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Figure 1: Example renderings from the 36 million-sample Thai statue and the 22 billion-sample USGS Earth data sets.

ABSTRACT

Previous algorithms for view-dependent level of detail provide local
mesh refinements either at the finest granularity or at a fixed, coarse
granularity. The former minimizes the triangles to error ratio, of-
ten at the expense of heavy CPU usage and low triangle rendering
throughput; the latter improves CPU usage and rendering through-
put at the expense of the triangles to error ratio.

We present a new multiresolution hierarchy and associated algo-
rithms that provide adaptive granularity. This multi-grained hierar-
chy allows independent control of the number of hierarchy nodes
processed on the CPU and the number of triangles to be rendered.
We employ a seamless texture atlas style of geometry image as a
GPU-friendly data organization, enabling efficient rendering and
GPU-based stitching of patch borders. We demonstrate our ap-
proach on both large triangle meshes and terrains with up to billions
of vertices.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric algo-
rithms, object hierarchies

Keywords: level of detail, texture atlas, parameterization, geome-
try image, out-of-core

1 INTRODUCTION

Since the early days of interactive 3D computer graphics, the need
to represent complex 3D geometries at multiple levels of detail has
been apparent [4]. In the interim, CPU performance, main memory
capacity, and triangle processing performance have all increased
dramatically. However, despite these gains, the need for level of
detail has not decreased, but has in fact increased.

The increased need stems from ever-improving 3D data acquisition
methods. The resolutions of these modern 3D scanners, such as SIR
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(space-borne imaging radar), Lidar (light detection and ranging),
standard laser range finding, photometric techniques, etc., range
from meters down to millimeters down to tens of microns or finer,
depending on the technology and the scale of the target model.
Thus, large 3D models today may contain hundreds of millions of
samples, which may include not only the geometric position, but
normals (measured or computed), colors, and other material prop-
erties.

Most recently, the highest performance systems use a very coarse-
grained approach, minimizing the CPU processing required while
maximizing the triangle throughput of the graphics hardware. How-
ever, even this latest breed of algorithms has it limitations. In par-
ticular, the granularity at which the level of detail is adjusted at
run-time (i.e., the number of triangles refined together as an atomic
unit) is fixed in advance, and in many cases a great deal of pro-
cessing goes into computing the hierarchy for that one, particular
granularity.

Main contribution: In this paper, we propose a mesh represen-
tation which is multi-grained. It is both hierarchical and multi-
resolution, and these two properties are managed independently
rather than bound together during pre-processing. At run-time, it is
possible to adjust the resolution of any individual hierarchy node,
or to split or merge nodes. As we show in our analysis, this is bene-
ficial for two reasons. First, the data structure is appropriate for any
balance of CPU/GPU processing powers. This allows us to con-
trol both the CPU and the GPU usage, making our method adapt-
able to varying hardware configurations. Second, even for a given
CPU/GPU combination, there may be no single, ideal granularity.
The best granularity may depend on local characteristics of the sur-
face and the viewing parameters (e.g., location with respect to the
view frustum). Thus, it is desirable to allow a spatially-adaptive
granularity.

We develop our multi-grained hierarchy in the context of hierarchi-
cal, seamless texture atlases. For arbitrary-topology input meshes,
these atlas domains are constructed out-of-core through a process
of patchification and parameterization. Alternatively, for regular
height field inputs, the domain is constructed through a simple par-
titioning process. Given the atlas domain, geometry may be stored
as a three-channel geometry image or a single-channel height im-
age as appropriate, and the same domain is used to store attribute
textures such color and normal maps.

Given this new hierarchy structure, we define the corresponding



new problems for real-time geometry adaptation, allowing an ap-
plication to specify not only an error threshold or a triangle budget,
but also simultaneously a maximum number of nodes to be ren-
dered. This last parameter directly impacts the time required for
the CPU to perform the adaptation. We present algorithmic solu-
tions to these adaptation problems, and also discuss the seamless
rendering of the resulting geometry.

Our new approach to level of detail has a number of desirable prop-
erties:

• Load management: The load on the CPU and GPU are man-
aged independently by setting the maximum node count and
maximum triangle count, respectively. This unique ability
of our hierarchy provides an extra degree of freedom to our
quad-queue adaptation algorithm over existing algorithms.

• GPU-based border resolution: Our implementation em-
ploys vertex textures to deliver geometry to the vertex pro-
cessing unit, enabling stitching of neighboring patch borders
directly on the GPU.

