f (x , t) during the gradient descent, consistently

taking up over 95% of our runtimes. We share this with the stamping
algorithm, to which we compare performance-wise in Fig. 10 and

Fig. 11. The reduction in asymptotic complexitymakes our algorithm

faster than stamping at a resolution which produces glaring aliasing

artifacts (see Fig. 10, bottom left).

5.7 Surface extraction
In our results, we use Ju et al.’s dual contouring method for sur-

face extraction [2002]. Similar to other surface extraction methods

[Bloomenthal 1988; Kobbelt et al. 2001; Lorensen and Cline 1987],

it considers each grid edge (x1, x2) crossing the zero level set, with

implicit values f1 < 0 < f2 and performs a local search to find the

point xs on which the edge crosses the zero level set (f ⋆(xs ) = 0).

Dual contouring then uses position and gradient information at

this point to compute a dual vertex lying in the edge’s neighboring

(primary) voxel cells. This combines seamlessly with our method:

we keep the argmins t⋆
1
, t⋆
2
and when the binary search asks for the

implicit values f ⋆ of point xs , we perform gradient descent over

f (xs , t), initializing from both t⋆
1
, t⋆
2
and choosing the best result.

Input neural implicit Our output

2m01s

Fig. 22. Sweeping a neural network reconstruction of a signed distance field
obtained via [Davies et al. 2021].

Dual contouring the spatial gradient ∂ f ⋆/∂x (surface normal up

to length) at the identified level-set points xs . In our case,

d f ⋆

d x
=
∂ f ⋆

∂x
+
∂t⋆

∂x
∂ f ⋆

∂t⋆
(3)

Being at a minima t⋆s , the rightmost term must vanish. Thus it is

sufficient to compute only the spatial gradient of f evaluated at time

t⋆s . Occasionally, xs may fall on the medial axis of our brush at t⋆s ,
where f is non-differentiable and does not admit a gradient. In such

cases, we find finite differencing will be more reliable for computing

these gradients. We observe this rarely for strictly positive level sets,

so our dual contouring uses a numerically tiny offset ε > 0.

6 CONCLUSION
We believe the robust and efficient method for computation of swept

volumes introduced in this paper opens up possibilities for future

work, such as handling sweeps of non-rigid deformations, or further

applications in modeling and path-planning.

We are still unsatisfied with the speed of our method. Even though

it surpasses other general techniques in its performance, it is still

too slow to be used in interactive applications for complex inputs in

which real time feedback is required. While stamping can work on

a fine grid at real time at the cost of reducing temporal resolution
(thereby creating aliasing), our method is continuous in time. One

option to overcome this would be parallelization on the GPU, though

less trivial than stamping’s “embarrassingly parallel” nature.

Our continuation assumes that the input brush is a solid with

a well-defined interior and exterior, hence we cannot apply our

method directly to infinitely thin sheets, curves or non-orientable

surfaces without introducing a finite offset.

In our experiments, our algorithm never failed to recover the

correct swept volume surface, even when facing pathological trajec-

tories (e.g., Fig. 8), pathologically complex inputs with high genus

(e.g., Fig. 26), very low or high grid size (e.g., Fig. 10) or very low

number of initial queue seeds (e.g., Fig. 9). On the theoretical side,

however, we note that we do not have a formal proof of correctness.

We set it as important future work related to formal guarantees on
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2m31s

Fig. 23. The swept volume by a car performing parking maneuvers could
aid autonomous decision making. Model by W. Mckay, CC BY-NC 4.0.

Input Our output

⊕

Fig. 24. We compute the region of space covered by a 3D printer’s head by
a Minkowski sum with a rectangle to aid design of the printer’s inside.

global root finding methods. A deeper theoretical study of the one-

dimensional f (x , t) functions and, more critically, a characterization

of the discontinuities in the t⋆ function would not only help in for-

malizing our method’s robustness, but ideally also in optimizing the

choice and number of seeds in our continuation.

