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We are proposing an algorithm for tracing polylines that are oriented by a
direction field defined on a triangle mesh. The challenge is to ensure that
two such polylines cannot cross or merge. This property is fundamental for
mesh segmentation and is impossible to enforce with existing algorithms.

The core of our contribution is to determine how polylines cross each tri-
angle. Our solution is inspired by EdgeMaps where each triangle boundary
is decomposed into inflow and outflow intervals such that each inflow inter-
val is mapped onto an outflow interval. To cross a triangle, we find the inflow
interval that contains the entry point, and link it to the corresponding out-
flow interval, with the same barycentric coordinate. To ensure that polylines
cannot merge or cross, we introduce a new direction field representation, we
resolve the inflow/outflow interval pairing with a guaranteed combinatorial
algorithm, and propagate the barycentric positions with arbitrary precision
number representation. Using these techniques, two streamlines crossing
the same triangle cannot merge or cross, but only locally overlap when all
streamline extremities are located on the same edge.

Cross-free and merge-free polylines can be traced on the mesh by it-
eratively crossing triangles. Vector field singularities and polyline/vertex
crossing are characterized and consistently handled.
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1. INTRODUCTION

Segmentations of triangulated surfaces that align chart boundaries
with a direction field often exhibit useful properties for computer
graphics applications. For instance, alignment with the main curva-
ture directions is used for quad-dominant remeshing [Alliez et al.
2003], following the gradient of a scalar field allows to compute
pure quad decomposition using Morse-Smale complexes [Dong
et al. 2006; Szymczak and Zhang 2012], and streamlines of a cross
field can decompose a mesh into quad-shaped domains [Kowalski
et al. 2013]. However, it is required that cutting polylines do not
merge to obtain a pure quad decomposition. This property is diffi-
cult to enforce in the presence of highly perturbed geometry, field
singularities (Figure 1), or limit cycles (Figure 11).

All previous algorithms tend to generate polyline crossing or
merging. Indeed, when tracing a polyline that converges to a limit
cycle, the distance between the polyline and the limit cycle de-
creases at each loop, until the (floating point) number representation
accuracy is reached and the polylines either merge or cross.

A more common source of merges comes from vector fields rep-
resentations that are polynomial inside each triangle, leading to
incompatible directions between pairs of adjacent triangles. As il-
lustrated in Figure 2, and observed in practice in Figure 12, these
incompatibilities lead streamlines to converge to an edge. Zhang
et al. [2006, Section 6.2] analyse this issue and provide an alter-
native vector field representation based on local flattening. Our
representation differs from theirs, but it also prevents merges or
splits along streamlines.

Algorithm Overview. Given a triangulated surface and a direc-
tion field in our representation (detailed in Section 2), our method
traces cross-free and merge-free polylines that are oriented by the
direction field.

We start from a polyline extremity located at barycentric coordi-
nates c (and 1−c) on halfedge e. The algorithm crosses the triangle
associated to e by finding the output point (e′, c′), and continues
on the next triangle. It stops when the streamline reaches the sur-
face boundary, a sink of the field, or when the polyline’s number of
segments reaches a user-given limit.

The main difficulty is to determine how each triangle is traversed
by the polyline. Our approach (Figure 3) is inspired by EdgeMaps
[Bhatia et al. 2011]: we decompose the triangle into pairs of
inflow/outflow interval, and define the triangle crossing function
by a linear mapping between each inflow interval and its corre-
sponding outflow interval.

The original EdgeMaps algorithm is not guaranteed to produce
cross-free and merge-free streamlines because its input is a lin-
ear vector field per triangle (subject to field discontinuities along
edges), pairing of inflow/outflow interval requires to trace stream-
lines inside triangles (subject to numerical integration errors), and
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Fig. 1. Our algorithm traces polylines on triangulated surfaces. Unlike
previous algorithms, our technique ensures that two polylines cannot cross
each other. It works even with highly perturbed surfaces (top) and supports
any type of vector field singularities (bottom).

Fig. 2. (a) All streamlines from the dashed area merge on an edge, and
split on a vertex; (b) constant per-triangle tangent vector fields have direction
discontinuities along edges due to vertex angle defects.

the linear maps between intervals are monotonic only up to numer-
ical precision. We address these issues as follows.

—Input representation. We introduce an explicit representation of
the field direction on edges, making the field compatible on ad-
jacent triangles.

—Pairing input/output interval. The behavior of the field inside
each triangle is described by a new structure called stream mesh.
The boundary of each (simple) stream face can be decomposed
into two regions: one where the field points inside the face and one
where field points outside the face (Figure 3(c) and Section 3).
The problem of crossing a triangle can then be restated as crossing
its stream mesh (Section 4), by iteratively crossing its stream
faces. It guarantees the mapping to be monotonic if it is performed
with arbitrary precision numbers.

—Numerical precision. We use arbitrary precision floating points
to represent the barycentric coordinate c, and manipulate them by
almost linear mapping functions (Section 5.1) that are guaranteed
monotonic.

Fig. 3. (a) A polyline (blue arrow) enters a triangle; (b) we construct a
stream mesh by a segmentation of the triangle boundary into inflow (green)
and outflow (red) segments (Section 3.1); (c) the stream mesh is split into
simple stream faces (Section 3.2); (d) we cross the triangle from stream
halfedges extremities (Section 4); (e) we map inflow intervals onto out-
flow intervals using an almost linear mapping with exact precision number
representation (Section 5.1).

