
Adaptive Wavelet Rendering

Ryan S. Overbeck∗

Columbia University
Craig Donner†

Columbia University
Ravi Ramamoorthi‡

University of California, Berkeley

Antialiasing + Depth of Field Antialiasing + Depth of Field + Motion Blur
Antialiasing + Depth of Field
+ Environment Lighting

Antialiasing + Depth of Field + Area Lighting
+ 1-Bounce Di�use Interre�ections

average 32 samples per pixel
5.05 minutes

average 32 samples per pixel
16.23 minutes

average 32 samples per pixel
34.27 minutes

average 32 samples per pixel
15 minutes

a.) b.) c.) d.)

Figure 1: All images were rendered at 1024 × 1024 on a single core of a 2.8GHz Core2 Extreme laptop. By adaptively sampling and
reconstructing in a smooth wavelet basis, we get near-reference quality noise-free images with only 32 samples per pixel on average, with
general high-dimensional combinations of rendering effects. The insets show the Monte Carlo sample distributions that generated the images.

Abstract

Effects such as depth of field, area lighting, antialiasing and global
illumination require evaluating a complex high-dimensional integral
at each pixel of an image. We develop a new adaptive rendering algo-
rithm that greatly reduces the number of samples needed for Monte
Carlo integration. Our method renders directly into an image-space
wavelet basis. First, we adaptively distribute Monte Carlo samples
to reduce the variance of the wavelet basis’ scale coefficients, while
using the wavelet coefficients to find edges. Working in wavelets,
rather than pixels, allows us to sample not only image-space edges
but also other features that are smooth in the image plane but have
high variance in other integral dimensions. In the second stage, we
reconstruct the image from these samples by using a suitable wavelet
approximation. We achieve this by subtracting an estimate of the
error in each wavelet coefficient from its magnitude, effectively pro-
ducing the smoothest image consistent with the rendering samples.
Our algorithm renders scenes with significantly fewer samples than
basic Monte Carlo or adaptive techniques. Moreover, the method
introduces minimal overhead, and can be efficiently included in an
optimized ray-tracing system.

1 Introduction

Rendering photorealistic images with effects such as depth of field,
area lighting, motion blur and global illumination requires the evalu-
ation of a complex high-dimensional integral at every pixel. Each

∗e-mail: roverbeck@gmail.com
†e-mail: craig.donner@gmail.com
‡e-mail:ravir@cs.berkeley.edu

effect adds one or more dimensions to the integral, and each dimen-
sion adds another potential source of variance. Monte Carlo integra-
tion is a robust approach for estimating this integral, but requires
many samples to reduce variance to tolerable levels. Fortunately,
natural images have smooth regions either in the image domain, over
the other dimensions, or both. We should therefore adapt to this
smoothness rather than performing an exhaustive sampling.

However, most adaptive algorithms sparsely sample either smoothly
varying image regions, or slow variation in other dimensions, but
not both. This leads to noise and artifacts at low sample counts,
as seen in Figure 2. A recent adaptive multidimensional sam-
pling method [Hachisuka et al. 2008] addresses these issues, but
it scales poorly to general higher-dimensional integrals involving
multiple effects. Even in low-dimensional situations, there can
be computational and memory overheads in both its sampling and
reconstruction stages that are particularly costly for recent optimized
ray-tracers [Wald et al. 2001; Reshetov et al. 2005].

We propose adaptive wavelet rendering to directly estimate the
image in the wavelet domain, and thus robustly handle all forms
of variance. As opposed to pixels, wavelets present a multi-scale
view of the image, and so provide a good representation for both
image edges and smooth image features [Mallat 1999; Strang and
Nguyen 1997]. This characteristic has made wavelets one of the
most popular formats for image and video compression, and also
for accelerating finite element methods such as radiosity [Gortler
et al. 1993] and PRT [Ng et al. 2003]. Despite their proven benefits
elsewhere, wavelets have rarely been used to speed up Monte Carlo
sampling (with the notable exception of Bolin and Meyer [1998]),
and we are inspired by recent work that shows their benefit for
importance sampling [Clarberg et al. 2005].

Because the wavelet reconstruction of the image is hierarchical,
coarse-scale wavelets are better at reconstructing large, smooth
regions of the image, whereas finer-scale wavelets resolve small
details, such as detailed texture and edges. We exploit this property
in our algorithm to obtain an optimal hierarchical sample distribu-
tion.

As we describe in Section 4, our algorithm is composed of two
simple stages: adaptive sampling and image reconstruction. In the
first stage, we iteratively measure the variance of the wavelet basis’

Algorithm 1:

Pixel Adapt

Algorithm 2:

Grid Interpolate
Our Method:

AWR
Monte Carlo

32 Samples 32 Samples 44 Samples

32 Samples 32 Samples 44 Samples

32 Samples

512 Samples

32 Samples

512 Samples

Adaptive Wavelet Rendering

(Our Method)

32 Samples Per Pixel (61 seconds)

6D Problem: Antialiasing+Depth of Field+Area lighting

In
te

rp
o

la
ti
o

n
 G

ri
d

In
te

rp
o

la
ti
o

n
 G

ri
d

S
a

m
p

le
 D

e
n

s
it
y

S
a

m
p

le
 D

e
n

s
it
y

S
a

m
p

le
 D

e
n

s
it
y

S
a

m
p

le
 D

e
n

s
it
y

Sample Density

pixel popping

edge smearing

Figure 2: Each pixel in this image is a 6 dimensional integral (2D image-space for antialiasing, 2D lens for depth of field, and 2D for an
area light). Our method computes a reference-quality image using an average of only 32 samples per pixel. To the right are close-ups along
with sample distributions generated using 4 different algorithms. The top row shows a smooth region of the image that has high variance
from the other integral dimensions. The bottom row shows image-space edges that are smooth over the integral dimensions. Our method
performs well in both regions. The pixel adaptive algorithm 1 has considerable noise in the smooth image areas on top, due to variance in the
integral dimensions. The grid interpolation algorithm 2 has artifacts in the bottom row at edges, and it must exhaustively sample the integral
dimensions. In the sample density images, note that adaptive wavelet rendering gives samples both to image-space edges and regions that are
smooth in the image but have high variance in other integral dimensions. Samples also cluster at nodal points for wavelet interpolation.

scale coefficients. Since high frequency details cause high amplitude
wavelet coefficients, we use the wavelet magnitude to locate small-
scale features, such as edges. The algorithm further samples those
coarse-level scale coefficients that have high variance but do not
have high wavelet magnitudes, i.e., do not have strong edges. These
are image regions with high variance from the other dimensions.
Finer scale coefficients receive samples to resolve the remaining
high-frequency image features. New samples are drawn from the
coefficients’ scale function via importance sampling to reconstruct
a smooth image in the reconstruction stage. Hence, our algorithm
naturally adapts to both image-space edges as well as smooth regions
with variance from the other integral dimensions.

In the second stage (image reconstruction), we use the wavelet
basis to smooth away any remaining noise. We consider all of the
wavelets (as opposed to standard truncation of small values), and
simply subtract the measured variance from the wavelet coefficient
magnitudes. This is conceptually similar to choosing the smoothest
image that fits the measured statistics. In smooth regions, this allows
the adaptive sampler to send more samples to the coarser scale func-
tions, effectively sampling the image at a lower resolution. Thus, the
adaptive sampling stage cooperates with the image reconstruction to
efficiently compute a relatively noise-free image even with minimal
sample budgets.

Adaptive wavelet rendering has the following key features:

Low Sample Counts: As seen in Figure 1, our results are relatively
free of noise with an average of only 32 samples per pixel. In
fact, because of the variance-reducing image reconstruction stage,
visually consistent results are usually obtained even for 16 samples
per pixel (see Figure 9).

Efficiency: Our algorithm has low computational and memory over-
heads. Moreover, it is conceptually simple and easy to implement.
We have implemented it within a SIMD optimized packet ray tracer,
and have found it to perform significantly faster than standard Monte
Carlo path tracing [Kajiya 1986] and multidimensional adaptive

sampling [Hachisuka et al. 2008]. All of the images in Figure 1 were
rendered in a matter of minutes, and Figure 2 in only 61 seconds,
both using a single core on a 2.8GHz Core2 Extreme processor.
Images such as these often take several hours to generate using
traditional methods.

