
Diffusion Curves: A Vector Representation for Smooth-Shaded Images

Alexandrina Orzan1,2 Adrien Bousseau1,2,3 Holger Winnemöller3 Pascal Barla1 Joëlle Thollot1,2 David Salesin3,4
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Figure 1: Diffusion curves (left), and the corresponding color image (right). Note the complex shading on the folds and blur on the face.

Abstract

We describe a new vector-based primitive for creating smooth-
shaded images, called the diffusion curve. A diffusion curve parti-
tions the space through which it is drawn, defining different colors
on either side. These colors may vary smoothly along the curve. In
addition, the sharpness of the color transition from one side of the
curve to the other can be controlled. Given a set of diffusion curves,
the final image is constructed by solving a Poisson equation whose
constraints are specified by the set of gradients across all diffusion
curves. Like all vector-based primitives, diffusion curves conve-
niently support a variety of operations, including geometry-based
editing, keyframe animation, and ready stylization. Moreover, their
representation is compact and inherently resolution-independent.
We describe a GPU-based implementation for rendering images de-
fined by a set of diffusion curves in realtime. We then demonstrate
an interactive drawing system for allowing artists to create artworks
using diffusion curves, either by drawing the curves in a freehand
style, or by tracing existing imagery. The system is simple and in-
tuitive: we show results created by artists after just a few minutes of
instruction. Furthermore, we describe a completely automatic con-
version process for taking an image and turning it into a set of dif-
fusion curves that closely approximate the original image content.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Picture/Image
Generation, Graphics Utilities;

Keywords: Vector graphics, vectorization, gradient mesh, color
diffusion, image creation, image reconstruction

1 Introduction

Vector graphics, in which primitives are defined geometrically,
dates back to the earliest days of our field. Early cathode-ray tubes,
starting with the Whirlwind-I in 1950, were all vector displays,
while the seminal Sketchpad system [Sutherland 1980] allowed
users to manipulate geometric primitives like points, lines, and
curves. Raster graphics provides an alternative representation for
describing images via a grid of pixels rather than geometry. Raster
graphics arose with the advent of the framebuffer in the 1970s and
is now commonly used for storing, displaying, and editing images.
However, while raster graphics offers some advantages over vector
graphics — primarily, a more direct mapping between the hard-
ware devices used for acquisition and display of images, and their
internal representation — vector graphics continues to provide cer-
tain benefits as well. Most notably, vector graphics offers a more
compact representation, resolution-independence (allowing scaling
of images while retaining sharp edges), and geometric editability.
Vector-based images are more easily animated (through keyframe
animation of their underlying geometric primitives), and more read-
ily stylized (e.g. through controlled perturbation of geometry). For
all of these reasons, vector-based drawing tools, such as Adobe
Illustrator c©, CorelDraw c©, and Inkscape c©, continue to enjoy great
popularity, as do standardized vector representations, such as Flash
and SVG.

However, for all of their benefits, vector-based drawing tools of-
fer only limited support for representing complex color gradients,
which are integral to many artistic styles. For example, the art
movements of realism and hyperrealism rely on smooth gradients to
achieve soft shadows, defocus blur, diffuse shading, glossy reflec-
tions, and various material effects. The airbrush technique, widely
used in design and urban art, is fundamentally based on (physical)
color diffusion. The Art Deco painting movement, various comic
styles, as well as numerous painting styles also heavily feature color
gradients. While graphic artists, such as Yukio Miyamoto1, have
been able to achieve stunning results using existing vector-graphics
tools, creating these artworks requires a high degree of artistic skill,
not to mention an enormous degree of patience (the reported cre-
ation times for some art pieces run into the hundreds of hours).

1www.khulsey.com/masters yukio miyamoto.html



What makes creating this artwork so difficult using vector primi-
tives is that most existing vector formats support only linear or ra-
dial gradients2. Currently, the most sophisticated vector-based tool
for handling complex gradients is the gradient mesh. A gradient
mesh is a lattice with colors at each vertex that are linearly interpo-
lated across the mesh. While more powerful than simple gradients
(or “ramps”), gradient meshes still suffer from some limitations. A
significant one is that the topological constraints imposed by the
mesh lattice give rise to an overcomplete representation that be-
comes increasingly inefficient and difficult to create and manipu-
late. Recently, Sun et al. [2007] presented an important advance: a
semi-automatic method for optimizing a manually initialized mesh.
While their approach lessens the manual demands on the user, it
does not address the process of subsequent gradient-mesh manipu-
lation, nor does it facilitate free-hand creation of gradient meshes
from scratch.