• Rendering-optimization-friendly: Due to the regular grid
structure of mesh patches, rendering is relatively easy to op-
timize. Producing triangle strips with excellent vertex cache
coherence is straightforward. Even in the presence of vertex
texturing, we have seen performance in excess of 100M trian-
gles/second.

• Reusable (implicit) topological data: On the current hard-
ware generation, we can store in texture memory reusable,
regular grids of various resolutions, storing only (u,v) vertex
coordinates and the corresponding index lists. This data is
reusable across the entire model (and across all models). On
future GPU architectures, it may well be possible to generate
this underlying topology-driven data on the fly.

• Loosely constrained hierarchy neighbors: Compared to
most quad-tree LOD hierarchies, we have few restrictions on
the hierarchy level or resolution level of two neighboring sur-
face patches. Seamless borders are achieved for neighboring
patches even if they differ by several hierarchy levels and/or
resolution levels.

• Fragment-level attribute preservation: Our general para-
metric approach allows preservation of mesh attributes in tex-
ture maps. Thus their resolution (and their corresponding
footprint in texture memory) is determined independently of
the load on the vertex processing unit.

• Coherent data redundancy: Hierarchy nodes in our system
contain a superset of their ancestor’s data but cover a subset
of their domain. Ancestor nodes are easily used temporarily
to render any of their descendants without introducing cracks
while the most appropriate data resolutions are being loaded.

We demonstrate our approach on several large meshes and terrains
with up to billions of vertices. We examine some of the benefits of
the increased flexibility of our multi-grained hierarchy and look at
rendering output and performance of our current prototype system.

2 RELATED WORK

2.1 View-dependent Level of Detail

View-dependent level of detail algorithms allow localized changes
in the resolution of a polygonal mesh according to the current view-
ing parameters. Early view-dependent algorithms [23, 8, 19, 11]

used a tree or DAG structure to allow very fine-grained modifica-
tions to the mesh according to some error metric. This ability of
view-dependent algorithms to operate at various locales across a
mesh is especially important for rendering of terrains, which are
typically vast in scale [16, 5, 12].

For today’s large data, algorithms must generally deal with is-
sues of out-of-core operation. It is possible to apply fine-grained,
view-dependent level of detail in an out-of-core setting [6, 17, 15].
However, the most recent algorithms generally apply changes in
mesh resolution in a very coarse-grained fashion, seeking to min-
imize CPU usage while maximizing the triangle throughput of the
GPU [9, 2, 3, 13].

Our algorithm seeks a balance between the most fine-grained and
the most coarse-grained representations. We provide an adaptable
granularity, and thereby provide the ability to balance CPU and
GPU usage. As compared to [2] in particular, our algorithm per-
forms patch border stitching on the GPU and allow multiple levels
of resolution difference between neighbors as opposed to restricting
to a single level difference.

2.2 Geometry Images

Like the geometry clipmap approach to rendering large terrains [18,
1], our hierarchical format stores geometric data in a form of geom-
etry image. A geometry image [10] is essentially a two-dimensional
array of (x,y,z) values. A mesh is defined by according to the im-
plicit regular-grid structure of the array. A number of methods ex-
ist for constructing a geometry image by resampling an arbitrary-
genus [10] or genus-0 [20] polygonal mesh. It is also possible to
construct geometry images of multiple charts – either regular [21]
or irregular [22]. The simple topology of regular grids makes ge-
ometry images appealing for many forms of geometry processing,
including compression and rendering.

Our data format takes its direction from the work of [21]. Each
of our highest resolution geometry images is a single chart of their
seamless texture atlas. However, we impose a hierarchical node
structure on each of these charts. Multiple nodes may thus cover
a chart, and each can selecting an appropriate resolution for ren-
dering. Furthermore, we develop an out-of-core approach to con-
structing the texture atlas for application to large meshes. This
choice of data format brings the rendering of arbitrary topology sur-
faces much closer to the domain of terrain rendering and makes it
possible to produce seamless boundaries between adjacent nodes
of different hierarchy levels and resolutions. Unlike the geometry
clipmap approach, our algorithm provides error-guided adaptation,
seamless patch boundaries, and the ability to trade CPU workload
for rendering quality.

Another approach similar to ours on the surface is the work of [14].
Like us, they employ a form of seamless geometry image on the
GPU using a quad-tree for level of detail. However, their approach
is applied to models several orders of magnitude smaller than ours,
restricts the quad-tree adaptation to a single level difference be-
tween neighbors, and is based on charts created through a manual
process.