Generality: The wavelet representation is only over the 2D image
domain, and our algorithm directly considers only image-space
values and variance. Thus, the method handles general combinations
of effects, and does not suffer from the curse of dimensionality. Note
that the scene in Figure 1d includes antialiasing, depth of field, area
lighting, and diffuse global illumination for an 8D integral. Our
method is most powerful when used to simulate effects that produce
a smooth result, such as depth of field, which are particularly difficult
for Monte Carlo algorithms.

2 Previous Work

2.1 Parametric Integration and Curse of Dimension

For solving a single integral, Bahvalov’s theorems (see Haber [1969]
which references Bahvalov [1959]) state that the best-case perfor-
mance benefit of any numerical integration algorithm over standard
Monte Carlo decreases exponentially with the number of dimensions.
Fortunately, rendering is an instance of “parametric integration” with
many correlated integrals. Based on this insight, Keller [2001]
builds on the work of Heinrich and Sindambiwe [1999] to develop
a multi-level Monte Carlo algorithm, with interpolation used to
solve multiple integrals at once and make up for the curse of di-
mensionality. However, they note artifacts, such as smearing across
discontinuities. We also choose to focus on image-space interpola-
tion, rather than chase diminishing returns in the integral dimensions.
Our work differs in that we include the image-space dimensions in
both the parametric interpolation problem and the integral, and we
use wavelets to distinguish image-space discontinuities from smooth
variation.

Multidimensional Adaptive Sampling: The recent multidimen-
sional adaptive algorithm in Hachisuka et al. [2008] also takes
advantage of smoothness in the parametric image-space dimensions
to produces high-quality images with very low sample densities.
However, it is affected by the curse of dimensionality in two places.
The adaptive sampling portion of the algorithm provides diminishing
returns as the dimensionality increases (as predicted by Bahvalov’s
theorems) and the computational cost of the signal reconstruction
stage is exponential in the dimensionality. We also find that this
method introduces blocky artifacts for higher dimensional problems
(see Figure 7o and t). As such, this solution is effective mostly for
low dimensional problems with expensive shading costs (d <= 4).

2.2 Basic Adaptive Techniques

Most traditional adaptive sampling approaches fall into one of two
categories. Some rely on a purely local measure of variance, usually
within a single pixel, to adaptively determine the number of samples
for the Monte Carlo integral [Whitted 1980; Mitchell 1987]. This
works well for edges, but tends to provide uneven samples over
smooth regions and so either generates artifacts or requires many
more samples to reproduce a smooth result. Alternatively, algorithms
in the second category exhaustively sample the integral at specific
points, often the vertices of a grid. They then attempt to interpolate
between these nodal points to reconstruct smooth features, while
locating high-frequency image-plane regions to focus more samples
upon. This approach can smear discontinuities or fail to locate small
features. More recent advances [Guo 1998; Bala et al. 2003] better
locate edges and other key image features but still must oversample
the nodal points, and so do not take advantage of regions of low
variance.

Figure 2 shows examples of these algorithms. Algorithm 1 is a
simple example of the first category, while Algorithm 2 is a simple
example of the second. The sample distributions depicted to the right
are characteristic of such algorithms, and so are the corresponding
artifacts. Our algorithm’s distribution exhibits the best qualities of
the two strategies. Similar to the first category, it spreads samples
across the image, which is best for finding edges. More like the
second category, the samples cluster at nodal points which are used
to interpolate smooth results.

Veach and Guibas [1997] apply a variant of Metropolis Monte Carlo
to simulating light transport. This algorithm is intended for rare event
simulation to bring out highly focused local effects such as caustics
or indirect light leaking through a small opening. It may be best to
use our adaptive sampler for a baseline sampling, then Metropolis
to capture the rare events, and lastly our wavelet reconstruction to
remove the noise.

Perceptually Based Adaptive Sampling: Of particular note is
the work of Bolin and Meyer [1998] who develop a sophisticated
visual error metric and use it for adaptive sampling. Their work em-
phasizes that adapting to variance in a multiscale wavelet hierarchy
corresponds more closely to the human visual system. However,
their sampling algorithm still resorts to distributing samples to the
leaves of the wavelet hierarchy and so is in a similar category as
Algorithm 1 above. In smooth regions, our wavelet reconstruction
removes the error at the finer wavelet levels, so we can send more
samples to the coarse level scale coefficients, effectively sampling at
a lower resolution while more accurately capturing smooth effects.
Moreover, their sampling algorithm does not work for wavelets with
overlapping support, and so can only use the Haar wavelet basis.
The sampling stage of our algorithm is an efficient framework for
working with arbitrary discrete wavelet bases, such as the smoother
Daubechies 9/7 and LeGall 5/3. Note that Bolin and Meyer’s
advanced visual error metric can be used in place of the simple
contrast metric in Section 4.1.

Multidimensional Lightcuts: A recent method is Multidimen-
sional Lightcuts (MDLC) [Walter et al. 2006]. Their method is not an
adaptive sampling approach in the same sense as our work and so is
not directly comparable. For input, MDLC takes a constant number
of primary shade points (gather points) and a constant number of
light points. MDLC is an elegant approach for reducing the number
of gather-point vs. light-point pairings. However, it does not adapt
the number of gather-points or light-points, and so must start with an
oversampling of both to guarantee high-quality convergence. Also,
this method only considers gather-points within a pixel, and does
not share information between neighboring pixels. As such, it may
be best to combine their approach with ours. MDLC may help
in situations where there are many spatially coherent light sources,
while our algorithm can be used to adaptively introduce gather-points
and interpolate the regions of smooth variation.

2.3 Adaptive Noise Removal

There has been significant work in adaptive post-production noise
reduction filters. Wavelets are commonly used for noise reduction,
using either hard thresholding or soft thresholding on the fine-scale
wavelets [Strang and Nguyen 1997]. Hard thresholding simply
clamps wavelets to a low value. Soft thresholding subtracts a
constant value from the wavelet magnitudes. Our wavelet recon-
struction improves on soft thresholding by subtracting a measure of
the wavelet variance from the wavelet magnitude.

Besides wavelets, other bases may be used. The work of Meyer and
Anderson [2006], for example, removes noise in animated sequences
by projecting the image sequence onto a compressed PCA basis.

Two other directions of research derive from anisotropic diffusion
introduced by Perona and Malik [1990] and bilateral filtering from
Tomasi and Manduchi [1998]. Anisotropic diffusion is an iterative
approach, and as such may be subject to instabilities. Moreover, it is
often slower than either bilateral filtering or our reconstruction stage.
Solutions based on bilateral filtering often suffer from objectionable
ringing around image edges.

All of these methods focus on image reconstruction alone. Despite
significant research dedicated to preserving image features [McCool
1999; Xu and Pattanaik 2005; Rushmeier and Ward 1994], it remains
difficult for standalone post-processing noise removal algorithms
to distinguish features from noise. This is because there is often
simply not enough statistical information at the pixels to construct
an accurate result.

Our work demonstrates the benefit of connecting adaptive sampling
to reconstruction, and tailoring the adaptive sampling algorithm to
the specific attributes of the reconstruction stage. By doing so, we are
able to sample large smooth regions at an effectively lower resolution
(see closeups in the top row of the right side of Figure 2) while also
sending more focused samples to edges and other discontinuous
image features (see bottom row of the right side of Figure 2).

2.4 Interactive Ray-Tracing

The works of Wald et al. [2001] and Reshetov et al. [2005] exploit
coherence between ray samples to amortize ray-tracing and shading
costs across packets of 16–256 rays and achieve interactive rates
on simple scenes. Although the rays for multidimensional effects
are incoherent (see Boulos et al. [2007] and Overbeck et al. [2008]),
brute force rendering with an optimized ray-tracer is in some cases as
effective as an expensive adaptive technique (see right two columns
of Figure 7). In light of such benefits, we believe a valuable aspect
of our algorithm is that it allows for use with a packet ray-tracer,
since we adapt to image regions rather than only individual pixels.