In this paper we propose a novel vector-graphics primitive, called
the diffusion curve. A diffusion curve is a curve that diffuses colors
on both sides of the space that it divides. The motivations behind
such a representation are twofold:

First, this representation supports traditional freehand drawing
techniques. Artists often begin by sketching shapes, then adding
color later. In a typical drawing session with our tool, the artist first
lays down drawing curves corresponding to color boundaries. In
contrast with traditional vector graphics, the color boundaries do
not need to be closed and may even intersect. A diffusion process
then creates smooth gradients on either side of the curves. By spec-
ifying blur values along a curve, the artist can also create smooth
color transitions across the curve boundaries.

Second, most color variations in an image can be assumed to be
caused by edges (material and depth discontinuities, texture edges,
shadow borders, etc.) [Koenderink and Doorn 1979; Marr and Hil-
dreth 1980]. Even subtle shading effects can be modeled as though
caused by one or more edges, and it has been demonstrated that
edges constitute a near-complete and natural primitive for encoding
and editing images [Carlsson 1988; Elder 1999; Elder and Goldberg
2001]. In this work, we rely on vision algorithms, such as edge de-
tection, to convert an image into our diffusion curves representation
fully automatically.

The main contribution of this paper is therefore the definition of
diffusion curves as a fundamental vector primitive, along with two
types of tools: (1) A prototype allowing manual creation and editing
of diffusion curves. Thanks to an efficient GPU implementation, the
artist benefits from instant visual feedback despite the heavy com-
putational demands of a global color diffusion. (2) A fully auto-
matic conversion from a bitmap image based on scale-space anal-
ysis. The resulting diffusion curves faithfully represent the original
image and can then be edited manually.

2 Previous work

We review here existing techniques to create complex color gradi-
ents and blur with modern vector graphic tools.

For a long time, vector graphics have been limited to primitives
(paths, polygons) filled with uniform color or linear and radial gra-
dients. Although skillful artists can create rich vector art with these
simple tools, the resulting images often present flat or limited shad-
ing due to the limitations in terms of complex gradients and blur.
Commercial tools such as Adobe Live Trace c©assist the user in
creating complex vector graphics from input bitmap images. They
operate by segmenting an input image into regions of constant or

2www.carto.net/papers/svg/comparison flash svg/

slowly varying color, and fitting polygons onto these primitives. Al-
though this class of methods produces convincing results in uniform
areas, the segmentation typically generates a prohibitive number of
primitives in smooth regions.

The ArDeco system of Lecot et al. [2006] allows vectorization
of more complex gradients using existing linear or radial gradient
primitives. It is based on a segmentation of the input image into re-
gions of slowly varying color, and an approximation of color varia-
tions within each region with linear or quadratic gradients. The re-
sulting primitives are fully compatible with the SVG standard, but
the approximation tends to produce sharp color transitions between
segmented regions. A simpler solution to bypass these limitations,
adopted by the SVG format and modern tools (Adobe Illustrator c©,
Corel CorelDraw c©, Inkscape c©), is to reblur the image once vector
primitives have been rasterized. However, they only allow for a uni-
form blur for each given primitive, which, similar to the limitations
of flat colors or simple gradients, necessitates an unpractically large
number of primitives to approximate complex image content.

Gradient meshes have been recently introduced (Adobe
Illustrator c©, Corel CorelDraw c©) to address all of these is-
sues by allowing a user to specify color values on the vertices
of a quad mesh and smoothly interpolating these values over the
mesh faces. However, creating a mesh from scratch requires much
skill and patience, because the artist needs to accurately anticipate
the mesh resolution and topology necessary to embed the desired
smooth features. This is why most users rely on an example bitmap
to drive the design of realistic gradient meshes. The users first
decompose an input photograph into several sub-objects and then
draw meshes over each sub-object following their topology; finally,
they sample colors in the original photograph, assigning them to
the mesh vertices. Many tutorials describing this approach are
available on the Web. Still, drawing effective meshes and per-
forming accurate manual color sampling is very time consuming
in practice (several hours or even days for detailed images) and
requires a good appreciation of the image complexity to adopt an
adequate mesh resolution. Recently, the paper of Sun et al [2007]
proposed to assist the user by automatically fitting an input gradient
mesh to an input image. The fitting is achieved by minimizing
the reconstruction error between the resulting image and an input
photograph. Their semi-automatic method greatly reduces the time
required to draw a precise mesh and sampling colors, although the
user still has to manually specify the sub-objects of the picture
and draw the initial meshes with an adequate resolution. Price and
Barret [2006] proposed a similar approach for object vectorization,
using recursive subdivisions until the reconstruction error falls
below a fixed threshold. Their method produces faithful results but
also generates many small patches in smooth regions.