Practically, the first point prevents merges of the “real streamlines”
of the input. The second point allows all nontrivial configurations
(field singularities, edge tangent to the field, high-vertices angle
defect) to be uniformly and correctly handled without any param-
eters inherent to numerical integration. The last point allows two
polylines to become arbitrarily close to each other, as happens with
limit cycles.

Previous Work

To the best of our knowledge, no prior work directly addresses our
problem. However, it is interesting to review solutions developed
for 2D streamline tracing, to notice similar issues occurring for
tracing other types of curves on surfaces, and to give an overview of
the tangent vector field and, more generally, N-symmetry direction
field design algorithms.

Streamline tracing. Tracing streamlines of 2D or 3D vector fields
is a common task [Spencer et al. 2009; Rossl and Theisel 2012] in
visualization. In most cases, an order-four Runge Kutta (RK4) inte-
gration scheme performs well. For piecewise linear vector field on a
triangulation, Bhatia et al. propose EdgeMaps [Bhatia et al. 2011],
a more robust solution that directly matches in/outflow intervals of
the triangle border. Our method shares the idea of directly mapping
in/outflow intervals, but is not limited by vertices angle defect or
numerical precision issues.

Tracing curves on triangulated surfaces. Tracing curves on tri-
angulated surfaces is a challenging task because the curve may cross
triangles, follow edges, and pass through vertices [Li et al. 2005].
All such configurations are naturally managed by our representa-
tion: a polyline passing through a vertex is considered as crossing
a subset of its adjacent triangles, all polyline vertices being located
on the vertex of the surface.

For computing optimal systems of loops [Colin de Verdière and
Lazarus 2005], one needs to distinguish the order between curves
following the same edge, leading to a complex data structure where
all the curves following the same edge need to be ordered. Special
efforts [Martı́nez et al. 2005; Surazhsky et al. 2005; Polthier and
Schmies 2006] have also been devoted to tracing geodesics where
the angle defect plays an important role, as in our case.

Recent works [Szymczak and Zhang 2012] compute Morse de-
composition of piecewise constant vector fields by converting them
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Fig. 4. Left: The field is defined on edge extremities by angles αi between the field direction and a reference vector −→
r . Middle: The field behavior with

respect to the triangle boundary is explicitly represented by stream halfedges (blue) where the field is either incoming, outgoing, or tangent (I , O, Tf or Tb).
In this example, the stream-mesh is a simple stream face: the field enters the triangle from a single triangle section (in-list) and leaves it from a single triangle
section (out-list). Right: The black “streamline” is traced from the tangent of the in-list (lower edge). It defines two inflow/outflow pairs of intervals that define
the final mappings to be performed with arbitrary precision floating point.

into a combinatorial structure. It results in a robust algorithm, but
the streamlines traced from saddles to create edges of the Morse
complex still merge of split due to the input field.

Direction field design. Many algorithms [Zhang et al. 2006;
Wang et al. 2006; Fisher et al. 2007] allow for the design of tan-
gent vector fields. The resulting field can be continuous enough to
have (continuous) streamlines that do not cross one another [Zhang
et al. 2006], eventually at the expense of simultaneously refining
the surface [Wang et al. 2006]. Albeit, there exists no solution to
trace merge-free streamlines.

For mesh segmentation, it is more common to use N-symmetry
direction fields than tangent vector fields, but an N-symmetry di-
rection field is equivalent to a vector field on an N-covering of
the surface [Kälberer et al. 2007]. Such fields were used for quad
remeshing based on global parameterization [Ray et al. 2006]. The
lack of control over the topology of these direction fields was ad-
dressed later [Palacios and Zhang 2007; Ray et al. 2008]. A common
representation [Kälberer et al. 2007; Ray et al. 2008, 2009; Bommes
et al. 2009] samples the direction on triangle and makes explicit the
field rotation between adjacent triangles.

2. FIELD REPRESENTATION

The continuity of tangent vector fields is naturally defined on smooth
surfaces. It is possible to extend this notion of continuity on trian-
gulated surfaces [Zhang et al. 2006, Section 6] by considering that,
across an edge, the vector field should preserve its magnitude and
the angle with respect to the edge. This is unfortunately impossible
to achieve with most existing vector field representations, and re-
sults in possible streamline merges. We see this issue in detail and
introduce an alternative representation.

Most representations of tangent vector fields are polynomial on
each triangle. These vector fields are differentiable everywhere on
each triangle, so their direction expressed as an angle in a local basis
of the triangle is also differentiable. This continuity of the field on
triangles also involves discontinuities of the field direction on edges
in the vicinity of vertices with nonzero angle defect. Indeed, along
an infinitesimal circle around the vertex, a unit regular vector field
will undergo a rotation that is equal to the vertex angle defect. As the
field is differentiable on triangles, the direction rotation accumulated
along the cycle necessarily comes from direction discontinuities
when crossing edges (Figure 2(b)). Such discontinuities can lead to

merging streamlines on an edge where the flow leaves both adjacent
triangles (Figure 2(a)).

These issues were already addressed in Zhang et al. [2006,
Section 6.2], where the field is defined on each vertex by a 2D
vector in a local map of its one-ring neighborhood, and interpolated
on each triangle. However, numerical approximations of this field’s
streamlines are not guaranteed not to cross each other.

To avoid the numerical integration of streamlines inside trian-
gles, we rely only on the field direction along edges. Moreover,
we prefer to interpolate the field in polar coordinates instead of
Cartesian coordinates to allow for more general types of direction
field and singularities. This also simplifies the field representation
by restricting singularities to be located on vertices.