In addition, our method has low overhead even when used with a
highly optimized ray-tracer.

2.5 Frequency Analysis

Recent work has also studied light transport in the frequency do-
main [Durand et al. 2005; Egan et al. 2009; Soler et al. 2009],
leading to simple image-space sampling heuristics based on local
frequency content. Our work is in some ways the logical extreme of
this approach, creating the image directly in the wavelet basis. Note
however that general phenomena can be addressed, without needing
to analyze or compute multidimensional space-angle Fourier spectra.
Moreover, by using wavelets we can better localize both spatial
(edges) and low-frequency (smooth) effects simultaneously.

3 Background: Wavelets and the DWT

Before describing the details of our algorithm, we provide a brief
introduction to wavelets and the discrete wavelet transform (DWT).

A 1D wavelet basis is defined by the translates and dilates of a scale
basis function φ, and a wavelet basis function ψ. Following the
JPEG 2000 image compression standard [Skodras et al. 2001], we
use Daubechies 9/7 wavelets [Cohen et al. 1992] (also referred to
as Cohen-Daubechies-Feauveau wavelets) for all examples in this
paper, and we also found LeGall 5/3 wavelets to be effective. Their
precise forms are given in Appendix A, and profiles of their analysis
scale functions are shown later in Figure 5.

A 1D wavelet basis is extended to 2D by taking the tensor products
of the 1D basis functions. This creates 4 2D basis functions, 1 scale
basis function and 3 wavelet basis functions:
Φ = φ⊗ φT , Ψ0 = φ⊗ ψT , Ψ1 = ψ ⊗ φT , and Ψ2 = ψ ⊗ ψT .

The entire 2D wavelet basis is defined as

Φk,ij(x, y) = Φ(2−kx− i, 2−ky − j),
Ψα
k,ij(x, y) = Ψα(2−kx− i, 2−ky − j),

with


0 ≤ α < 3,

1 ≤ k ≤ n,
0 ≤ i < ik,

0 ≤ j < jk.

In this expression, k indexes the “level” of the wavelet, with k = n
the coarsest or most dilated level, and k = 1 the finest level. We
reserve k = 0 to refer to the original pixels. We use i and j for the
translations, with ik = jk = 2n−k for square images of size 2n.

The process of transforming a pixel image into a multi-scale wavelet
basis is called analysis, and the inverse process back to pixels is
called synthesis. The most general form of wavelet analysis com-
putes the inner product between image B(x, y) and wavelets:

Sk,ij = 〈B,Φk,ij〉 =

∫ ∫
B · Φk,ijdxdy, (1)

Wα
k,ij =

〈
B,Ψα

k,ij

〉
=

∫ ∫
B ·Ψα

k,ijdxdy. (2)

The Sk,ij are referred to as scale coefficients and the Wα
k,ij are the

wavelet coefficients.

In practice, we perform a discrete wavelet transform (DWT), for
both analysis and synthesis, with cost linear in the number of pixels.
For both analysis and synthesis, the DWT applies two filters, one
low-pass and one high-pass, which together form a “filter bank”. We
use the so-called “non-standard” DWT, where we alternate between
applying the 1D DWT on the image rows, and then on the columns.
In our application we use the DWT for its efficiency, but for the rest
of the paper, we will be using the inner product form in Equations 1
and 2 for notational convenience.

4 Wavelet Rendering Algorithm

Rendering a single pixel with anti-aliasing and high-dimensional
effects requires the evaluation of an integral at every pixel:

B(x, y) =

∫ y+1

y

∫ x+1

x

∫
S

F (u, v, s)dsdudv, (3)

where s compactly denotes all the high-dimensional effects, such
as depth of field (lens aperture), motion blur (time), and/or soft
shadows (area light). The function F is evaluated by Monte Carlo
sampling, and is treated as a black box by our method. The goal is
to compute all B(x, y) using as few samples, i.e., evaluations of F ,
as possible.

The adaptive sampling portion of our algorithm (Section 4.1) tightly
cooperates with the reconstruction stage (Section 4.2) to produce
a smooth result. Both stages use the wavelet basis to identify high
variance regions of the integral. So rather than directly computing
Equation 3, our algorithm keeps track of the scale and wavelet
coefficients in the wavelet basis. To compute the scale coefficients,
we estimate:

Sk,ij =

〈∫
Fds,Φk,ij

〉
=

∫ ∫ ∫
F · Φk,ijdsdxdy. (4)

The adaptive sampler iteratively distributes samples to achieve a
low variance estimate of Equation 4 for all scale coefficients. The
reconstruction stage then subtracts the remaining estimated error
from the wavelet coefficients to synthesize a smooth image.

4.1 Adaptive Wavelet Sampling

The key to the adaptive sampling process is determining which scale
coefficient receives new samples at each iteration. Coarse-scale high
variance image features (like the blur from an out-of-focus lens) will
cause high variance at all levels in the wavelet hierarchy. However,
if the final result is smooth, then the scale functions at the coarser
levels may predict a more accurate result than the noisy wavelet
functions at the finer levels. In these situations, we would like the
adaptive sampler to compute an accurate result for the coarse scale
coefficients, and rely on the reconstruction phase to remove the
noisy wavelets. On the other hand, to handle more isolated fine-
scale image features like edges, we prefer a more focused sample
distribution.

Definitions: Before we detail our approach to meeting the above
requirements, we must first define the variables we use to compute
image variance and wavelet coefficients. We accumulate the Monte
Carlo samples F (u, v, s) at the image pixels, and maintain estimates
of the pixel mean B̃ and the variance of these samples, σ2(F). There
are many methods to approximate the functional variance from a
set of samples. We use the square of the contrast metric used by
Mitchell [1987]:

σ2(F) = (Imax − Imin)2/(Imax + Imin)2, (5)
where Imax and Imin are the maximum and minimum sample intensity
respectively. The numerator provides an upper bound estimate of the
pixel variance, and the denominator weights the adaptive sampler
towards the darker image regions, where the human eye is more
sensitive to error. Given these definitions, the estimator variance of
the pixel mean is

σ2(B̃) = N−1σ2(F), (6)
where N(x, y) is the number of samples that land in pixel (x, y).
We later show how to compute the variance of the scale coefficients
using this information. The wavelet coefficients are computed simply
by performing a DWT analysis on the pixel means:

W̃α
k,ij =

〈
B̃,Ψα

k,ij

〉
. (7)

- =

σ2(Sk,ij) (Wk,ij)2 P (Sk,ij)-
=Scale Variance (Wavelet Magnitude) Priority-
=

level (k)=1

level (k)=2

level (k)=3

level (k)=4
level (k)=5

Edge Region:
Higher Priority at
fine scales

Smooth Region:
Higher priority at
coarse scales

0.0

0.5

0.7

0.6

level (k)=4

level (k)=1

level (k)=1

level (k)=4

2

Figure 3: The process of computing Equation 8, for the priority values of different scale coefficients. Smooth regions have higher priority at
coarse scales. Edges have higher priority at finer scales.

Step 1—Initialization: Coarsely sample the entire image, in-
serting scale coefficients at levels 0 ≤ k ≤ 5 into a priority
queue.

Step 2—Priority Computation: Update the priority of each
scale coefficient in the queue.

Step 3—Sampling: Pop the next scale coefficient from the
priority queue and importance sample it.

Step 4—Iterate: If samples remain, Goto 2, else finish.

Figure 4: Steps of the adaptive sampling stage. Our algorithm starts
with a fixed sample budget, and iteratively distributes samples to
high variance scale coefficients until the samples are depleted.

The Algorithm: Now, given a fixed budget of samples, the adap-
tive sampling stage proceeds according to the steps in Figure 4.

Step 1—Initialization: We generally start by coarsely sampling
the image with 4 samples per pixel. We now insert scale coefficients
from levels 0 ≤ k ≤ 5 (including the pixels, which we may recall
are the finest-level scale functions) into the priority queue.