Yet, with both approaches, it remains unclear how to efficiently ma-
nipulate the resulting meshes for further editing. We believe this is
due to the unnecessary constraints imposed by the use of a mesh:
using a predefined topology, employing specific patch subdivision
schemes, and choosing a global orientation. In practice, this trans-
lates into a dense net of patches that are not readily connected to
the depicted content. Hence, the manipulation of such a set of prim-
itives quickly becomes prohibitive for the non-expert.

The new representation described in this paper offers the same level
of visual complexity as that reached by gradient meshes, but has
two main advantages: it is sparse, and corresponds to meaning-
ful image features. Indeed, the newly introduced diffusion curves
are intuitive to create, as each primitive corresponds to an image
feature; they are easy to manipulate and animate, as no constraint
is imposed on connectivity, and no superfluous subdivision is re-
quired; and they are well adapted for stylization, which would be
non-trivial with a gradient mesh approach. Moreover, compared to



other methods reviewed above, our representation naturally lends
itself to automatic extraction from a bitmap image: primitive loca-
tions are found completely automatically, and primitive attributes
(color and blur) are extracted via vision algorithms.

In other words, compared to regions used in classic vector rep-
resentations, or patches used in gradient meshes, our approach is
motivated by the fact that most of the color variation in an im-
age is caused by, or can be modeled with edges; and that (possibly
open) regions or patches are implicitly defined in between. Such a
sparse image representation is strongly motivated by the work of El-
der [1999], who demonstrated that edges are a near-complete repre-
sentation for images. Elder [2001] also suggested the possibility of
using edges to efficiently manipulate images with basic operations
(edge delete, copy and paste). However, we believe the full poten-
tial of this approach has as yet not been attained. For this reason,
our conversion algorithm starts from the same premises as Elder’s
system. But by vectorizing edges and their attributes, we extend its
manipulation capabilities to include shape, color, contrast, and blur
operations. This way, we provide the user with more intuitive edit-
ing tools, and also support resolution-independence, stylization and
key-frame animation.

3 Diffusion Curves

In this section we introduce the basic primitive of our representa-
tion, called a diffusion curve, and describe how to efficiently render
an image from such primitives. Specification and manipulation of
diffusion curves are discussed in subsequent sections.

3.1 Data structure

(a) (b) (c) (d)
Figure 2: A Diffusion curve is composed of (a) a geometric curve
described by a Bézier spline, (b) arbitrary colors on either side,
linearly interpolated along the curve, (c) a blur amount linearly
interpolated along the curve. The final image (d) is obtained by
diffusion and reblurring. Note the complex color distribution and
blur variation defined with a handful of controls.

The basic element of a diffusion curve is a geometric curve de-
fined as a cubic Bézier spline (Figure 2(a)) specified by a set of
control points P . The geometry is augmented with additional at-
tributes: two sets of color control points Cl and Cr (Figure 2(b)),
corresponding to color constraints on the right and left half space
of the curve; and a set of blur control points (Σ) that defines the
smoothness of the transition between the two halves (Figure 2(c)).
Intuitively, the curves diffuse color on each side with a soft transi-
tion across the curve given by its blur (Figure 2(d)).

Color and blur attributes can vary along a curve to create rich color
transitions. This variation is guided by an interpolation between the
attribute control points in attribute space. In practice, we use lin-
ear interpolation and consider colors in RGB space throughout the
rendering process, because they map more easily onto an efficient
GPU implementation and proved to be sufficient for the artists using
our system. Controls points for geometry and attributes are stored
independently, since they are generally uncorrelated. This leads to
four independent arrays in which the control points (geometry and
attribute values) are stored together with their respective parametric
position t along the curve:

DiffusionCurve: P[npos]: array of (x, y, tangent);
Cl[nl]: array of (r, g, b, t);
Cr[nr]: array of (r, g, b, t);
Σ[nσ]: array of (σ, t);

The diffusion curves structure encodes data similar to Elder’s edge-
based representation [1999]. However, the vectorial nature of a dif-
fusion curve expands the capabilities of Elder’s discrete edges by al-
lowing precise control over both shapes — via manipulation of con-
trol points and tangents — and appearance attributes — via color
and blur control points (small circles on the Figures). This fine-level
control, along with our realtime rendering procedure, facilitates the
drawing and editing of smooth-shaded images.