We represent the input field on each triangle by sampling the field
direction at each edge extremity: αk, k ∈ [0 . . . 5] are the angles of
the field, with respect to a reference vector −→

r taken in the triangle
plane (Figure 4, left). Note that due to angle defect and singularities
on vertex, each triangle corner is associated to two angles: one for
each incident edge.

To prevent crossings, we force the input field to be continuous
across edges, that is, to have the same angle with respect to an
edge on both adjacent triangles of this edge. We also constrain
the angle discontinuity on triangle corners to be evenly distributed
around each corner. This latter constraint is equivalent to the local
flattening of one-ring neighborhoods in Zhang et al. [2006] and
allows to better manage singularities (Appendix A.3).

Connection with direction field. We have defined how to rep-
resent a vector field on each triangle. To handle N-symmetries,
other directions are generated by applying a rotation of 2kπ/N
with k ∈ 1..N − 1 to the vector field. The vector field across an
edge requires the k’s of each triangle to agree: their difference (re-
ferred to as layer shift in N-coverings) is uniquely defined due to the
continuity (enforced in the previous paragraph) of the field across
edges.

3. STREAM MESH

A stream mesh is the combinatorial representation of the field be-
havior inside a triangle of the mesh. It is a halfedge data structure
endowed with additional information that represents the field be-
havior with respect to the triangle boundary. The field direction is
given at each stream vertex by its angle α relative to the triangle
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Fig. 5. Combinatorial representation of the flow behavior. The first row
shows the decomposition of an edge into incoming (green), outgoing (red),
and tangent forward and backward (black arrows) stream halfedges, for three
different fields. The second row shows that similar situations can occur on a
triangle corner and can be characterized the same way. The field behavior is
the same on both rows, but in the second row, the field rotation is performed
on a single point instead of a triangle edge. The only difference between
columns 2 and 3 is the tangent direction.

reference vector −→
r . Along each stream halfedge e, the field has a

unique behavior that may be:

—incoming (I ) if the field points inwards the stream face,
—outgoing (O) if the field points outwards the stream face,
—tangent in the forward direction (Tf ) if the field has the stream

halfedge direction,
—or tangent in the backward direction (Tb) if the field direction is

opposite to the stream halfedge direction.

As illustrated in Figure 4, middle, stream halfedges represent the
behavior of the field with respect to the triangle boundary. They
can correspond to a portion of an edge, or be limited to a single
point where the field becomes tangent to an edge, or define the field
behavior on a triangle corner. In the latter case (Figure 5), multiple
stream halfedges are used to describe the field behavior on a single
point (triangle corner).

In this representation, we can define:

—an in-list as a list of stream halfedges that contains at least one
incoming stream halfedge, and no outgoing stream halfedge;

—an out-list as a list of stream halfedges that contains at least one
outgoing stream halfedge, and no incoming stream halfedge; and

—a simple stream face as a stream face having a border that can be
decomposed into an in-list, followed by a forward tangent stream
halfedge, followed by an out-list, and followed by a backward
tangent stream halfedge (Figure 6, right).

The stream mesh is initialized as a single stream face by de-
composing the triangle border according to the field behavior
(Section 3.1). The main stream face is then decomposed into simple
stream faces by a strategy inspired from the ear clipping algorithm
[Eberly 1998]: simple stream faces are iteratively removed from
the main stream face until the main stream face becomes simple
(Section 3.2).

3.1 Main Stream Face Initialization

The initialization of the main stream face of a triangle is performed
independently between each pair of field samples. Each such pair

Fig. 6. The field is converted into a stream mesh, then a simple stream face
is removed at each step until the main stream face becomes simple.

Fig. 7. Splitting the main stream face (left) by our rule produces a simple
stream face and removes a pair of in-list/out-list of the main stream face
border.

corresponds either to a triangle edge or to a corner of the triangle
between an edge and the next edge around the triangle.

For the kth edge Ek of the triangle, the angle of the field with
respect to the edge is given by a linear interpolation between α2k −
∠(−→r ,

−→
Ek) and α2k+1 − ∠(−→r ,

−→
Ek).

—When this angle equals 0 mod 2π it is a forward tangent.
—When it equals π mod 2π it is a backward tangent.
—When it is strictly between 0 and π mod 2π , it is incoming.
—And it is outgoing otherwise.

A stream halfedge is generated for every interval with constant type
of behavior, including zero-length intervals when the field is tangent
at a single point. These tangent directions must be explicitly repre-
sented as illustrated in the first row of Figure 5, where columns 2
and 3 differ only by their opposite tangent directions.

On the triangle corner between kth edge Ek and j th edge Ej

(with j − k = 1 mod 3), α2k+1 and α2j may be different due to
vertex angle defect or field singularities. Consequently, it is possi-
ble for a vertex to contain important topologic information about
the field. As illustrated in Figure 5, the field behavior on a ver-
tex (second row) is similar to its behavior along an edge (first
row), and can be characterized in the same way. The segmenta-
tion is performed with the algorithm described for edges, except

that angles are linearly interpolated between α2k+1 − ∠(−→r ,
−→
Ek)

and α2j − (∠(−→r ,
−→
Ek) + ∠(

−→
Ek,

−→
Ej )). One can notice that using

∠(−→r ,
−→
Ek) + ∠(

−→
Ek,

−→
Ej ) instead of ∠(−→r ,

−→
Ej ) allows to consider

that the triangle border rotation on the corner is in ]0, π [ (no
modulo 2π ).