Lastly, we believe thatmany applications concerning time-evolving

implicits and their level sets, such as fluid simulation, can benefit

from our core observation, of considering the argmin-manifold con-

tinuation - we have just scratched the surface of what is possible

with this general technique. To be continued!
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A THEORETICAL CONVERGENCE
In what follows, assume a shape S is being swept along a trajectory

S(t) with 0 ≤ t ≤ 1 whose velocity and acceleration are bounded in

norm from above by vb , ab . Let sd(P ,S(t)) be the SDF of S(t) mea-

sured at point P , and further assume the SDF is twice-differentiable

with respect to t for all P . Let

sdдt (P) = min

0≤t ≤1
sd(P ,S(t)) (4)

be the groundtruth swept volume SDF,

sdstamp,n (P) = min

i ∈{0, ...,n }
sd(P ,S(i/n)) (5)

be the stamping algorithm SDF with n stamps and

sdours,n,m (P) = min

i ∈{0, ...,n }
дm (sd(P ,S(i/n))) (6)

be a conservative version of our algorithm which samples uniformly

in time and then carries outm iterations of backtracking gradient

descen (дm ) t for each of the samples. Also, let τ be the length of

the minimum interval in which sd(P ,S(t)) is strongly convex and

Lipschitz-smooth as a function of t.

Lemma A.1. In the above conditions,


sdдt − sdstamp,n




∞
≤

vb
2n

(7)

Proof. Let P be a point in space and t∗ = argmin sd(P ,S(t)). Let
i be the closest uniform timestep such that |i/n − t∗ | ≤ 1/2n. Then,

|sd(P ,S(i/n)) − sd(P ,S(t∗))| ≤ vb
1

2n
. (8)

□

Lemma A.2. In the above conditions, if n > 1/τ , there exists a
constant K ∈ R and a c > 1 such that for big enoughm,



sdдt − sdours,n,m



∞
≤ K

1

τ 2cm
(9)

Proof. Let P be a point in space and t∗ = argmin sd(P ,S(t)).
Let i/n one of the uniform sample which falls on the interval on

which the function is convex and which contains t∗ (there is at

least one such i because n > 1/τ ). Now, from the convergence of

a gradient descent with backtracking linesearch (see [Nocedal and

Wright 2006]) under sufficient regularity conditions,

|sd(P ,S(t∗)) − sd(P ,S(t))| ≤ K
|t∗ − i/n |2

cm
≤ K

1

cmτ 2
(10)

□

Theorem A.3. Under the regularity conditions described above,
guaranteeing 



sdд t − sdstamp,n


 ≤ ε (11)

requires O(1/ε) evaluations of sd(P ,S(t)), while guaranteeing


sdд t − sdours,n,m



 ≤ ε (12)

requires O(log(1/ε)) evaluations of sd(P ,S(t)).

Proof. The first statement is a direct consequence of Lemma A.1,

while the second comes from Lemma A.2, making n = ⌈1/τ ⌉ and
m = log(K/ετ 2), leading to

1

τ
logc

K

ετ 2
(13)

function evaluations. □

B PSEUDOCODE

Algorithm 1: argmin Continuation Method

let fi , ti be the stored implicit and time values at corner i

Insert voxel and time seeds into Q

while Q is not empty do
v, tv ← pop voxel and time from Q

for each corner i of the eight corners of v do
fi , ti ← backtracking gradient descent from tv at xi
if first time seeing i then

f ⋆i , t
⋆
i ← fi , ti

else if fi < f ⋆i then
f ⋆i , t

⋆
i ← fi , ti

for each other voxel n incident on i do
push (n, ti ) onto Q

else
push (v, t⋆i ) onto Q

if any corner was updated then
for each edge {i, j} of the twelve corners of v do

if signs of f ⋆i and f ⋆j differ then
for each other voxel n incident on {i, j} do

push (n, t⋆i ) onto Q

push (n, t⋆j ) onto Q
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