3.2 Rendering smooth gradients from diffusion curves

Three main steps are involved in our rendering model (see Fig-
ure 3): (1) rasterize a color sources image, where color constraints
are represented as colored curves on both sides of each Bézier
spline, and the rest of the pixels are uncolored; (2) diffuse the
color sources similarly to heat diffusion — an iterative process that
spreads the colors over the image; we implement the diffusion on
the GPU to maintain realtime performance; and (3) reblur the re-
sulting image with a spatially varying blur guided by the blur at-
tributes. Technical details about these three steps are explained in
the following sections.

3.2.1 Color sources

Using the interpolated color values, the first step renders the left
and right color sources cl(t), cr(t) for every pixel along the curves.
An alpha mask is computed along with the rendering to indicate the
exact location of color sources versus undefined areas.

For perfectly sharp curves, these color sources are theoretically in-
finitely close. However, rasterizing pixels separated by too small a
distance on a discrete pixel grid leads to overlapping pixels. In our
case, this means that several color sources are drawn at the same
location, creating visual artifacts after the diffusion. Our solution is
to distance the color sources from the curve slightly, and to add a
color gradient constraint directly on the curve. The gradient main-
tains the sharp color transition, while the colors, placed at a small
distance d in the direction normal to the curve, remain separate.

More precisely, the gradient constraint is expressed as a gradient
field w which is zero everywhere except on the curve, where it is
equal to the color derivative across the curve. We decompose the
gradient field in a gradient along the x direction wx and a gradient
along the y direction wy . For each pixel on the curve, we compute
the color derivative across the curve from the curve normal N and
the left (cl) and right (cr) colors as follow (we omit the t parameter
for clarity): wx,y = (cl − cr)Nx,y

We rasterize the color and gradient constraints in 3 RGB images: an
image C containing colored pixels on each side of the curves, and
two images Wx,Wy containing the gradient field components. In
practice, the gradient field is rasterized along the curves using lines
of one pixel width. Color sources are rasterized using triangle strips
of width 2d with a special pixel shader that only draws pixels that
are at the correct distance d (Figure 3(1)). In our implementation d
is set at 3 pixels. Pixel overlap can still occur along a curve in re-
gions of high curvature (where the triangle strip overlaps itself) or
when two curves are too close to each other (as with thin structures
or intersections). A simple stencil test allows us to discard overlap-
ping color sources before they are drawn, which implies that solely
the gradient field w dictates the color transitions in these areas. An
example of such case can be seen in Figure 1, where the eyebrows
are accurately rendered despite their thin geometry.



Figure 3: Rendering diffusion curves requires (1) the rasterization of the color and blur sources, along with the gradient field w = (wx,wy),
(2) the diffusion of colors and blur, and (3) the reblurring of the color image.

3.2.2 Diffusion

Given the color sources and gradient fields computed in the pre-
vious step, we next compute the color image I resulting from the
steady state diffusion of the color sources subject to the gradient
constraints (Figure 3(2)). Similarly to previous methods [Carlsson
1988; Elder 1999; Pérez et al. 2003], we express this diffusion as
the solution to a Poisson equation, where the color sources impose
local constraints:

∆I = div w

I(x, y) = C(x, y) if pixel (x, y) stores a color value

where ∆ and div are the Laplace and divergence operators.

Computing the Poisson solution requires solving a large, sparse,
linear system, which can be very time consuming if implemented
naively. To offer interactive feedback to the artist, we solve
the equation with a GPU implementation of the multigrid algo-
rithm [Briggs et al. 2000; Goodnight et al. 2003]. The paper of Mc-
Cann and Pollard [2008], published in the same proceedings, gives
a detailed description of a simple implementation very similar to
ours. The idea behind multigrid methods is to use a coarse version
of the domain to efficiently solve for the low frequency components
of the solution, and a fine version of the domain to refine the high
frequency components. We use Jacobi relaxations to solve for each
level of the multigrid, and limite the number of relaxation iterations
to achieve realtime performances. Typically, for a 512 × 512 im-
age we use 5i Jacobi iterations per multigrid level, with i the level
number from fine to coarse. This number of iterations can then be
increased when high quality is required. All the images in this paper
and in the accompanying video have been rendered using an Nvidia
GeForce 8800, providing realtime performance on a 512 × 512
grid with a reasonable number of curves (several thousands).