Step 2—Priority Computation: The priority function or oracle
P (Sk,ij) determines which coefficients require more samples. A
number of oracles have been proposed in other contexts, for instance
for refinement of links in wavelet radiosity [Gortler et al. 1993].
Our heuristic is designed to send more samples to coarse scale
coefficients in smooth regions of high variance, and so it prioritizes
coefficients that have a large functional variance over their support.
However, when a high-frequency and non-oscillating image feature
like an edge exists, it is better to allocate samples to finer scales,
where the edge is resolved clearly.

Since the wavelet coefficients are (by definition) equal to the error
due to image edges and other high-frequency features, simply sub-
tracting the wavelet magnitudes from the scale variance results in
the desired heuristic:

P (Sk,ij) = σ2(S̃k,ij)− (W̃k,ij)
2 (8)

We use the average of the 3 wavelets squared for the wavelet magni-
tude: (W̃)2 = 1

3

∑
α(W̃α)2. To estimate σ2(S̃k,ij), we perform a

wavelet analysis on the per-pixel variance, using the square of the
scale function:

σ2(S̃k,ij) ≈
〈
σ2(B̃),Φ2

k,ij

〉
. (9)

We derive this equation in Appendix B. The inner product in
Equation 9 is an unbiased estimator (as long as the pixel samples
are uncorrelated). Since the DWT is more efficient to compute, we
perform a DWT analysis on the per-pixel variances (σ2(B̃)) using
the squares of the filter bank coefficients. This biases our estimate of
σ2(S̃k,ij) when using filters with overlapping support, but it works
well in practice. Note that this bias only affects the priority values
in Equation 8 and not the final result. For efficiency, we only use
the low-pass portion of the filter bank, since we only require the
resulting scale coefficients.

Discussion: The heuristic in Equation 8 distinguishes between two
types of image-space variance: 1) smooth regions of high variance
(like the blur from an out-of-focus lens or the penumbra of a soft
shadow), and 2) edges and other nonsmooth image features. For the
smooth regions, we should send more samples to the coarse scale
functions, and our wavelet reconstruction will interpolate the result
across the smooth region. For edge regions, we need more focused
samples to resolve the feature, so samples should go to the finer scale
functions. In the far left image in Figure 3, observe that for smooth
regions (like the penumbra from one of the toasters’ shadows), the
scale variance increases from fine scale to coarse scale. Thus, the
scale variance correctly prioritizes these regions. For edge regions
(like the edges on the floor), the variance is about the same across
levels, and so will not necessarily target the finer scale functions.
However, observe that the values of the squared wavelet coefficient
magnitudes (the second image from the left in Figure 3) tend to grow
from fine to coarse for edge regions, and stay the same across levels
for smooth regions. Thus by simply subtracting the squared wavelet
magnitudes from the scale variance, as in Equation 8, we achieve a
heuristic which correctly handles both regions.

The images on the right of Figure 3 are close-ups of an edge region
and a smooth region from the priority image. We have rescaled the
color maps to highlight the different priority values between levels.
Note that the priorities for the smooth region are higher at the coarser
level 4 than level 1. Alternatively, the priorities for the edges are
higher at the finer level 1 than level 4.

Implementation Details: The estimator in Equation 9 can be tuned
to target samples toward coarser or finer levels by renormalizing
the Φ2

k,ij filters to sum to a value > 1. We found empirically that
renormalizing to 1.05 works well in most situations and tends to
target levels 0 ≤ k ≤ 4.

Computing Equation 8 requires 2 DWT analyses: one standard
analysis for the wavelet coefficients W̃α

k,ij , and one with the squared

1D Scale

Functions

LeGall 5/3

Wavelet Basis

Daubechies 9/7

Wavelet Basis

2D Sample

Distributions

Figure 5: The tables used to compute the CDFs for Step 3 and the
resulting sample distributions for LeGall 5/3 and Daubechies 9/7
scale functions. On the left, blue values are positive and red are
negative. These are scale functions from level k = 4.

low-pass filter for σ2(S̃k,ij). To make these analyses efficient, we
perform them locally over an affected image area as new samples
are added. This requires that we keep track of some amount of
information that is usually discarded during a wavelet transform.
Specifically, we must keep all scale coefficients, and the intermediate
wavelet coefficients that result from applying the non-standard 2D
DWT in one dimension before applying it in the other dimension.
Despite this extra memory requirement, the performance benefit
from updating only the affected coefficients greatly outweighs this
minor expense.

Step 3—Sampling: In Step 3, the highest priority scale coef-
ficient is taken from the priority queue. These scale coefficients
cover regions rather than individual pixels, so we allocate multiple
samples at a time to amortize the overheads introduced in Step 2.
For the examples in this paper, we allocate 64× 2k samples at each
iteration, but tuning this parameter offers a trade between speed and
quality of adaptation. This also allows us to amortize the costs of ray
casting and shading by using SIMD accelerated ray packets [Wald
et al. 2001]. We use the partition traversal algorithm in [Overbeck
et al. 2008] throughout our system to operate on large groups of
(possibly incoherent) rays and shade samples.

The sample locations in the image plane are determined by impor-
tance sampling the shape of the scaling function, while samples
in other dimensions are chosen via random sampling. The right
images in Figure 5 show the sample distributions for LeGall 5/3
and Daubechies 9/7 wavelets. The importance sampling requires
precomputing a cumulative distribution function (CDF) once for
each scale basis function. Note that we only need the CDF for the
1D basis function φ, since we importance sample each dimension
independently. The plots on the left of Figure 5 show the 1D basis
functions that we use to compute the CDF for each dimension. After
the coefficient is sampled, it is re-inserted in the priority queue, so
that it can receive more samples in later iterations if needed.

Step 4—Iterate: If there are more samples in the budget, the
algorithm returns to Step 2. There, the priorities P (Sk,ij) will be
updated (in general, the priority for the scale coefficient just chosen
will decrease since its variance is reduced—other scale coefficients
that overlap its support will also be affected). Then, the algorithm
moves to Step 3, sampling the new highest-priority scale function.

In its current design, our algorithm operates with a fixed sample
budget, and is finished when this budget is depleted. It would also be
possible to use a quality metric as a stopping criteria, such as stop-
ping when there is no measured variance greater than some epsilon.
However, since any measure of variance is only approximate, it may

Variance

Noisy Input Smooth Output

Figure 6: Wavelet image reconstruction takes a noisy image and a
variance image (σ2(B̃) in Equation 10) as input, and produces a
smooth image as output. Here we show close-ups of the out-of-focus
gargoyle in Figure 1.

be better for the user to visually inspect the results and incrementally
add more samples until visual convergence is achieved.

4.2 Adaptive Wavelet Reconstruction

At the conclusion of the sampling phase, we have reduced the vari-
ance for the coarse scale coefficients in smooth regions of high
variance, as well as the fine scale coefficients near edges. The
variance that remains is noise, and should be removed by our wavelet
reconstruction.

Noise from undersampled Monte Carlo integration appears as fine-
grained jump discontinuities in the image, and so should be captured
by the fine-scale wavelet coefficients. Therefore, to reduce noise,
we can simply reduce the magnitude of the fine-scale wavelet coeffi-
cients. One simple approach would be to just ignore coefficients with
low magnitudes, as in standard image compression, or threshold the
wavelet magnitudes [Strang and Nguyen 1997]. The sampling stage,
however, provides more information on the expected reconstruction
error in the form of the variance in each coefficient:

∆α
k,ij =

√〈
σ2(B̃),

(
Ψα
k,ij

)2
〉
. (10)

The square root above is necessary to convert a variance measure to
a standard deviation error.

The inner product
〈
σ2(B̃),

(
Ψα
k,ij

)2〉 is computed similarly to〈
σ2(B̃),Φ2

k,ij

〉
in Step 2 (Equation 9) of the adaptive sampling

stage, with two exceptions. First, we perform a full DWT using the
squares of both high-pass and low-pass filters. Second, the functional
variance is computed as the squared difference of the maximum and
minimum sample intensities: σ2(F) = (Imax − Imin)2. This is used
instead of the squared Mitchell contrast in Equation 5. While the
sampler should be weighted towards darker regions to reduce error
there, the reconstruction should smooth both dark and bright regions
equally.