A possible geometric interpretation of stream halfedges generated
on triangle corners could be to consider the triangle as a rounded
triangle having its corner radius tending to 0. It makes the field and
the triangle border rotate along the arc of the circle instead of a
single point.

3.2 Split the Stream Mesh into Simple Stream Faces

The stream mesh is now initialized by a main stream face. The de-
composition iteratively removes simple stream faces from the main
stream face until the main stream face becomes simple (Figure 6).

To remove a simple stream face (Figure 7), we search in the
stream halfedges list of the main stream face a sequence of halfedges
that can be decomposed into a Tf stream halfedge, followed by an
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out-list, followed by a Tb stream halfedge, followed by an in-list,
and followed by a Tb stream halfedge. We split the first Tf and last
Tb stream halfedges of the sequence and introduce a new stream
edge linking the stream vertices produced by the stream edge split.
The type of the generated stream halfedges is set to incoming in the
simple stream face side, and outgoing in the main stream face side.

As illustrated in Figure 7, the type of the produced stream
halfedges is coherent with the flux that can be computed across
the stream halfedge. Indeed, the triangle border being convex, the
field direction at the new stream halfedge’s extremities will always
point to the same halfplane of the new stream halfedge.

By symmetry, it is also possible to apply the same operation on
the opposite field, that is, replace both Tf ⇔ Tb and in-list⇔ out-list
in the pattern and in the result.

Recursively applying the split operation converges to a decompo-
sition into simple stream faces, as demonstrated in Appendix B.1.

4. PAIRING INTERVALS

Pairing inflow/outflow intervals using the original EdgeMaps
algorithm [Bhatia et al. 2011] requires to trace a set of “stream-
lines” inside each triangle. However, the numerical imprecision
involved by the streamline integration inside triangles may produce
an invalid decomposition. Typical failure cases include high field
rotation close to field singularities, or fields that are almost tangent
to an edge. To prevent such failure cases, we replace the numerical
streamline integration by a traversal of the stream mesh.

A robust method crosses each simple stream face by almost linear
mappings (Section 5.1) between their in-list and out-list. This solu-
tion guarantees the generation of intersection-free streamlines, but
the polyline orientation may not closely match the direction field
geometry.

Alternatively, a more geometric method crosses each simple
stream face by using a heuristic to take the field geometry into
account. This method may fail due to numerical approximations,
but better fits the field geometry.

Both solutions only differs by the estimation of the direction field
flux � across the stream halfedges. We start with the geometric
heuristic and switch to the robust version if needed.

Remark 1. At this point, we have two solutions to cross a trian-
gle, but we don’t use them directly for tracing the polyline because
the robust version has a poor geometry with respect to the direction
field, and the other one may result in crossing streamlines. Instead
we use this method only to decompose the triangle boundary into
inflow/outflow intervals (Figure 4, right) then use EdgeMaps with
arbitrary precision to perform the final mapping.

Remark 2. The geometric heuristic with fixed precision is usu-
ally good enough for the decomposition, but not for directly the
tracing streamline. On one hand, the decomposition requires to
trace only few “streamlines”, and it is possible to check the validity
independently in each triangle. On the other hand, tracing a polyline
is much more difficult because each new segment must be guaran-
teed not to cross all previous and future segments that may cross
this triangle.

4.1 Crossing a Simple Stream Face

Crossing a simple stream face requires to define how points in the in-
list are mapped to points in the out-list. Any such mapping that does
not cross streamlines will produce globally cross-free streamlines.
However, it is better to choose a mapping that preserves as much as
possible the field geometry. Our mapping is defined such that any

Fig. 8. Flow notations used to cross a simple stream face.

evenly distributed set of streamlines that enters a triangle will leave
it with an even distribution, except if field sinks or streamlines that
are tangent to the boundary prevent it. It can be restated as follows:
for a unit norm field, if the stream face is split by a streamline, both
parts should have the same ratio between the incoming flux and
the outgoing flux. Here, we call by flux the amount of streamlines
outgoing from a portion of the out-list (and symmetrically for the
in-list). However, it can be considered as an abuse of terminology
because we explicitly set a nonzero flux for sink/source vertices
to allow for an infinite set of streamlines to pass through them
(Section 4.2), whereas computing the flux of the unit vector field
would give zero. This heuristic perfectly respects the field when it is
constant inside the triangle, and is evaluated in Section 6.1 in more
difficult situations.

As illustrated in Figure 8, we call f (respectively, b) the stream
halfedge of type Tf (respectively, Tb) that comes before the out-list
(respectively, in-list).

We denote by �(e, c) the flux crossing the in-list (respec-
tively, out) of stream halfedges up to the point located at the
(c, 1 − c) barycentric coordinate on the stream halfedge e. It is
recursively defined by �(e, c) = �(prev(e), 1) + φe(c) where
�(f, 1) = 0,�(b, 1) = 0, and φe(c) is the flux crossing the stream
halfedge e up to the point of barycentric coordinates c, 1 − c.

Using these notations (Figure 8), the condition for a streamline to
split the simple stream face into two stream faces having the same
ratio between inflow and outflow writes

�(ein, cin)

�(prev(f ), 1)
= 1 − �(eout , cout )

�(prev(b), 1)
,

where the input point is ein, cin and the output point is eout , cout . As
a consequence, the output point is given by:

(eout , cout ) = �−1

(
�(prev(b), 1)

(
1 − �(ein, cin)

�(prev(f ), 1)

))
.