3.2.3 Reblurring

The last step of our rendering pipeline takes as input the color im-
age containing sharp edges, produced by the color diffusion, and
reblurs it according to blur values stored along each curve. How-
ever, because the blur values are only defined along curves, we lack
blur values for off-curve pixels. A simple solution, proposed by El-
der[1999], diffuses the blur values over the image similarly to the
color diffusion described previously. We adopt the same strategy
and use our multigrid implementation to create a blur map B from
the blur values. The only difference to the color diffusion process is
that blur values are located exactly on the curve so we do not require
any gradient constraints. This leads to the following equation:

∆B = 0

B(x, y) = σ(x, y) if pixel (x, y) is on a curve

Giving the resuting blur map B, we apply a spatially varying blur
on the color image (Figure 3(3)), where the size of the blur ker-
nel at each pixel is defined by the required amount of blur for this
pixel. Despite a spatially varying blur routine implemented on the
GPU [Bertalmio et al. 2004], this step is still computationally ex-
pensive for large blur kernels (around one second per frame in our
implementation), so we bypass it during curve drawing and manip-
ulations and reactivate it once the drawing interaction is complete.

3.2.4 Panning and zooming

Solving a Poisson equation leads to a global solution, which means
that any color value can influence any pixel of the final image. Even
though the local constraints introduced by the color sources re-
duce such global impact, this raises an issue when zooming into
a sub-part of an image, because curves outside the current viewport
should still influence the viewport’s content. To address this prob-
lem without requiring a full Poisson solution at a higher resolution,
we first compute a low-resolution diffusion on the unzoomed image
domain, and use the obtained solution to define Dirichlet bound-
ary conditions around the zooming window. This gives us a suffi-
ciently good approximation to compute a full-resolution diffusion
only within the viewport.

4 Creating diffusion curves

The process of creating an image varies among artists. One may
start from scratch and give free rein to his imagination while another
may prefer to use an existing image as a reference. We provide the
user with both options to create diffusion curves. For manual cre-
ation, the artist can create an image with our tool by sketching the
lines of the drawing and then filling in the color. When using an im-
age as a template, we propose two methods. Assisted: The artist can
trace manually over parts of an image and we recover the colors of
the underlying content. Automatic: the artist can automatically con-
vert an image into our representation and possibly post-edit it.

4.1 Manual creation

To facilitate content creation for the artist, we offer several standard
tools: editing of curve geometry, curve splitting, copy/paste, zoom-
ing, color picking, etc. We also developed specific tools: copy/paste
of color and blur attributes from one curve to another, editing of
attributes control points (add, delete, and modify), etc. The tutorial
provided on our project page 3 and conference DVD gives a more
complete description of our current prototype interface.

3http://artis.imag.fr/Publications/2008/OBWBTS08/



(a) (b) (c) (d)

Figure 4: Example steps for manual creation: (a) sketching the curves, (b) adjusting the curve’s position, (c) setting colors and blur along
the diffusion curve and (d) the final result. The image was created by an artist at first contact with the tool and it took 4 hours to create.

To illustrate how an artist can use our diffusion curves, we show in
Figure 4 (and accompanying video) the different stages of an image
being drawn with our tool. The artist employs the same intuitive
process as in traditional drawing: a sketch followed by color filling.

4.2 Tracing an image

In many situations an artist will not create an artwork entirely from
scratch, but instead use existing images for guidance. For this, we
offer the possibility of extracting the colors of an underlying bitmap
along a drawn curve. This process is illustrated in Figure 5.

(a)

(b)

(c)

Figure 5: Tracing with diffusion curves: (a) Original bitmaps; (b)
left: Result of a stylistic tracing using color sampling (artist draw-
ing time: less than a minute); right: Result of a tracing using active
contours and color sampling (artist drawing time: 90 minutes). (c)
The corresponding diffusion curves (color sources have been thick-
ened for illustration purpose).