The standard deviation in Equation 10 provides a range of statisti-
cally valid values for the wavelet coefficients. Whereas standard
Monte Carlo integration uses the middle of this range, or the average
of the samples, we instead take the value of smallest magnitude.
This is equivalent to choosing the smoothest image which fits the
chosen rendering samples.

Subtracting the standard deviation from the magnitude of the wavelet
coefficients gives this result:

Wα
k,ij = sign(W̃α

k,ij) ·max
(

0, |W̃α
k,ij | − cs ·∆α

k,ij

)
, (11)

where W̃ are the wavelet coefficients from the pixel means, and cs
(the smoothing constant) is a user-supplied constant that provides a
trade-off between noise and wavelet artifacts. Larger values of cs
make smoother images but may introduce ringing around edges or
produce a blocky reconstruction. The specific form of the wavelet
artifacts depends on the particular wavelet basis used. To avoid
coarse scale artifacts, we damp out the smoothing by renormalizing
the
(
Ψα
k,ij

)2 filters to sum to a value < 1. This is analogous to how
wavelet compression methods allocate more bits to coarser scale
coefficients. For all of the examples in this paper, we renormalize
to 2−1/2, and we set cs = 1, but it may be possible to tune these
values for smoother or sharper results.

As shown in Figure 6, our wavelet reconstruction simply requires
the noisy results from the adaptive sampling stage and a per-pixel
and per-color-channel variance image as input, and successfully
removes almost all noise. Note that the entire image reconstruction
phase requires at most 2 DWTs (for Equation 10 and synthesis from
Equation 11), and is therefore very efficient.

5 Results

All results in this paper were generated on a laptop with a 2.8 GHz
Core2 Extreme processor and 3 GB of RAM using one thread, and
all images were rendered at 1024× 1024.

The five scenes we use are intended to represent a broad range of
applications. The “toasters” scene in Figures 2 and 7 is a simple
scene with only 11k triangles, a single rectangular area light, and
Phong shading to reduce ray-tracing and shading costs and highlight
our system’s low overhead. The “chess” scene in the top row of Fig-
ure 7 has 50k triangles and 9 point lights. The black queen and pawn
in the foreground use more complex shaders with bump-mapping,
gloss-mapping, mip-mapping, and PBRT’s “substrate” material. The
“pool” scene in the second row of Figure 7 has 57k triangles, 9
point lights, complex shaders, and includes time-varying motion
blur effects. The “chess” scene and the “pool” scene (without depth
of field) were originally used for the multidimensional adaptive
sampling paper [Hachisuka et al. 2008] using PBRT [Pharr and
Humphreys 2004]. The “plants” scene in the third row of Figure 7 is
from the PBRT distribution and has very high geometric complexity.
With over 12k instanced plants and trees, it effectively has over 19
million triangles, many of which are smaller than a pixel. Our packet
ray tracer is slower on this scene due to the incoherence of the rays
relative to the complex geometry. Finally, we added a gargoyle
statue to the “sibenik” scene in order to create Figures 1d and 6.
This scene has a total of 251k triangles with 1 point light and 1 area
light. It uses purely Lambertian materials to demonstrate diffuse
interreflections. We added a small red ambient component to the red
rug to exaggerate the red color-bleed onto the walls and the gargoyle.
We did not include this scene in Figure 7 because MDAS is not built
to run on this higher dimensional scene. While our paper is focused
on still image rendering, we also include a video of the “chess” scene
with animated camera view in the supplementary material which
shows the temporal coherence of our method.

5.1 Comparisons to Monte Carlo, LDS, Mitchell, MDAS

We have already compared to basic adaptive sampling algorithms
in Figure 2. In Figure 7, we compare our adaptive algorithm to
Monte Carlo, low discrepancy sampling (LDS), Mitchell’s adaptive
sampler [Mitchell 1987], and multidimensional adaptive sampling
(MDAS) [Hachisuka et al. 2008]. The implementations we have for
these algorithms are in the PBRT system which focuses more on
generality than ray casting speed, while we use a speed optimized
packet ray tracer for our system and Monte Carlo. Therefore the
ray casting times for these systems should not be directly compared

to ours. The scenes increase in dimensionality from the top row to
the bottom. The chess scene in the top row antialiases the image
dimensions and simulates camera depth of field for a 4-dimensional
rendering problem. Refer to [Hachisuka et al. 2008] for comparisons
to the Mitchell adaptive sampling algorithm using this scene. The
middle row is a 5D problem with antialiasing, depth of field, and
motion blur. The scenes in the bottom two rows are 6D with both
scenes using antialiasing and depth of field. The “toasters” scene
uses a rectangular area light, and the “plants” scene uses environment
map lighting.

Out Method: With an average of only 32 samples per pixel (Fig-
ure 7a,c,f ,h,k,m,p, and r), our method faithfully reproduces the
out-of-focus areas that require considerable integration over the
camera aperture (and over the time dimension for Figure 7f and h,
and over the light source for Figure 7k,m,p, and r). In these smooth
but high variance areas, our adaptive sampling delivers more samples
to the coarser scale coefficients. With a low variance estimate at the
coarse scale coefficients, the wavelet reconstruction synthesizes a
noise-free result.

Monte Carlo: Our basic Monte Carlo renderer, without adaptivity,
requires at least 512 samples in Figures 7d, i, n, and s to achieve
comparable results. We use 56 samples in Figure 7b to provide
a comparable time comparison, and 32 samples in Figure 7q to
compare at the same sample count. At these low sample densities,
Monte Carlo introduces significant noise. For the “chess” scene, our
algorithm’s overhead is low enough that it is as fast with 32 samples
per pixel as Monte Carlo using 56 samples, even though we use
SIMD optimized packet ray-tracers.

Low Discrepancy Sampling: LDS generates noisy results in Fig-
ure 7l with 64 samples per pixel. As predicted by Bahvalov’s
theorems, LDS’s benefits over basic Monte Carlo are significantly
reduced for this higher dimensional example. Note that we use
LDS from the PBRT system which focuses more on generality and
accuracy than speed. For the “toasters” scene, we expect a speed
optimized version may achieve comparable time to our system at
about 64 samples.

Mitchell: Mitchell’s adaptive sampler [Mitchell 1987] is a popular
image-space adaptive technique. It produces noisy results for the
motion blurred region in Figure 7g. Similar to Algorithm 1 in
Figure 2, it adapts to only fine-scale per-pixel variance, and may
therefore sample unevenly in regions that should be smooth. Also, it
only uses two passes of adaptivity, and will not iteratively continue
to provide samples to this high variance region.

Multidimensional Adaptive Sampling: MDAS is the state-of-
the-art adaptive sampling method, and produces a high quality result
with only 16 samples per pixel in Figure 7e. It uses a sophisticated
reconstruction algorithm, and therefore requires fewer samples than
our method for this example. However, it introduces significant
overhead and takes about 4.7× longer than our system at 32 samples
per pixel. 849 seconds are spent in MDAS’s sampling stage, and 568
seconds in image reconstruction, for a total of 1414 seconds. This
is only 2× faster than our Monte Carlo renderer with 512 samples
per pixel (2835s vs. 1414s). This disparity is partially due to the
fact that we use a speed optimized ray-tracing and shading system,
and MDAS uses PBRT, which is optimized for generality rather than
speed. However, this only accounts for some of the time spent in
MDAS’s sampling stage, and our method’s full rendering pipeline
is almost 2× faster than MDAS’s reconstruction stage alone. Thus,
our method requires significantly less overhead independent of the
particular rendering architecture used.

Moreover, MDAS’s results degrade as the problem dimensionality
increases. Blocky artifacts begin to appear for the 5D image in

Reference
Monte Carlo MDAS

512 samples per pixel average 16 samples per pixel
2835 secs.

56 samples per pixel

Monte Carlo

310 secs.

Our Method

average 32 samples per pixel
303 secs. 1414 secs. (Samp.: 849s * / Recons.: 568s)

Our Method

average 32 samples per pixel
303 secs.