To compute the output position (eout , cout ) of a streamline, we
need to evaluate the functions �, and �−1. The function � can
be evaluated from φe(c) using its recursive definition. The function
�−1(x) requires to take the stream halfedge e such that �(e, 0) ≤
x ≤ �(e, 1) and φe(1) �= 0, and to define its barycentric coordinate
c = φ−1

e (x − �(e, 0)).
As a consequence, we only need to be able to evaluate φe(c) and its

inverse φ−1
e (x) to cross a simple stream face. For the robust version,

it is sufficient to set φe(c) = φ−1
e (c) = c, and for the heuristic

version it is described in Section 4.2 for φe(c) and Section 4.3 for
φ−1

e (c).

4.2 Computing φe(c)

To estimate a flux across edges, the vector field orientation (direction
field) is not sufficient, therefore we also assume that its magnitude
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is equal to one. On edges, we set φe(c) to be the flux of this vector
field across the stream halfedge e given by

φe(c) = |−→e |
c∫

0

− sin(αo + t(αd − αo) − ∠(−→e ,
−→
r ))dt,

= |−→e | cos(αo + t(αd − αo) − ∠(−→e ,
−→
r ))

αd − αo

∣∣∣c
0
,

where αo and αd are the field directions located at the vertex pointed
by the stream halfedges prev(e) and e, and expressed by their angle
relative to −→

r .
On corners, we can generally say that there is no flux that leaves

the triangle, that is, φe(c) = 0. However, for singularities with posi-
tive index such as source and sinks, there is an infinity of streamlines
that reach or start from the corner (Figure 19). If an outflow stream
halfedge e is defined in a triangle corner, in a sequence Tf , O, Tb,
then we set φe(c) = c. By symmetry, if an inflow stream halfedge
e is defined in a triangle corner, in a sequence Tb, I, Tf , then we
set φe = −c. This strategy provides a field behavior coherent with
the continuous behavior of streamlines on field singularities as ex-
plained in Appendix A.3.

4.3 Computing φ−1
e (x)

Computing φ−1
e (x) requires to invert Eq. (1). As cosine is not a one-

to-one function, determining φ−1
e (x) requires to take into account

that it is a barycentric coordinate in the halfedge e, and therefore
0 ≤ φ−1

e (x) ≤ 1. This constraint fixes s ∈ {−1, 1} and k ∈ Z in the
formula:

φ−1
e (x) =

s arccos(cos(αo − ∠(−→e ,
−→
r T )) − x

(αd−αo)
|−→e | )

αd − αo

+2kπ − αo + ∠(−→e ,
−→
r T )

αd − αo

.

5. CROSSING TRIANGLE WITH ARBITRARY
PRECISION

When a polyline reaches a triangle edge e at barycentric position
p (given in arbitrary precision floating point) on e, we are able
(Section 4) to determine the corresponding inflow interval (barycen-
tric coordinates [a/2i , b/2i] on e) and outflow interval (barycentric
coordinates [c/2j , d/2j ] on edge e′). The usage of dyadic rationals
(denominator is a power of two) is motivated by the direct compati-
bility with floating points, and possible simplifications exploited in
our almost linear mapping.

The objective is to determine the barycentric coordinate q on
edge e′. A linear interpolation gives q = c/2j + (p − a/2i)(d/2j −
c/2j )/(b/2i −a/2i). However, doing so in exact arithmetic dramat-
ically affects the performances: the memory required to represent q
is approximately 100 bits larger (50 for the denominator, and 50 for
the nominator) than for p. After crossing n triangles, the size of q
is approximately 100n bits, which greatly reduces the performance
and increases the memory required to store the polyline (Figure 10).

Our solution, described in the next section, is an approximation of
a linear mapping that reduces by two orders of magnitude the size of
p and q (Figure 9). At coarse scale, it is linear up to approximations
of 64-bits floating points, and at finer scale, it is linearly interpolated
between the closest 64-bits floating points numbers.

Fig. 9. An example of execution of Algorithm 1. (left) Origin in-
terval [a/2i , b/2i ] = [1/23, 5/23], destination interval [c/2j , d/2j ] =
[3/23, 6/23] and an entry point p = 9/25. (middle) The destination in-
terval is refined (c and d are doubled and j incremented) and we map points
p′ = 2 and p′′ = 3 to points q ′ = 7 and q ′′ = 9, respectively. (right)
The resulting point q/2l = 15/25 is obtained by the linear mapping of the
interval [p′/2i , p′′/2i ] onto the interval [q ′/2j , q ′′/2j ].

5.1 Almost Linear Mapping

In this section we describe how to define a strictly monotonic
mapping of all dyadic rationals of an origin interval [a/2i , b/2i]
to a destination interval [c/2j , d/2j ], where a, b, c, d ∈ N and
a < b, c < d . Algorithm 1 gives an implementation, and Figure 9
illustrates an example of execution.

Input/output interval boundaries define two grids of fractional
numbers with given precision (respectively, 2i and 2j ). The idea is
to refine the output grid until it becomes larger than the input one,
and then to map the input grid onto the output grid by rounding the
linear mapping (Figure 9, middle). The final mapping is defined as a
collection of linear transformations between pairs of grid segments
(Figure 9, right).