The challenge here is to correctly extract and vectorize colors on
each side of a curve. We also need to consider that color outliers
might occur due to noise in the underlying bitmap or because the
curve positioning was suboptimal. We first uniformly sample the

colors along the curve at a distance d (same as the one used for
rendering) in the direction of the curve’s normal. We then iden-
tify color outliers by measuring a standard deviation in a neighbor-
hood of the current sample along the curve. To this end, we work in
CIE L*a*b* color space (considered perceptually uniform for just-
noticeable-differences), and tag a color as an outlier if it deviates
too much from the mean in either the L*, a* or b* channel. We then
convert back colors to RGB at the end of the vectorization process
for compatibility with our rendering system.

To obtain a linear color interpolation similar to that used for ren-
dering, we fit a polyline to the color points using the Douglas-
Peucker algorithm [Douglas and Peucker 1973]. The iterative pro-
cedure starts with a line connecting the first and last point and re-
peatedly subdivides the line into smaller and smaller segments un-
til the maximum distance (still in CIE L*a*b*) between the actual
values and the current polyline is smaller than the error tolerance
ε. The end points of the final polyline yield the color control points
that we attach to the curve. A creative example that uses color sam-
pling is illustrated in Figure 5(b)-left image, where an artist has
drawn very stylistic shapes, while using the color sampling feature
to reproduce the global tone of the original image, similarly to an
in-painting process [Bertalmio et al. 2000].

When tracing over a template, one would normally want to position
the curves over color discontinuities in the underlying image. Since
it is not always easy to draw curves precisely at edge locations in
a given image, we provide some help by offering a tool based on
Active Contours [Kass et al. 1987]. An active contour is attracted to
the highest gradient values of the input bitmap and allows the artist
to iteratively snap the curve to the closest edge. The contour can
also be easily corrected when it falls into local minima, or when
a less optimal but more stylistic curve is desired. Figure 5(b)-right
shows the image of a lady bug created using geometric snapping
and color extraction. While the artist opted for a much more stylized
and smoothed look compared to the original, the image still conveys
diffuse and glossy effects, defocus blur, and translucency.

4.3 Automatic extraction from a bitmap

Finally, an artist might want to add stylization and expression to
an already existing image. We propose a method for automatically
extracting and vectorizing diffusion curves data from a bitmap.

Data Extraction: Many approaches exist to find edges and deter-
mine their blur and color attributes. We based our data extraction on
our previous work [Orzan et al. 2007], as that work was ”designed”
for edge-based image stylization. Diffusion curves extend our pre-
vious approach from a raster-based method to a fully vectorized
version. For brevity, we will only recall the basic steps of the previ-
ous method, and refer the interested reader to Orzan et al. [2007].



(a) (b) (c) (d)

Figure 6: Example of our reconstruction: (a) original image; (b) result after conversion into our representation; (c) automatically extracted
diffusion curves; (d) RGB difference between original and reconstructed image (amplified by 4); note that the most visible error occurs along
edges, most probably because, through vectorization, we change their localization.

The basic approach relies on the Gaussian scale space, which can
be pictured as a stack of increasingly blurred versions of an image,
where higher scale images exhibit less and less detail. To obtain
edge positions and blur estimates from this scale space, we first
extract edges at all available scales using a classical Canny detec-
tor [Canny 1986]. Contrary to our previous approach, which works
only on the luminance channel, we now apply the Canny detector
to the multi-channel color gradient described in Di Zenzo [1986].
This allows us to detect sharp color variations in iso-luminant re-
gions of the image, where a luminance gradient would fail. Then,
taking inspiration from previous work in scale-space analysis [Lin-
deberg 1996; Elder 1999], we find the scale at which an edge is
best represented (the more blurred the edge, the higher the scale).
We use this ideal scale to identify the degree of blur of an edge,
as previously, but also use it to localize edges. It should be noted
that very blurry edges are difficult to detect and parameterize accu-
rately. In our system we find that very large gradients are sometimes
approximated with a number of smaller ones.

After the scale-space analysis, we are left with anhave chosen to
edge map, which contains the edge locations and the blur values for
the edge pixels. As explained in our previous paper [Orzan et al.
2007], we also provide a method to extract an edge’s lifetime (a
measure of its spread throughout consecutive scales), which allows
for separation of detail and contour edges. While in the past we
directly used the extracted data, our new approach requires an ad-
ditional processing step: colors on either side of the edges must
be extracted explicitly. To this end, we connect pixel-chains from
the edge map and proceed to sample colors in the original image
on each side of the edge in the direction of the edge normal. In
practice, the gradient normal to the edge is difficult to estimate for
blurry edges, so we use the direction given by the normal of a poly-
line fitted to each edge. For an estimated blur σ, we pick the colors
at a distance 3 · σ from the edge location, which covers 99% of
the edge’s contrast, assuming a Gaussian-shaped blur kernel [Elder
1999]. While the 3 · σ distance ensures a good color extraction for
the general case, it poses numerical problems for structures thin-
ner than 3 pixels (σ < 1); in this particular case, color cannot be
measured accurately.