3 OVERVIEW

Our algorithm for large mesh rendering has three phases: seamless
texture atlas construction, hierarchy creation, and interactive ren-
dering. For general meshes, we perform an out-of-core parameteri-
zation of the mesh to generate atlas charts and resample the mesh to
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Figure 2: Hierarchical seamless texture atlas. The blue and green cuts produce the same number of triangles and the same maximum error by
only varying the subdivision level. The red cut maintains the maximum error bound, but uses fewer triangles, as not all areas have the same
geometric error.

form a geometry image for each chart. For height maps, we merely
rearrange the input data into chart images for more convenient data
management. For each chart, we also construct an image pyramid
of the geometry data and form any additional attribute images, such
as color and normal textures.

The hierarchy creation process builds a quad-tree hierarchy on top
of each chart, resulting in a forest of quad-trees. Each quad-tree
node covers a region of a particular chart. The process computes
and stores with each node an error value for each available resolu-
tion of the node’s region. In addition, each node stores a bounding
volume, and each root node stores a pointer to the neighboring root
node on each of its four sides.

The data generation and hierarchy construction phases are per-
formed once for each mesh and the results are stored on disk for
use during interactive rendering. At rendering time, our adaptation
algorithm performs a local optimization every frame to select: a
set of nodes (a cut through the trees) that covers the model, resolu-
tions for rendering each node’s geometry using vertex textures, and
resolutions for applying any auxiliary attribute textures. The opti-
mization is guided by parameters such as the maximum number of
nodes and either a maximum number of triangles or a maximum
screen-space error. Given the results of the adaptation, the render-
ing system checks for the availability of the required geometry and
auxiliary data and loads it in a separate thread as necessary. The
nodes are then rendered using the currently available textures by
feeding a uniform (u,v)-grid to the vertex processing unit, perform-
ing vertex texture lookups to fetch the (x,y,z) geometry, and shad-
ing on the fragment processing units. During vertex processing,
a border stitching process guarantees seamless geometry between
neighboring nodes with different geometry resolutions.

We next present a look at the overall multi-grained hierarchy struc-
ture, followed by details of the three phases.

4 HIERARCHICAL SEAMLESS TEXTURE ATLAS

Our multi-grained level of detail hierarchy consists of a forest of
quad-trees, each of which is built on the domain of a single square
chart of a seamless texture atlas. A one-tree hierarchy is illustrated
in Figure 2. The texture data ! (a height map in this case) is filtered
to resolutions " , # , $ , and % . The chart domain is hierarchically
subdivided using a quad-tree structure. Each node of the quad-tree
covers a particular region of the chart domain and has access to
several image resolutions for that region. Notice that every node
cannot access every resolution. For example, nodes at level 1 can-
not access texture resolution % because that resolution has too few
samples to be split amongst the four nodes of level 1 (because % has
the smallest allowable node texture resolution). Similarly, nodes
at level 2 cannot access texture resolutions % or $ , because the $
resolution is too small to split across the nodes of level 2.

Access to a resolution may also be restricted because it is too large.
For example, the root node (level 0) cannot access resolution ! .
This is due to the fact that our implementation assumes a single
texture state and draw call per node, and the hardware only supports
textures up to some fixed, maximum resolution.

Given these two restrictions, a node has access to

r =min(log2(M)− l, log2(R)) (1)

resolutions, where l is the level of the node, M is the maximum
resolution of this chart’s texture, and R is the maximum texture res-
olution supported by the hardware.

This hierarchy structure is a departure from the traditional tree
structure employed in LOD systems. In a more traditional LOD
tree, each node represents one particular level of detail. One can
subdivide a node into its sub-nodes to refine the object or merge
nodes into their parent to coarsen the object. In our hierarchy, a
node can be refined not only by subdividing it into its sub-nodes,



but also by increasing its choice of resolution for its region of cov-
erage.

Given this new degree of freedom, there are actually multiple cuts
through the tree and resolution choices that achieve the same error
bound and triangle count. For example, the blue cut contains one
node, and the green cut contains 7 nodes. However, both cuts render
the chart entirely at resolution " . In general, the blue cut would be
considered superior because it achieves the same result with fewer
nodes, and our algorithm would ultimately merge the nodes of the
green cut up to the single blue node if that resolution was really ap-
propriate everywhere. The more typical red cut exposes the benefit
of our method: by subdividing a node we can often use one or more
lower-resolution sub nodes while maintaining the same geometric
error bound.