4D: Antialiasing + DOF b.)a.) c.) d.) e.)

Reference
Monte Carlo MDAS

512 samples per pixel average 32 samples per pixelaverage 48 samples per pixel

Mitchell (PBRT) Our Method

average 32 samples per pixel

Our Method

average 32 samples per pixel

5D: Antialiasing + DOF
+ Motion Blur

g.)f.) h.) i.) j.)

Our Method Low Discrepancy Sampling (PBRT)
Reference

Monte Carlo MDASOur Method

average 32 samples per pixel
61 secs.

64 samples per pixel
491 secs.

512 samples per pixel average 32 samples per pixel
5299 secs. (Samp.: 3480s * / Recons.: 1819s)

average 32 samples per pixel
61 secs. 1214 secs. *

6D: Antialiasing + DOF + Area Light

l.)k.) m.) n.) o.)

8676 secs. (Samp.: 5650s * / Recons.: 3027s)974 secs.974 secs. 9749 secs. * 12791 secs.

Our Method Monte Carlo
Reference

Monte Carlo MDASOur Method

average 32 samples per pixel
2056 secs.

32 samples per pixel
22152 secs.

512 samples per pixel average 32 samples per pixel
6553 secs. (Samp.: 4562s* / Recons.: 1991s)

average 32 samples per pixel
2056 secs. 1396 secs.

6D: Antialiasing + DOF
+ Environment Light q.)p.) r.) s.) t.)

* Times are from the slower (but more general) PBRT system.

Figure 7: All images were rendered at 1024x1024. The problem dimensionality increases from 4D in the top row to 6D in the bottom row. Top
row is a 4D scene with antialiasing and depth of field. The middle row is a 5D scene with antialiasing, depth of field, and motion blur, and the
bottom row is a 6D scene with antialiasing, depth of field, and area lighting. Our method consistently achieves near reference quality images
with only 32 samples per pixel for all of these examples. MDAS’s results degrade as the problem dimensionality increases, and other methods
generate noisy results at low sample counts.

Figure 7j, and are significantly more apparent in the 6D image in
Figure 7o. It is difficult to use MDAS with more samples per pixel,
because MDAS requires 400 bytes per sample (about 12GB for a
1024×1024 image at 32 samples per pixel). Our system does not
need to store the samples, and so scales better to higher sample
densities. We tiled the image to 8× 8 in order to render Figure 7o
with 32 samples per pixel. MDAS employs best-candidate sampling
for better sample distributions and performs a per-sample k-nearest
neighbors search for high quality reconstruction. These approaches
work well for 4D scenes like Figure 7e, but they both run in time

exponential in the number of dimensions while their benefit in accu-
racy decreases exponentially. This explains why MDAS takes 4×
longer to render the 6D scene in Figure 7o at only 2× the number
of samples than in Figure 7e.

5.2 Generality, Efficiency, and Visual Consistency

Generality: Due to our algorithm’s insensitivity to the problem
dimensionality, our algorithm is 5× faster at rendering the 6D scene
in Figure 7k than the 4D scene in Figure 7a because of the simpler

Depth of Field + Area Lighting

32 Samples per Pixel (211 secs.)

211 Seconds

Our Method

Daubechies 9/7
Daubechies 9/7 LeGall 5/3 Haar 2/2

Higher Quality
Higher Speed

180 Seconds185 Seconds
S

am
pl

e
D

en
si

tie
s

C
lo

se
up

s

a.) b.)

Figure 8: A 6D render with depth of field and area lights rendered
with an average of 32 samples per pixel. Different wavelet bases
offer different speed vs. quality. Haar is the fastest but produces
blocky artifacts. LeGall is also fast, and offers reasonable quality.
The Daubechies 9/7 filter bank generates the smoothest images.

geometry and shaders in the “toasters” scene. To further emphasize
the point we removed all but one of the point lights in Figure 7a,
added an area light, and rendered Figure 8a. With fewer lights
overall, it takes less time for our system to render this image than
Figure 7a (211s vs. 303s).

The “plants” scene in the bottom row of Figure 7 and in Figure 1c,
and the “sibenik” scene in Figure 1d present a stress test for our
system by introducing large amounts of variance throughout the
scene. For the “plants” scene, variance is introduced by environ-
ment lighting and sub-pixel geometry. In Figure 7r, our algorithm
captures the out-of-focus wisps of grass, and produces smooth re-
flections in the water which are noisy even for Monte Carlo with
512 samples per pixel in Figure 7s. The “sibenik” scene uses Monte
Carlo path tracing for one-bounce diffuse interreflections. Note the
red color-bleed onto and around the gargoyle statue in the middle as
well as the region under the archway on the right that is lit only by
indirect illumination.

Variance is high everywhere in the “plants” and “sibenik” scenes,
so the adaptive sampler cannot identify local regions to adapt to.
Nonetheless, our algorithm still seeks out the regions of smooth vari-
ance, and samples these at a lower resolution. Note the multi-scale
grid patterns in the sample distributions in the insets of Figure 1c
and d. So we still achieve high-quality results with an average of
only 32 samples per pixel. Standard Monte Carlo path tracing using
our optimized ray tracer requires at least 512 samples per pixel to
generate a comparable quality image. This takes over 2 hours for
the sibenik scene and over 7 hours for the “plants” scene. At 512
samples, Monte Carlo is still noticeably noisier, but our result with
32 samples has some perceptible wavelet artifacts.

Efficiency: Table 1 breaks down the overheads of our algorithm
for rendering Figure 8 with the Daubechies 9/7 filter bank. Ray-
tracing (including the initial sparse sampling and shading) takes
176.5s and our algorithm takes only 34.5s of the total 211s. Thus,
our overhead is low, even though we use an optimized packet ray-
tracer and shading system. All overhead costs can be adjusted by
increasing the amortization (sending more rays for each coefficient
in Step 3) or changing the wavelet basis to a simpler basis such as
LeGall. The wavelet reconstruction takes less than 1 second, and
is dependent on the size of the image alone. We also include all
significant memory overheads required by our system. In today’s
scenes, with 100s of megabytes worth of texture data, 88MB is
relatively minor. This size is only dependent on the size of the
rendered image so will not change with increased sample densities,
scene complexity, or problem dimensionality.

Comparing Wavelet Bases: The close-ups in Figure 8b compare
results using 3 popular wavelet bases. The Haar 2/2, LeGall 5/3,

Algorithm Component Time
(Seconds)

Sampling: Step 1. Sparse RT and Shading 14.5s
Sampling: Step 2. Update Wavelets 12.2s
Sampling: Step 2. Update Variance 10.6s
Sampling: Step 2. Update Priorities 10.7s
Sampling: Step 3. Adaptive RT and Shading 162s
Reconstruction < 1s
Total 211 s

Memory Overheads Memory
(MBytes)

Intensity Images for Wavelet Updates (4 float) 16 MB
Intensity Images for Variance Updates (2 float) 8 MB
Image for per-pixel mean (1 RGB) 12 MB
Min/Max Images for per-pixel contrast (2 RGB) 24 MB
Image for per-pixel sample count (1 int) 4 MB
Images for priority queue (2 float, 4 int) 24 MB
Total 88 MB

Table 1: A breakdown of the timings and memory overheads for
generating Figure 8 with Daubechies 9/7 wavelets. The time is
mostly dominated by ray-tracing and shading costs, and our memory
overheads are low.

16 Samples per Pixel 32 Samples per Pixel

516 seconds 974 seconds

352 seconds 696 seconds

8 Samples per Pixel

239 seconds

172 seconds

4 Samples per Pixel

86 seconds

86 seconds

Fi
na

l I
m

ag
e

M
on

te
 C

ar
lo

Va
ria

nc
e

O
ur

 M
et

ho
d

Figure 9: Close-ups of a difficult region in Figure 7f . The cue ball
is motion blurred and out-of-focus. At an average of 16 samples, our
method produces a mostly smooth result with only minor wavelet
artifacts. At 32 samples, our result is essentially converged. Monte
Carlo results are noisy by comparison. In the top row, we include
scaled up images of variance after the adaptive sampling stage to
illustrate the coarse sampling strategy used in smooth regions.

and Daubechies 9/7 filter banks offer different levels of speed and
quality. Note in the sample count images in Figures 5 and 8b that
the Daubechies filter bank has a more circular and smoother 2D pro-
jection as compared to LeGall and Haar. Thus Daubechies provides
the smoothest results, but is also slower due to its wide filters. In
general, smooth symmetric wavelet bases appear to work best.