ALGORITHM 1: Algorithm overview

Input: Origin interval boundaries [a/2i , b/2i]
Input: Point p/2k ∈ [a/2i , b/2i] with k ≥ i

Input: Destination interval boundaries [c/2j , d/2j ]

Output: Point q/2l ∈ [c/2j , d/2j ]

1 while b − a > d − c do
2 (c, d) ← 2 · (c, d);
3 j ← j + 1;
4 end
5 while 2 · (b − a) < d − c do
6 (a, b, p) ← 2 · (a, b, p);
7 (i, k) ← (i + 1, k + 1);
8 end
9 p′ ← 
p/2k−i�;

10 p′′ ← p′ + 1;
11 q ′ ← 
(p′ − a) · (d − c)/(b − a)� + c;
12 q ′′ ← 
(p′′ − a) · (d − c)/(b − a)� + c;
13 q ← (p − p′ · 2k−i) · (q ′′ − q ′)/(p′′ − p′) + q ′;
14 l ← j + k − i;
15 return q/2l ;

The section between lines 5 and 8 of Algorithm 1 is a loop that
refines the input grid. While the loop is not mandatory to define
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Fig. 10. Results after one hour of computing: (a) length of a polyline
(in triangles, x-axis) versus number of bits to represent the current polyline
vertex (y-axis): linear mapping (red), without input grid refinement (brown),
our algorithm (blue); (b) length of a polyline (in triangles, x-axis) versus
time to cross one triangle (y-axis).

Fig. 11. Robustness stress test: the polyline initialized at the red dot con-
verges to a limit cycle. Our arbitrary precision representation of the polyline
prevents crossings and merging whereas 64-bits precision leads to a merge
after less than 10 loops. On the same data, we run with exact precision up
to 900 loops for generating Figure 10.

a correct mapping, it is essential to save the memory. Indeed, the
increase in the precision of the point q/2l with respect to the point
p/2k is given by the relation l −k = j − i, thus we keep i as high as
possible to avoid wasting memory. Figure 10 gives a plot of occupied
memory for a polyline in the limit cycle field (Figure 11). Note that
the growth is not monotonic. This is due to two phenomena: either
i > j or a fraction that can be canonicalized.

6. DISCUSSION

This section evaluates the performances of our algorithm on syn-
thetic stress tests (Section 6.1), proposes some applications where
tracing robust polylines is required (Section 6.2), compares with
possible alternative algorithms (Section 6.3), and provides some
details about local overlaps (Section 6.4).

6.1 Synthetic Tests

To evaluate the geometric quality of our polylines, we traced them
on a circular vector field with different mesh quality (Figure 13). It
shows our polylines, smoothness and accuracy with different trian-
gle qualities (upper to lower) and different field rotation magnitude
(border to center). In practice, computer graphic meshes are closer
to the upper and middle images, and field design algorithms tend to

produce as smooth as possible fields. It is interesting to notice that an
important loss of accuracy only appears on very stretched triangles
like one having a corner with a field singularity (see close-up).

The cross-free and merge-free properties are ensured by our ap-
proach. Figure 1(top) and Figure 11 show examples where these
properties are hard to enforce due to noisy geometry and the very
short distance between polylines.

6.2 Applications

We illustrate two possible applications of our method: computing
quadrangulations inspired by Morse-Smale complexes (Figure 14),
and splitting a mesh according to a direction field. Tracing stream-
lines of an N-symmetry direction field [Kowalski et al. 2013] allows
to partition 2D meshes. To illustrate a possible application of our
method, we applied the same strategy on 3D surfaces, by grow-
ing all streamlines simultaneously, and stopping them when they
reach a streamline defined on a perpendicular direction. As a result
(Figure 15) we obtain quadrangular charts with T-junctions every-
where except when a degeneracy is prescribed by feature curves
as in the fandisk model. Such T-meshes could be useful after opti-
mization, as proposed in Myles et al. [2010].

6.3 Alternative Algorithms

We have proposed the first algorithm that guarantees non-crossing
(or merging) streamlines. However, in many applications, alterna-
tive algorithms can produce similar results. We review an existing
algorithm [Bhatia et al. 2011], a fair solution obtained by combin-
ing order-four Runge-Kutta with a continuous vector field repre-
sentation [Zhang et al. 2006], and our algorithm without adaptive
numerical precision. The failure cases are illustrated in Figure 12,
and the number of failures on a set of models are given in Figure 16.

—EdgeMaps. EdgeMaps requires a linear vector field on each tri-
angle. To produce it, we start from our smooth field, and set the
vector on the ith triangle corner to be equal to (α2i + α2i+1)/2.
This strategy is fair as it evenly distributes the angle defect of each
vertex over all adjacent triangles (much better than a projection).

On surfaces without angle defect, it offers the same guarantee
as our algorithm without adaptive resolution. On other surfaces,
streamlines can converge to an edge as in Figure 2, left. In practice,
one could expect the failure case to appear very rarely because the
streamline must cross an edge with an angle lower than a portion
of the angle defect of an incident vertex. However, our experiments
illustrated in Figure 16 demonstrate the opposite.

—RK4 on Zhang et al. [2006]. The field introduced in Zhang et al.
[2006] is sufficiently continuous to have noncrossing streamlines.
The problem is therefore to determine how often approximations
of these streamlines (computed by RK4) do cross each other.
We don’t exactly use their field representation: we perform the
field interpolation on triangles in polar coordinates instead of
Cartesian coordinates. This minor modification allows to work
with direction fields, constraints singularities to be on vertices,
allows to represent fields with high curvature, and is directly
compatible with our field, resulting in more fair comparisons.