As a result there are many ways to reconstruct a model with a given
error or triangle threshold by varying the number of nodes used.
This permits the balancing of GPU and CPU load by changing the
number of nodes used.

It is worth noting here that at first glance, this ability to store mul-
tiple levels of detail at each node may resemble the structure em-
ployed by the HLOD algorithm [7]. However, in that work, the tree
represents a scene graph, and merging children nodes into the par-
ent implies merging the representations of multiple distinct objects.
Each node in that structure does store multiple levels of detail, but
there is still only single cut that can achieve any particular scene
triangulation. Thus it is not possible in that system to use the de-
sired number of nodes to control the CPU load of the adaptation
algorithm independent of the triangle count.

5 SEAMLESS TEXTURE ATLAS CONSTRUCTION

The seamless texture atlas was originally proposed by [21] as a
parametric domain for texturing arbitrary-topology meshes with
guaranteed C0 continuity in the presence of texture mip-mapping
and geometric level of detail. It consists of a collection of quadri-
lateral charts which cover the surface. They show that by sampling
surface attributes on the charts of such an atlas using a 1-pixel over-
lap on all the boundaries, it is straightforward to maintain continu-
ity. Their process has the following steps:

1. Cluster: Using a combined metric incorporating planarity
and compactness, iteratively merge triangles into clusters us-
ing a greedy heuristic. The result is a collection of polygonal
patches.

2. Quadrangulate: Partition each n-sided patch into n quadri-
lateral patches. This process connects a central vertex of each
patch to a central vertex on each of the patch boundaries, rem-
iniscent of the first level of Catmull-Clark subdivision.

3. Parameterize: Parameterize each quadrilateral patch onto
the unit square domain using an efficient, sparse, linear-
least-squares solution to a uniform spring system followed by
an iterative algorithm optimizing an area-preserving texture
stretch metric.

4. Resample: Capture attributes, such as position, color, or nor-
mal by uniform sampling in the square domain of each chart.
Align the samples with the domain boundaries to ensure 1 ring
of replicated texels around the patch.

We have adapted their original process for out-of-core operation to
enable processing of larger meshes. It is primarily the initial clus-
tering phase that requires modification. We perform a two-phase
clustering as follows:

1. Gridify: Use a uniform 3D grid to partition a large, unindexed
collection of triangles into multiple files.

2. Per-cell Cluster For each grid cell, perform geometric vertex
hashing followed by in-core clustering. The goal is for the
union of clusters of all grid cells to fit in core. Each cluster
stores only aggregate information used to compute the com-
bined error metric: quadric error matrix, surface area, and per-
boundary-edge length. In addition, triangles that cross cell
boundaries are stored with their current cluster for use in the
next step.

3. Global Cluster: Load coarsest level patches from all cells to-
gether. Perform geometric vertex hashing among boundary-
crossing triangles to compute shared patch boundaries and
their lengths. Cluster patches until desired number (or error
threshold) is reached.

Following the second clustering pass, perform quadrangulation, pa-
rameterization, and resampling on a per-patch basis. Note that dur-
ing these steps, as well as the per-cell clustering, the computation
is trivially parallelizable and may be performed on a large compute
cluster if necessary.

For regular height map inputs, the preceding parameterization algo-
rithm is unnecessary. We simply partition the height map into charts
of the desired maximum node resolution, maintaining the expected
1-pixel overlap between adjacent charts.

6 HIERARCHY CREATION

For each chart in our texture atlas, we create a quadtree hierarchy,
starting with a root node. Each root node is subdivided into four
children nodes in the texture domain, and each these is further sub-
divided, and so on, down to a pre-specified subdivision depth. For
atlases with multiple charts, the root nodes are initialized with a
pointer for each of their four boundary edges to the root node of
the adjacent tree. As we subdivide, this information provides the
foundation for computing all node neighbor relationships during
the view-dependent adaptation algorithm.

We associate with each node in the hierarchy a region of the chart
domain that is one quarter of its parent’s region. The associated
textures are created to be of resolution (2n + 1)x(2n + 1), where
n is the LOD level of the data. These “power of two plus one”-
resolution textures have the desirable property that when one splits
them into quadrants with a one-pixel shared interior boundary, their
children’s resolutions are the next smaller power of two plus one.

The hierarchy generation process also computes bounding boxes
for each node and error values for each level of detail. We measure
the error for a given level of detail by considering the distance from
each of the original samples in the node’s region of coverage from
the corresponding point in parameter space on the simplified mesh.
The error is calculated by interpolating a corresponding vertex po-
sition from the four nearest vertices from the simplified mesh, and
calculating the distance to the original vertex, thus giving a geo-
metric deviation for that point. Our current implementation uses
the maximum operator to combine the sample errors for each level
of detail, but the average operator is an equally valid choice, de-
pending on the needs of the application.