Conversion to diffusion curves: For vectorization of positions,
we take inspiration from the approach used in the open source
Potrace c©software [Selinger 2003]. The method first approximates
a pixel chain with a polyline that has a minimal number of segments
and the least approximation error, and then transforms the polyline
into a smooth poly curve made from end-to-end connected Bézier
curves. The conversion from polylines to curves is performed with
classical least square Bézier fitting based on a maximum user-
specified fitting error and degree of smoothness. For attribute vec-
torization, we use the same method as in Section 4.2.

Several parameters determine the complexity and quality of our
vectorized image representation. For the edge geometry, the Canny

threshold determines how many of the image edges are to be consid-
ered for vectorization; a despeckling parameter sets the minimum
length of a pixel chain to be considered for vectorization; and fi-
nally, two more parameters set the smoothness of the curve fitting
and the fitting error. For the blur and color values, two parameters
are considered: the size of the neighborhood for eliminating out-
liers, and the maximum error accepted when fitting the polyline. For
most images in this paper, we use a Canny high threshold of 0.82
and low threshold of 0.328, we discard pixel chains with less than
5 pixels, we use a smoothness parameter of 1 (Potrace default) and
we set the fitting error to 0, so the curve closely approximates the
original edges. For attributes, we consider a neighborhood of 9 sam-
ples, and the maximum error accepted is 2 blur scales for the blur
and 30 CIE L*a*b* units for colors.

5 Results

Diffusion curves, as vector-based primitives, benefit from the ad-
vantages of traditional vector graphics: zooming-in preserves sharp
transitions (Figure 8 (e)) and keyframing is easily performed via
linear interpolation of geometry and attributes (Figure 7). Our rep-
resentation is equally well suited for global and local image styliza-
tion. Curve shapes and attributes can be easily modified to obtain
effects such as that presented in Figure8(d). For diffusion curves ex-
tracted from an image, the lifetime measure provided by Orzan et
al. [2007] can be used to adjust preservation of detail (Figure8(c)).

Figure 7: Keyframing with diffusion curves: Three keyframes of an
animation.

To validate our approach and to collect valuable practical feedback,
we had various artists use our prototype. Most figures in this paper
were generated in these sessions. All artists were well versed in dig-
ital content creation tools, but had no technical background. They
were given a brief tutorial (see our project page and the conference
DVD), amounting to approximately 10 minutes of instructions. The
artists were able to create many varied and intricate examples from
the very first session and found the manipulation of diffusion curves
intuitive after a short accommodation phase. Manual image creation
took anywhere from several minutes (Figure 5(b)) to a few hours
(Figure 4). However, the artists agreed that a more powerful user
interface would greatly speed up the creation process.



(a) (b) (c) (d) (e)

Figure 8: Stylization effects: (a) original bitmap; (b) Automatic reconstruction; (c) Reconstruction simplified by removing edges with low
lifetime; (d) Global shape stylization applied to (c); (e) Enlargement of (b).

6 Discussion & Future work

In the previous sections, we presented our new vector-based primi-
tive, and explained the various options at an artist’s disposal to cre-
ate smooth-shaded images thanks to this intuitive representation.
We now compare our approach with the most commonly used vec-
tor tool for creating images with similarly complex gradients: Gra-
dient Meshes. Next, we identify the remaining challenges that we
would like to address in future work.

6.1 Comparison with Gradient Meshes

Representational efficiency: In terms of sparsity of encoding, both
gradient meshes and diffusion curves are very efficient image rep-
resentations. A direct comparison between both representations is
difficult, as much depends on the chosen image content (for ex-
ample, gradient meshes require heavy subdivision to depict sharp
edges and it can be difficult to conform the mesh topology to com-
plex geometric shapes). Furthermore, Price and Barret [2006] pre-
sented a more compact sub-division gradient mesh, yet all available
tools employ a regular mesh. While the diffusion curves representa-
tion appears more compact at first glance (see Figure 11), it should
be noted that each geometric curve can hold an arbitrary amount of
color and blur control points (see Table 9). So, while the sparsity
of encoding of both representations can be considered comparable,
we would argue the flexibility of diffusion curves to be a significant
benefit, as it allows us any degree of control on a curve, without
a topologically-imposed upper or lower bound on the number of
control points.