To trace streamlines on this field representation, we used an order-
four Runge-Kutta algorithm. This numerical integration scheme
comes with the usual numerical imprecision, the difficulty to tune
the time-step parameter, and some thresholds required to manage
singular points (reaching a sink, crossing a saddle vicinity, etc.).
Moreover, to work on a triangulated surface, the algorithm must deal
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Fig. 12. Crosses and merges of streamlines observed with alternative algorithms. EdgeMaps (top row) create many streamlines (second column) that converge
to an edge due to the piecewise linear representation of the vector field. Streamlines traced on a continuous field representation [Zhang et al. 2006] with an
order-four Runge-Kutta (second row) lead to only two failures (second column) illustrated by the streamline switch observed in the close-up.

Fig. 13. Our algorithm on the mesh (right column) is compared with a
numerical integration (RK4) on the same data (left column), with decreasing
mesh quality from top to bottom.

with high curvature due to the angle defect distributed on triangle
corners, and numerical ambiguities (e.g., when the streamline has to
follow sharp edges of a geometric feature). In our experiments, we
use an average of 10 integration steps by triangle, and don’t consider

Fig. 14. Morse-Smale complexes provide a quad-shaped charts decom-
position of a smooth manifold. Converting a scalar field gradient into our
representation allows to have this property for triangulated surfaces. We used
a Laplacian eigenfunction for the double torus and the z coordinate for the
Feline. Close-ups allow to see that polylines can be very close to each other.

as errors crossings that occur in the one-ring of singular vertices
(different strategies would have led to very different results).

In practice, with a smooth vector field, the numerical errors are
similar to our algorithm without adaptive resolution (≈10 loops
on the spiral model). However, two proximal polylines traced with
opposite directions are more likely to cross because RK4 evaluates
the field at different positions (see Figure 12).

With this approach, it is possible to decrease the time step to
reduce the probability of crossings. However, it doesn’t guarantee
that no new crossings will appear (Figure 17), and it requires to re-
launch the crossing streamlines (and cancel all computations based
on them).

—Our algorithm without adaptive resolution. This solution is fair
as long as we don’t reach extreme cases as in the spiral test.
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Fig. 15. Tracing streamlines (black curves) from singularities of a cross
field provides a decomposition of the surface.

Fig. 16. Number of failures using [EdgeMaps – RK4] : Jobard’s plume
12–0, gargoyle 1–0, lionvase 12–0, pegasus 3–0, dog 0–0, crocodile 17–4,
fandisk 0–0, monkey man 18–1, dragon 23–0, statue with elephant 66-6.

Fig. 17. Impact of RK4 time-step parameter. A triangle is crossed with
10, 100, and 1000 integration steps by triangle (in close-ups). A cross is
detected with 100 integration steps.

In this configuration, we obtain a merge after ten loops, which
is equivalent to the RK4 solution (tested with 10, 100, or 1000
integration steps by triangle). In practice, it doesn’t produce errors
on all other tested examples. It also does not have any issues in the

Fig. 18. The blue streamline enters and leaves the pink triangle on the
same edge. As illustrated in the stretched version of the close-up (right),
the continuous streamline (in black) is approximated by a segment (blue)
contained in the edge.

vicinity of singular vertices, and does not require any parameter
tuning.

Our algorithm is the only one to ensure that polylines will never
cross or merge. However, it could also work without adaptive res-
olution for common applications. A fair alternative solution would
be to extend EdgeMaps to work with Zhang et al. [2006] field
representation, and eventually our adaptive number representation.
However, this latter solution would rely on RK4 to trace stream-
lines inside each triangle (to define the edge map), and it would be
difficult to prove that no cross/merge could occur here.

6.4 Local Overlaps

When a streamline enters and leaves a triangle on the same edge,
the generated segment is localized on the edge (Figure 18). If two
such streamlines are traced, they may locally overlap on the triangle
edge. However, if polylines are dedicated to cut the mesh into pieces,
such overlaps will result in faces with degenerated geometry, but the
desired topology. Another side-effect of representing streamlines by
a single segment on each crossed triangle is that some points inside
the triangle are not covered by polylines, as in the lower part of the
triangle in Figure 4, right.

Conclusion. Tracing intersection-free polylines makes it easier
to design new algorithms inspired by the continuous settings. Pos-
sible improvements of the method include using polycurves inside
triangles, or finding a simpler way to cross each triangle. The ques-
tion of the generalization to higher dimension arises naturally, but it
is important to remember that the main issue (angle defect) requires
that the metric is not induced by the object itself (for surfaces, it is
induced by its embedding in 3D space, but volumes in 3D do not
have this issue).

APPENDIXES

A. BEHAVIOR ON VERTICES

A.1 Vertex Indices

N-symmetry direction fields may have singularities that can be
characterized by their index. The index is well defined for smooth
manifolds [Mrozek 1995], and has been extended to triangulated
surfaces [Ray et al. 2009]. In our case, we assume that singularities
can only appear on vertices, leading to the following characteriza-
tion of indices

Index(A) =
∑ �αe

2π
+ 2π − ∑

βe

2π
, (1)
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Fig. 19. Singularities classified by index. On negative indices, there exist a
finite number of streamlines (red and green) having the vertex as extremity.
On regular vertices (index is zero), at most one streamline can cross the
vertex. On positive index singularities, there exist an infinity of streamlines
having the vertex as extremity, expect for the vortex case (lower left).

where the sums are performed on all triangle corners referred by
their halfedge e incident to A, Index(A) is the index of vertex A,
�αe is the angle discontinuity on the triangle corner, βe is the
triangle corner angle. The first sum is the total amount of field
rotation around A, and the rest is the angle defect of A divided
by 2π .

Examples of singular vertices are given in Figure 19. One can
notice that an infinite number of streamlines can reach the vertex
only for strictly positive indices, leading to two different behaviors
of our algorithm as detailed next.