The hierarchy building stage is easily separable, as the computa-
tions for each node are independent of neighboring nodes. As a
result the preprocessing stage is easily multi-threaded allowing for
a significant improvement in preprocessing performance, especially
on multiprocessor (or multi-core) machines.



7 INTERACTIVE RENDERING

Given the complete multi-grained hierarchical data structure, the
major components necessary for interactive rendering are algo-
rithms for view-dependent refinement, methods of rendering the
selected patches, an approach to stitching together the boundaries
of adjacent patches at different resolutions, and a scheme for data
management.

7.1 View-dependent Adaptation

Traditional LOD methods have only one degree of freedom – they
can only increase the detail of a node by subdividing the node into
its more densely tessellated children. Thus, the number of triangles
and the number of nodes are typically tied together by a roughly
constant number of triangles per node.

The method presented in this paper is free from these restrictions,
allowing the application to select both the desired amount of detail
in terms of error thresholds or maximum triangle count, as well as
the number of nodes used to render the object. While this allows
for more flexibility in the system, it also requires a new method
for adapting the mesh to the specified detail thresholds based on
the current viewing parameters. In the standard LOD formulations,
two common problems statements are: (1) “Given a maximum er-
ror threshold (object space, screen space, etc.), compute a mesh
which minimizes the number of triangles without exceeding the er-
ror threshold,” and (2) “Given a maximum triangle budget, compute
a mesh which minimizes the error without using more triangles than
the budget allows.” For each of these problems, our new degree of
freedom adds to the problem formulation: “...given a maximum
number of allowable nodes.”

Consider the first problem with our new amendment. A simple top-
down algorithm might work as follows. Start with the minimum
number of nodes (the root nodes) on the active cut, each at its lowest
level of detail. Refine each node to the first level with an error
beneath the error threshold. If there are more nodes available in
the budget, place the current nodes on a priority queue for splitting.
The split priority is set to the number of triangles that would be
saved if the node was split and each of its children adapted to the
error threshold. Iteratively remove a node from the queue, split it,
and place its children on the split queue until the node budget is
exhausted.

A more efficient, coherent algorithm for this problem is a variant
of the well-known dual-queue algorithms [5, 19]. Two queues, the
split and merge queues, hold every node that is currently on the
cut. The split priority is computed as above. The merge priority is
the number of triangles that would be added as a result of merging
siblings up to their parent. We perform a merge followed by a split
until no more benefit is to be gained.

Now consider the second problem statement. This one requires the
balancing of detail for individual nodes so that the best possible
choice is made for the entire mesh. In the traditional hierarchy,
where refining and splitting a node are synonymous, as are coars-
ening and merging, a dual-queue approach can solve this using a
greedy heuristic.

In our case however, we need to control refining and coarsening res-
olutions as well as splitting and merging nodes. We propose a new
quad-queue algorithm to perform this optimization. The queues are
organized as two dual-queue pairs: the split/merge queues and the
refine/coarsen queues.

Each of the nodes of the current cut appear on all four queues. We
iterate over two phases. In the first phase, as in the standard dual-
queue algorithm, we refine/coarsen the current nodes so that (a)
they are within the triangle budget, (b) no node can be refined with-
out going over the budget, and (c) the refine and coarsen queues are
balanced.

Then in the second phase, we propose a set of splits and merges of
nodes, performed by pretending to do an error threshold adaptation
with the current error of each node as a local error threshold. First
the nodes are merged until (a) the node count is below the maximum
allowable node count, and (b) the next (least bad) merge will require
more triangles then can be saved by performing the next (best) split.
Then nodes are split until no more splits can be performed.

We then proceed back to the refine/coarsen process. After each
round of the refine/coarsen process, we compare the maximum er-
ror to what it was before the previous split/merge operations. If
the new error is greater then the previous error, the split/merge
operations are undone, and the adapt process terminates success-
fully. This undo-based termination is employed because selection
of merges and splits is a heuristic choice based on triangle counts,
and the true cost or benefit of the split/merge is not known until the
refine/coarsen process adjusts the resulting node resolutions. We
could improve the predictive power of the split/merge process by
finding the true cost of splits and merges in terms of reducing error,
but the would require many more cycles through the refine/coarsen
queues (which would each be undone in much the same way we
would be avoiding on the split/merge queues).