Visual Consistency: Figure 9 contains close-ups of the cue ball
in Figures 1b and 7f , and demonstrates the progression from initial
sampling to convergence. After our initial sampling of the image at

Our Adaptive Samples +
Bilateral Filter

Monte Carlo Samples +
Our Reconstruction

Our
Method

Our
Method

a.) b.)

Figure 10: Our wavelet sampler and reconstruction may be used
independently, but are more powerful together. In a.), we use a
bilateral filter on the output from our adaptive sampling stage on the

“chess” scene. Our adaptive samples reduce the variance significantly,
but the bilateral filter is unable to remove the noise in the top images,
and loses important detail in the bottom images. In b.), we use our
wavelet reconstruction on the output from pure Monte Carlo on the

“pool” scene. The wavelet reconstruction removes almost all noise,
but without our adaptive samples, it introduces some subtle artifacts.

4 samples per pixel, we have a high variance estimate, as shown in
the variance image in the top left. Even at this low sample count,
our result looks quite reasonable, with only moderate noise and
some wavelet artifacts. At an average of 8 samples per pixel, our
algorithm has iteratively distributed samples, and the grid structure
of a coarse wavelet level appears in the variance image. At this point,
we have a relatively low variance estimate at this coarse level, and so
after removing the variance at the finer levels, we achieve a mostly
smooth result. At 16 samples per pixel, the grid of a finer wavelet
level appears around the structure of the cue ball, and the highlight at
the top, and most of the artifacts are gone. Finally, at an average of
32 samples per pixel, our result is essentially converged even though
we only have an accurate estimate at the low-resolution wavelet grid.
Our adaptive sampler leaves most of the pixels with high variance,
which is subtracted by our wavelet image reconstruction. Monte
Carlo, by comparison, is noisy even with 32 samples.

Sampling vs. Reconstruction It is also possible to use our adap-
tive sampler and our wavelet reconstruction independently. While
each stage has many benefits, in its own right, they work best to-
gether. Figure 10a shows results of our adaptive sampler used with
a bilateral filter, and Figure 10b uses standard Monte Carlo with our
wavelet reconstruction. Our adaptive sampler significantly reduces
the variance of the difficult out-of-focus regions in Figure 10a, and
the bilateral filter can smooth some of the remaining noise. However,
some noise remains because the filter cannot take advantage of the
fact that our sampler provides more precise results around coarser
wavelet nodal points. Also, this bilateral filter does not differentiate
between noise from variance and oscillating texture detail which can
resemble noise, so some surface detail is washed away.

Our variance-based wavelet reconstruction can be a powerful tool
when used with non-adaptive Monte Carlo samples. It removes most
of the noise in Figure 10b. However, the coarse wavelet coefficients
are not as precise as if they were computed with our adaptive sampler,
so some low-frequency noise remains. This low-frequency noise
appears as wavelet artifacts in the smooth regions.

5.3 Discussion

Quality/Speed Settings: There are several key points of our algo-
rithm that allow tuning of quality and speed parameters. However,

b.)Our Method Monte Carlo Our Method Monte Carloa.)

Figure 11: Without enough samples (32 samples per pixel in this
figure), difficult high variance regions may have artifacts. a.) an
edge in the middle of a high variance region. Our result has some
ringing at the edge. b.) sub-pixel geometry under environment light-
ing. Our method is unable to differentiate variance from visibility
and variance from lighting, so our result becomes overly smoothed.

we should emphasize that we didn’t change any of these settings
for the results in this paper. To reiterate, we use the Daubechies
9/7 filter bank, we set number of rays cast per adaptive iteration to
64× 2k, we set the reconstruction smoothing constant cs = 1, and
we renormalize the sampling variance filters to sum to 1.05 and the
reconstruction variance filters to sum to 2−1/2. It may be possible
to tune for better results in specific situations.

Limitations: Our method uses the wavelet basis to adapt to differ-
ent sources of variance, including edges and smooth image features,
and also to reconstruct a smooth image even in regions of high
variance. When used for image compression, different wavelet
bases can exhibit different forms of artifacts, including blockiness
and ringing around edges. At low sample densities with too few
samples to provide a precise result, we assume a smooth result,
and our reconstruction algorithm effectively performs a wavelet
compression on the results. For piece-wise smooth natural images,
this is generally a reasonable assumption. However, when our as-
sumption is incorrect, some wavelet artifacts may appear. Most
of the results in this paper are essentially converged and so do not
exhibit significant artifacts. Figure 11 show two examples of wavelet
artifacts in the two most difficult scenes, the “plants” scene and the
“sibenik” scene. Figure 11a is an edge in the middle of a smooth
high variance region, and our wavelet reconstruction produces some
ringing along this edge. The grass under the shadow of the tree in
Figure 11b is somewhat overly smoothed. These cases are difficult
for Monte Carlo approaches, and require more samples to model
accurately. Nonetheless, these subtle artifacts affect only a small
region of the image, are largely imperceptible when looking at the
full picture, and the benefits with respect to Monte Carlo are shown
clearly in Figure 7. Moreover, these artifacts are less distracting than
the systemic noise introduced by an equally undersampled Monte
Carlo simulation in Figure 11. It may also be possible to use depth
and normal information in an approach similar to the coherence
maps used in McCool [1999] to get better statistical data for these
regions.

6 Conclusions and Future Work

We have presented adaptive wavelet rendering, a new method to
adapt to both edges and smooth regions of high-dimensional vari-
ance. Our method is general, and renders complex effects like depth
of field, area lighting, motion blur, and global illumination. The
technique is simple to implement and efficient, with timings often
an order of magnitude faster than previous adaptive algorithms, or
optimized Monte Carlo ray-tracers.

Our algorithm currently makes no effort to sample optimally in any
dimension other than the image plane. By doing so, we avoid the
curse of dimension. However, even scenes with high-dimensional
effects are often locally low-dimensional. For example, a stationary
object doesn’t need motion blur. While our algorithm handles this
example well, and will not spend a lot of samples for this event, it

may be worthwhile to use an approach that can take better advantage
of these locations of low-dimensionality.

In this paper, we focus on rendering still images, and reserve ani-
mated scenes for future work. Preliminary results demonstrate that
our method produces smooth animations without temporal artifacts
(see video in our supplementary material). Moreover, the time
dimension offers extra opportunities for further adaptive sampling
and reconstruction. One simple approach would be to expand to a
3D wavelet basis for faster rendering of animated sequences.

We believe our algorithm may be relevant to applications beyond
rendering, given the very successful use of wavelets in other do-
mains. It should be emphasized that the only part of our method that
may be specific to graphics is the assumption that the image signal
is locally smooth. However, many signals studied in other applied
sciences have similar characteristics, and our algorithm should be
viewed as a general method for high quality parametric integration.

Acknowledgements

Thanks to the anonymous reviewers for their insightful comments.
This work was supported in part by the National Science Foundation
(NSF grants 05-41259, 07-01775 and 09-24968), the Office of Naval
Research (N00014-07-1-0900), a Sloan Research Fellowship, an
Intel graduate fellowship, and generous gifts and equipment from
NVIDIA, Adobe and Pixar. The toasters scene is provided by An-
drew Kensler via the Utah 3D Animation Repository, chess scene by
Wojciech Jarosz, Sibenik cathedral by Marko Dabrovic, gargoyle by
Tudor Mint via AIM@SHAPE, and plants from PBRT [Pharr and
Humphreys 2004].

References

BAHVALOV, N. S. 1959. On approximate calculation of multiple
integrals. Tech. rep., Vestnik Moscow Univ.

BALA, K., WALTER, B., AND GREENBERG, D. P. 2003. Combin-
ing edges and points for interactive high-quality rendering. ACM
TOG (SIGGRAPH 03) 22, 3, 631–640.