A.2 Geometric Vertex Crossing

The default behavior of our algorithm is
when there is not an infinity of streamlines
having the vertex as one of its extremities.
In this case, when a streamline leaves a tri-
angle on a vertex location, the output of the
triangle crossing algorithm is an adjacent
edge, with a barycentric coordinate being
either 0 or 1 to fit the vertex location. The
streamline then continues on the next triangle until it ends in the
vertex or leaves the vertex location as illustrated in the inset figure.

Our algorithm has this behavior because the flux on a stream
halfedge defined on a triangle corner is generally zero, and the
constraint that the simple stream face crossing algorithm is not
allowed to generate outputs on a stream halfedge without flux.

A.3 Streamline Extremity on a Vertex

Streamlines may also have one of their extremities located on a
vertex, but this occurs only for vertices with strictly positive index,
as illustrated in Figure 19 (we consider that if a unique streamline
reaches the vertex it will cross it with the previous behavior). We
explain here why our way to determine the flux on stream halfedges
inside triangle corners (Section 4.2) gives nonzero flux only for
vertices with strictly positive index.

As the rotation speed of the field around the vertex A is constant,
the difference of angle �αe is equal to the sum of such rotations
around the vertex A times the ratio of βe over the sum of trian-
gle corner angles around A. Putting it together with Eq. (1), with
summation over all halfedges e′ pointing to A gives

�αe = βe∑
βe′

(
2π (Index(A) − 1) +

∑
βe′

)

so the variation of angle with respect to halfedges pointing to A is

�αe − βe = 2πβe∑
βe′

(Index(A) − 1).

As a consequence, if �αe −βe is strictly positive, the vertex index
is greater or equal to 1. Otherwise, the index is strictly less than 1.
Note that for direction fields with rational indices, we are still able
to distinguish between singularities with and without flux.

In our algorithm, the condition to associate some flux to output
stream halfedges (defined on a triangle corner) is that the stream
halfedge must be contained in a sequence Tf OTb. It means that the
field angle with respect to the triangle border increases at least by
π . Since the corner is convex, we have βe < π . As a consequence,
our algorithm gives some flux only for stream halfedges in triangle
corners corresponding to a vertex with strictly positive index. The
same thing occurs for the sequence TbITf .

A.4 Starting a Streamline from a Vertex

For a vertex that is the origin of a finite number of streamlines
(negative or null index), it is possible to generate all streamlines
by simply starting a streamline for each inflow stream halfedge on
adjacent triangle corners. This is especially important for tracing
streamlines from saddle points, as required for computing Morse-
Smale complexes.

B. CORRECTNESS OF THE DECOMPOSITION

B.1 Convergence

Given a stream face with n in-lists and n out-lists, let us choose
one out-list as a reference. Any two adjacent lists i and i + 1 have
a tangent between them, let us define a sequence of labels {ti}∞

i=0
as the label of tangent stream halfedge incident to both lists i and
i + 1. Then we define a sequence of integers {ai}+∞

i=0 as follows.

a0 = 0

a2i+1 =
{

a2i + 1 if t2i+1 = Tf ,

a2i − 1 otherwise.

a2i+2 =
{

a2i+1 + 1 if t2i+2 = Tb,

a2i+1 − 1 otherwise.

The defined sequence {ai} is arithmetic quasiperiodic: ai+2n = ai−2
and is continuous in the sense that |ai+1 − ai | = 1. A stream face is
simple if and only if the corresponding sequence {ai} is decreasing.
The splitting rule described in Section 3.2 searches for a pattern (per
period 2n) (2i+1, 2i, 2i−1, 2i) in the sequence {ai} and replaces it
with a new one (2i+1, 2i). In other words, the splitting rule removes
one (per period) local minimum of the sequence {ai}. The symmetric
rule replaces (2i + 2, 2i + 1, 2i, 2i + 1) with (2i + 2, 2i + 1), again
removing a local minimum. If a stream face is not simple, the
corresponding sequence has at least one local minima, moreover,
the sequence decreases by 2 with each period and therefore it is
possible to apply one of the splitting rules. Both rules keep the
continuity of the sequence, and the period is reduced by 2 with each
iteration, leading to a final decomposition of the initial stream face
into a set of simple stream faces.

B.2 Nonnullity of Flux through Simple Faces

We show that each simple stream face is traversed by some flux. To
do so we demonstrate that the out-list (as well as in-list) of a simple
stream face have nonzero associated flux.
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First of all, let us note that all stream halfedges created by splitting
rules have nonzero flux. Indeed, their length is not zero: it is easy
to see that due to the linear interpolation between angle samples,
the sequence {ai} is monotonic inside triangle corners; however,
the splitting rule searches for a local minimum of the sequence.
Therefore, it is not possible to create a simple face entirely contained
in a triangle corner.

Now let us show that all simple faces have nonzero flux through
them. Let us suppose that the out-list of a simple stream face has
a zero flux. All outflow stream halfedges on triangle edges as well
as outflow stream halfedges corresponding to splits have nonzero
flux, since their length is greater then zero. The only option for an
out-list to have a zero flux is to be contained in a triangle corner
and to have Tb,O, Tf structure, as defined in Section 4.2. However,
this means that the corresponding sequence {ai} is increasing on
this out-list, and that contradicts the monotonicity of the sequence
{ai} for simple faces. Therefore, there is no out-list in a simple face
that does not have a flux through it. The same argument shows by
symmetry that there is no in-list without flux through it.
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