Given the final set of nodes and their associated geometric reso-
lutions generated by the adaptation process, we also estimate an
appropriate resolution for any additional attribute textures, such as
normal maps or color textures, using the projected screen-space size
of the nodes’ bounding volumes and a desired pixel-to-texel size ra-
tio. These textures are then placed on the request stack for loading
and management.

7.2 Data Management

Similar to many large rendering systems, our system maintains
least-recently-used caches of data in both video memory and main
memory, with non-resident data being fetched asynchronously in a
separate thread according to a priority queue.

However, our system has some unique capabilities in terms of data
redundancy and reuse. While a node awaits some particular reso-
lution of data for rendering, it may be temporarily rendered using
any other resolution of the node itself or of one of its ancestors,
all of which cover its entire domain (and this has some associated
temporary effect on the triangle count and the visual error). This is
possible because of the simple quad-tree structure, the ability to use
geometry image textures to look up data from an ancestor nodes by
transforming texture coordinates, and the ability to seamlessly ren-
der adjacent patches of different resolutions. Furthermore, if the
mesh has a complete representation in frame i, we are assured of
having a complete, usable representation for frame i+1, regardless
of which data updates arrive on time.

The use of this redundant data is inexpensive storage-wise (on disk,
the data are stored in blocks with each resolution level only repre-
sented once), and the least-recently-used cache replacement policy
ensures that textures are replaced in a timely fashion after their re-
placements arrive. As an exception to the LRU policy, we also find
it convenient to lock the lowest resolution texture for the level-zero
nodes in memory to ensure there is always some fast-rendering rep-
resentation available for the entire model (this low-resolution data



Figure 3: Border stitching is performed when nodes of different tes-
sellations share a border. In this example the nodes are two LOD
levels apart, forcing vertices in the more densely tessellated node to
be collapsed in order to match the lower resolution node.

occupies less then one tenth of one percent of GPU RAM for the 22
billion sample Earth dataset).

7.3 Patch Rendering

Our patch-rendering approach pre-computes a set of uniform (u,v)-
grids, each a triangulated plane in 2D, to feed to the vertex process-
ing unit. Each grid is a power of two plus one resolution to match
the resolution of the geometry images containing the actual (x,y,z)-
coordinates. These grids are stored in video memory and are reused
for all rendered patches.

On receiving a (u,v)-grid vertex, the vertex processing unit looks up
the (x,y,z)-coordinates from the geometry image using a vertex tex-
ture lookup, performs the necessary transformations, and sends the
results down the graphics pipeline. In the fragment unit the color
and normal maps can be applied to further enhance the visual qual-
ity of the resulting image. The geometry and attribute image map
resolutions are managed independently, allowing higher-resolution
color and normal data to be used where necessary, while still retain-
ing an appropriately lower-resolution geometry data.

The use of regular grids of vertices allows us to perform some very
simple but effective optimizations. The most important of the op-
timizations performed on the (u,v) grid is the organization of mesh
rendering into triangle strips of adjacent columns. Adjusting the
strip length to roughly half the vertex cache size of the hardware
minimizes vertex cache misses, achieving close to the optimal con-
dition of executing the vertex program only once per vertex (or 0.5
vertex program executions per triangle).

Since texture maps are used to render the 3D mesh, we can eas-
ily apply additional textures to the recreated model, such as color
or normal maps, which greatly improve the visual quality of the
model. These textures are not dependent on each other, and can
therefore be of different resolutions. This allows for higher resolu-
tion color and normal data to be used where necessary, while still
retaining low resolution geometry data, allowing the best-fit of data
to be used for each area of the model.

7.4 Border Stitching

The use of uniformly-tessellated 2D planes allows us to reconstruct
the original model without cracks even in the presence of different
LOD neighbors. To this end we duplicate one row and column in
each geometry image so that any two neighboring nodes share an
identical border for the same image resolution.

To stitch together the border between adjacent nodes with different
resolutions, we calculate in the vertex program the texel selected
by the lower-resolution neighbor, and force the current vertex to se-
lect the same texel, thereby matching the higher-resolution border

to the lower-resolution border and eliminating cracks, as shown in
Figure 3. Traditionally this process would be performed on the CPU
because that is where the resolutions of adjacent patches are deter-
mined. However, because the original vertex coordinates cached
as geometry images on the GPU, it is convenient to perform this
matching on the GPU as well.

Figure 4: An example from the Earth dataset. Notice that the trian-
gle budget mode rendering benefits from neighboring patches with
levels differing by 3 or more.