Curves P Cl Cr Σ
Roses (fig. 5 left) 20 851 581 579 40
Lady bug (fig. 5 right) 71 521 293 291 144
Curtain (fig. 4) 131 884 318 304 264
Dolphin (fig. 6) 1521 6858 3254 3271 3433

Figure 9: Number of curves, geometric control points (P ), left and
right color control points (Cl, respectively Cr) and blur control
points (Σ) for the images of this paper.

Usability: We believe that diffusion curves are a more natural draw-
ing tool than gradient meshes. As mentioned previously, artists
commonly use strokes to delineate boundaries in an image. Dif-
fusion curves also allow an artist to evolve an artwork gradually
and naturally. Gradient meshes, on the other hand, require careful
planning and a good understanding of the final composition of the
intended art piece. Most gradient mesh images are a complex com-
bination of several individual — rectangular or radial — gradient
meshes, often overlapping. All these decisions have to be made be-
fore the relevant image content can be created and visualized.

Topology: In some situations, the topology constraints of gradient
meshes can be rather useful, for example when moving a gradient

mesh to a different part of an image, or when warping the entire
mesh. Such manipulations are also possible in our representation,
but not as straightforward. For moving part of an image, the relevant
edges have to be selected and moved as a unit. More importantly,
without support for layering and transparency (see Section 6.2) it is
difficult to ascertain how the colors of outer edges should interact
with their new surroundings. A mesh warp could be implemented
as a space warp around a group of edges.

6.2 Future challenges

Currently, our representation is single layered, but we are aware that
multiple, independent layers offer more flexibility to the artist. To
fully take advantage of a layered system, we need to address the
interaction of multiple layers (considering a global Poisson solu-
tion), and the additional computational demands. Blending of layers
would also require a notion of (gradual) transparency. Our current
representation is more related to planar-maps [Asente et al. 2007]
that model vector graphics in a single layer.

A different point worth improving is the way diffusion curves deal
with intersections. Currently, diffusion curves present a specific (al-
though predictable and meaningful) behavior: the colors attached
to the two intersecting curves essentially compete with each other,
which creates a smooth color gradient after diffusion (Figure 10(a)).
If this default behavior is undesirable, the user can correct it by
either adding color controls on each side of the intersection, or
by splitting the curves in several parts with different colors (Fig-
ure 10(b)). Automating such behaviors would represent a powerfull
tool for easing user interactions.

(a) (b)

Figure 10: The default behavior of diffusion curves at intersections
(a) can be corrected by curve splitting and color editing (b).

Another limitation, common to all vector graphics, occurs in im-
ages or image regions that contain many small color or luminance
variations, such as textures. In practice, most of the visual informa-
tion of highly textured regions is captured by the automatic conver-
sion, but imprecision occur when the texture is composed of many
small structures (small compared to the distance d defined in Sec-
tion 3.2.1). Moreover, the large amount of curves required to repre-
sent textures makes a vector representation inefficient and difficult
to manipulate. Incorporating a diffusion curves version of texture
synthesis tools is an interesting area of future research.
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Figure 11: Gradient Mesh comparison: (a) Original photograph; (b,c) Manually created gradient mesh ( c© Brooke Nuñez Fetissoff
http://lifeinvector.com/), with 340 vertices (and as many color control points); (d,e) Our drawing created by manually tracing over the
image; there are 38 diffusion curves, with 365 geometric, 176 left-color, and 156 right-color control points.

Finally, as diffusion curves rely partially on a Poisson solution,
nothing prevents their use in a variety of common Poisson-editing
applications (e.g. for the transfer of image features such as shad-
ows, or for merging multiple images in a same representation). We
plan to extend our prototype in this direction in the near future.

7 Conclusion

We have introduced diffusion curves as a new image representation,
offering most of the benefits usually found in vector approaches,
such as resolution independence, exact editability, and compact-
ness; while at the same time allowing to depict highly complex
image content, generally only realizable with raster graphics. Dif-
fusion curve images are comparable both in quality and coding effi-
ciency with gradient meshes, but are simpler to create (according to
several artists who have used both tools), and can be captured from
bitmaps fully automatically.
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