BOLIN, M. R., AND MEYER, G. W. 1998. A perceptually based
adaptive sampling algorithm. In ACM SIGGRAPH 98, 299–310.

BOULOS, S., EDWARDS, D., LACEWELL, J. D., KNISS, J.,
KAUTZ, J., SHIRLEY, P., AND WALD, I. 2007. Packet-based
Whitted and Distribution Ray Tracing. In Proc. Graphics Inter-
face, 177–184.

CLARBERG, P., JAROSZ, W., AKENINE-MÖLLER, T., AND
JENSEN, H. W. 2005. Wavelet Importance Sampling: Effi-
ciently Evaluating Products of Complex Functions. ACM TOG
(SIGGRAPH 05) 24, 3, 1166–1175.

COHEN, A., DAUBECHIES, I., AND FEAUVEAU, J.-C. 1992.
Biorthogonal bases of compactly supported wavelets. Communi-
cations on Pure and Applied Mathematics 45, 5, 485–560.

DURAND, F., HOLZSCHUCH, N., SOLER, C., CHAN, E., AND
SILLION, F. 2005. A frequency analysis of light transport. ACM
TOG (SIGGRAPH 05) 24, 3, 1115–1126.

EGAN, K., TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F., AND
RAMAMOORTHI, R. 2009. Frequency analysis and sheared
reconstruction for rendering motion blur. ACM TOG (SIGGRAPH
09) 28, 3, 93.

GORTLER, S. J., SCHRÖDER, P., COHEN, M. F., AND HANRAHAN,
P. 1993. Wavelet radiosity. In ACM SIGGRAPH 93, 221–230.

GUO, B. 1998. Progressive radiance evaluation using directional
coherence maps. In ACM SIGGRAPH 98, 255–266.

HABER, S. 1969. Stochastic quadrature formulas. Mathematics of
Computation 23, 108, 751–764.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K.,
HUMPHREYS, G., ZWICKER, M., AND JENSEN, H. W. 2008.
Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM TOG (SIGGRAPH 08) 27, 3, 33.

HEINRICH, S., AND SINDAMBIWE, E. 1999. Monte Carlo com-
plexity of parametric integration. J. Complex. 15, 3, 317–341.

KAJIYA, J. T. 1986. The rendering equation. In ACM SIGGRAPH
86, 143–150.

KELLER, A. 2001. Hierarchical Monte Carlo image synthesis.
Mathematics and Computers in Simulation 55, 1–3, 79–92.

MALLAT, S. 1999. A Wavelet Tour of Signal Processing, Second
Edition (Wavelet Analysis & Its Applications). Academic Press.

MCCOOL, M. D. 1999. Anisotropic diffusion for Monte Carlo
noise reduction. ACM TOG 18, 2, 171–194.

MEYER, M., AND ANDERSON, J. 2006. Statistical acceleration for
animated global illumination. ACM TOG (SIGGRAPH 06) 25, 3,
1075–1080.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. In ACM SIGGRAPH 87, 65–72.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-
frequency shadows using non-linear wavelet lighting approxima-
tion. ACM TOG (SIGGRAPH 03) 22, 3, 376–381.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2008.
Large ray packets for real-time Whitted ray tracing. In IEEE/EG
Symp. on Interactive Ray Tracing, 41–48.

PERONA, P., AND MALIK, J. 1990. Scale-space and edge detection
using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach.
Intell. 12, 7, 629–639.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann
Publishers Inc.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. ACM TOG (SIGGRAPH 05) 24, 3,
1176–1185.

RUSHMEIER, H. E., AND WARD, G. J. 1994. Energy preserving
non-linear filters. In ACM SIGGRAPH 94, 131–138.

SKODRAS, A., CHRISTOPOULOS, C., AND EBRAHIMI, T. 2001.
The JPEG 2000 still image compression standard. IEEE Signal
Processing Magazine 18, 5, 36–58.

SOLER, C., SUBR, K., DURAND, F., HOLZSCHUCH, N., AND
SILLION, F. 2009. Fourier depth of field. ACM TOG 28, 2, 18.

STRANG, G., AND NGUYEN, T. 1997. Wavelets and Filter Banks.
Wellesley-Cambridge Press.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for gray
and color images. In ICCV 98, 839.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In ACM SIGGRAPH 97, 65–76.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M.
2001. Interactive rendering with coherent ray tracing. Computer
Graphics Forum (EUROGRAPHICS 01) 20, 3, 153–164.

WALTER, B., ARBREE, A., BALA, K., AND GREENBERG, D. P.
2006. Multidimensional lightcuts. ACM TOG (SIGGRAPH 06)
25, 3, 1081–1088.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6, 343–349.

XU, R., AND PATTANAIK, S. N. 2005. A novel Monte Carlo noise
reduction operator. IEEE Comput. Graph. Appl. 25, 2, 31–35.

A Daubechies 9/7 and LeGall 5/3 Filter Banks

We found the Daubechies 9/7 and LeGall 5/3 wavelets to work better
for our algorithm than the simpler Haar wavelet basis or various other
filter banks that we tested. They are both symmetric biorthogonal
filter banks. The quality of a wavelet is often measured by the
number of vanishing moments: the lowest degree polynomial for
which the results of applying the high-pass filter are non-zero. The
Daubechies 9/7 filter bank has 4 vanishing moments, so can exactly
fit polynomials of cubic degree or lower. LeGall 5/3 has 2 vanishing
moments. These are the highest theoretically possible for their
support widths. The Daubechies 9/7 wavelet is used for high quality
lossy encoding in JPEG 2000 because it is very smooth. LeGall 5/3
is an instance of a binlet, a filter bank that can be implemented as all
integer values, so it is used for efficient lossless encoding in JPEG
2000.

Since they are both symmetric, we list only half of the coefficients.
The rest can be obtained by reflecting about the first coefficient.

Daubechies 9/7
Analysis Low-Pass:

(
√

2) ×{0.602949, 0.266864, -0.078223, -0.016864, 0.026749}
Analysis High-Pass:

(1/
√

2) ×{1.115087, -0.591272, -0.057544, 0.091272}
Synthesis Low-Pass:

(1/
√

2) ×{1.115087, 0.591272, -0.057544, -0.091272}
Synthesis High-Pass:

(
√

2) ×{0.602949, -0.266864, -0.078223, 0.016864, 0.026749}

LeGall 5/3
Analysis Low-Pass: (

√
2) ×(1/8)×{6, 2, -1}

Analysis High-Pass: (1/
√

2) ×(1/2)×{-2, 1}
Synthesis Low-Pass: (1/

√
2) ×(1/2)×{2, 1}

Synthesis High-Pass: (
√

2) ×(1/8)×{-6, 2, 1}

B Derivation of Equation 9

Equation 9 accumulates the approximate variance at the scale coeffi-
cients from an estimate of variance at the pixels. Equation 4 states
that the scale coefficients are equal to the inner product of the pixel
values with the scale function. For a discrete wavelet basis, this
inner product is a weighted sum:

S =
〈
B̃,Φ

〉
=
∑
i

B̃iΦi, (12)

where the Φi are the discrete scale function’s filter coefficients, and
the B̃i are the pixel means. Note that we have dropped the wavelet
translation and dilation subscripts from S and Φ for simplicity. We
seek the variance of the scale coefficient: σ2(S) = σ2

(∑
i B̃iΦi

)
.

This can be computed using the identity:

σ2

(∑
i

cixi

)
=
∑
i

c2iσ
2(xi) +

∑
i

∑
j>i

2cicjcov(xi, xj),

(13)
which holds for any set of constants ci and random variables xi. If
the xi are uncorrelated random variables, then the covariance term
tends to zero, and we have:

σ2

(∑
i

cixi

)
≈
∑
i

c2iσ
2(xi). (14)

Finally, this gives us:

σ2

(∑
i

B̃iΦi

)
≈
∑
i

Φ2
iσ

2
(
B̃i
)
. (15)

The right side of Equation 15 is equivalent to the right side of
Equation 9.