We see a more complex situation in Figure 4. In this example from
the Earth dataset we see a mountainous area tessellated much more
densely then an adjacent area representing water or other flat fea-
ture. Adjacent nodes differ not only by multiple resolution levels,
but also by multiple levels in the hierarchy. Thus, a node may have
multiple smaller neighbor nodes along a single one of its border
edges. To handle this general case, we pass to each vertex an array
of all the resolutions of the neighboring nodes along all four node
boundaries. This enables matching of all high-resolution bound-
aries to all low-resolution boundaries. This data is constant per
patch, so it may be set in the constant registers during the rendering
of a patch. The overhead of the border matching process is rea-
sonable, currently requiring 18 ARB vertex program instructions to
perform.

It is worth noting that we do not have a problem avoiding cracks
at the corners, because our current implementation employs simple
sub-sampling to reduce the resolution of the geometry images. This
issue will require more careful treatment when a better downsam-
pling filter is employed.

Also, this process does not change the overall geometry error of the
model. Although the error is increased along the boundary of the
higher-resolution node, the neighboring node has already accepted
that amount of error along its identical boundary, so it is acceptable
for both nodes to have that same error there.

However, the border stitching does impose one new restriction on
the selection of node resolutions; a node’s resolution may not be so
low that it could have more small neighbors than it has boundary
vertices for them to match.

8 EXPERIMENTAL RESULTS

We have applied our algorithms to several terrain and mesh data
sets, including the USGS Earth (21.6 billion samples), USGS North
America (5.5 billion samples), Puget Sound (16k x 16k), Grand
Canyon (2k x 4k), Thai statue (10M polygons), and cuneiform
tablet (1M polygons).



8.1 Atlas Construction

The cuneiform tablet model contains 1M triangles. Running on a
AMD dual-Opteron 2.4GHz, the model took 16 seconds for gridify,
30 seconds for in-core clustering, 30 seconds for global clustering,
15 seconds for quadrangulation, 1 hour for parameterization, and 2
minutes to resample the 30 resulting charts at 512x512 samples per
chart (coordinates and normals).

The Thai statue model contains 10M triangles. Running on a AMD
dual-Opteron 2.4GHz, the model took 2 minutes to gridify, 5 min-
utes for in-core clustering, 2 minutes for global clustering, 3 min-
utes for quadrangulation, 6 hours for parameterization, and 5 min-
utes to resample the 138 resulting charts at 512x512 samples per
chart (coordinates and normals).

In practice, we achieved a nearly 40x speedup by performing the pa-
rameterization stages on a 20-node Intel dual-Xeon 3.2GHz cluster.
Thus, the total wall-clock time for the cuneiform tablet was roughly
4 minutes and the total time for the Thai statue was roughly 30 min-
utes.

8.2 Hierarchy Creation

The hierarchy creation stage of our method was performed on an
AMD 2.4GHz dual-Opteron system running Linux using 4 simul-
taneous threads and using less than 500MB of memory. The mod-
els processed are shown in Table 1. For the spherical version of
the Earth model, the additional time was required to convert from
rectilinear coordinates to spherical coordinates for the purpose of
bounding sphere and error computations. Note that for the spheri-
cal earth, we have chosen to minimize storage size by maintaining
the data as a height (radius) field and spherifying the data on the
GPU.

Model Samples Trees Size Time
Earth (flat) 21.6B 70 17MB 310
Earth (spherical) 21.6B 70 17MB 1115
US 5.5B 15 3.5Mb 59
Puget Sound 268M 4 1MB 2.3
Thai statue 130M 140 32MB 2.4
Tablet 8M 30 6.8MB .08

Table 1: Hierarchy creation information for the datasets. Samples are
scalars for the height fields and 3D vectors for the general models.
Output size refers to the hierarchy node data and not the actual
sample data. Time is in minutes. All the quadtrees are build to
contain 5 levels.

8.3 Rendering

We have evaluated the rendering performance of our system as well
as its ability to adapt to various hardware configurations using the
same hierarchy. All of the tests were run on a system with dual
2.4GHz AMD Opteron CPUs and a NVIDIA Quadro 4500.

Figure 5 shows the performance of the system while following a
path over the 22 Billion Earth dataset. From the graphs we can
see that the rendering performance is unaffected by the loading of
data, and is capable of consistently rendering over 75 million trian-
gles/second. The second graph shows that the use of fewer render-
ing nodes allows our method to maintain a low error threshold while
spending only a fraction of frame time adapting the frame. Note
that for the spherical earth model, we have opted to store the model
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Figure 5: The graph on the left shows the throughput of the system
while rendering a path along the 22B sample Earth dataset. The
rendering rate stays over 75M triangles/s, even when large amounts
of data are loaded. The graph on the right shows adapt and load
times from the same pass, along with the screen-space error which
has been capped at 4 pixels by the system.

as a scalar (radius) field and compute the 3D coordinates on the
fly in the vertex unit. The reduces storage and bandwidth require-
ments but has some significant impact on throughput. For standard
height fields or geometry images, we regularly see throughput over
100M triangles/second with the vertex texture lookups and border
stitching.

In Figure 6 we show the number of nodes versus the average adapt
time over a path and the number of nodes versus the average screen-
space error in pixels over the same path for the North America data
set. Notice that there is a clear trade-off between the CPU time and
the number of nodes as well as between the number of nodes and
the error. Both of the paths were run with a triangle budget of 4M
triangles.
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Figure 6: The plot on the left shows the advantage of using fewer
nodes to render a scene. As more nodes are used the adapt time
increases, forcing more time to be spent adapting the scene. The
plot on the right demonstrates the benefit of using more nodes, as
it allows the error to be more evenly distributed across the scene

The plots shown in Figure 6 demonstrate the need for our method.
While we want to use more nodes to better distribute the error, we
also want to use fewer nodes to minimize the computation time
spent adapting the scene. Our method permits exactly this type of
balancing, since nodes have a selection of LOD levels, allowing
a fixed number of nodes to be used. For our method we could,
therefore, pick the optimal number of nodes to render an optimal
number of triangles, removing the CPU and GPU bottlenecks.

To test the flexibility of our system we simulated varying machine
configurations by throttling both the CPU and the GPU perfor-
mance of the computer. In the Figure 7 we throttle the 2.4GHz
AMD Opteron CPU to three different settings, 2.4GHz, 1.8GHz
and 1.0GHz and show that the ability to choose the number of nodes
allows our method to perform well on various configurations.

We have also throttled the GPU to 470MHz, 200MHz and 100MHz
as shown in Figure 7. This test shows that adjusting the triangle
count of a node allows for a more optimal matching to the CPU
and GPU performance. Because we can do this independently of
the number of rendering nodes we can adapt a slow GPU while still
using a large number of nodes, giving a better bound on the error in
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Figure 7: In the graphs on the left the number of nodes is maintained
while the CPU is throttled. By using fewer nodes we can maintain
a stable adapt time while still maintaining the 2M triangle budget.
The graphs on the right show rendering performance of the throttled
GPU. By allowing our method to adaptively select the number of
triangles per node we benefit from the larger number of nodes while
still staying within the triangle budget. All of the graphs show the
total time to render a 1917 frame path using 400 nodes and a 2M
triangle budget unless specified otherwise.

the scene.

9 CONCLUSIONS

The data structures, algorithms, and prototype system we have pre-
sented here explore a number of useful ideas and trends for high
performance rendering on evolving graphics hardware. Our ap-
proach incorporates ideas from seamless geometry atlas parame-
terization, geometry image resampling, and quad-tree-based hierar-
chical rendering.

We have presented a new step forward in the trends of hierarchical
rendering – a multi-grained level of detail system rendering from
geometry image and height map data. This system is capable of
replicating the previous LOD approaches such as discrete, view-
dependent and coarse-grained LOD. These methods effectively be-
come a subset of our method, giving our system far more flexibility.
This permits the balancing of the CPU and GPU workloads, allow-
ing for the adapt and rendering work to be managed independently,
something not previously possible with other LOD systems.

The flexibility of our method also permits the balancing of both
the CPU and GPU workload across various machines, allowing our
system to use a common hierarchy on a variety of hardware with
varying capabilities.

Our system uses the latest abilities of GPU’s in order to take advan-
tage of their ever-increasing performance, and the increasing flex-
ibility of the vertex and fragment processors. The use of features
such as geometry images and vertex texturing allows our method to
be extended in the future. We believe that the use of such geome-
try images is a trend that will increase as the texturing pathways
through the graphics hardware become more complete, and that
such methods provide an elegant solution to problems like bound-
ary stitching on the GPU.

Finally, it seems that a number of additional features common to
high-performance rendering systems could be incorporated with
our approach in the future to produce a system which is both very
flexible and has even better performance. These include data pre-
fetching, compression, back-patch culling, occlusion culling.
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