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Abstract

Morse theory reveals the topological structure of a shape based on
the critical points of a real function over the shape. A poor choice of
this real function can lead to a complex configuration of an unnec-
essarily high number of critical points. This paper solves a relaxed
form of Laplace’s equation to find a “fair” Morse function with a
user-controlled number and configuration of critical points. When
the number is minimal, the resulting Morse complex cuts the shape
into a disk. Specifying additional critical points at surface features
yields a base domain that better represents the geometry and shares
the same topology as the original mesh, and can also cluster a mesh
into approximately developable patches. We make Morse theory on
meshes more robust with teflon saddles and flat edge collapses, and
devise a new “intermediate value propagation” multigrid solver for
finding fair Morse functions that runs in provably linear time.

Keywords: atlas generation, computational topology, Morse the-
ory, surface parameterization, texture mapping

1 Introduction

Morse theory connects the differential geometry of a surface with
its algebraic topology. Given a real function over some shape, it de-
scribes the connectedness of the shape from the configuration of the
points where the function’s gradient vanishes, its so-called critical
points (e.g. minima, maxima, saddles).

Morse theory has been used in graphics and visualization to an-
alyze different real functions. Terrain data, e.g., is defined by an
altitude function on the plane, and Morse theory can identify topo-
graphical features, control their simplification [Bajaj and Schikore
1998], and organize them into a multiresolution hierarchy [Bremer
et al. 2003]. The zeroset of a real function over 3-space defines an
isosurface, and Morse theory can determine its topology for more
accurate polygonization [Stander and Hart 1997].

When given only a shape, the critical points of almost all real
functions on its surface can be used to interrogate its topology, but
some functions are much better choices than others. The Euler char-
acteristic χ reveals the genus of a closed connected manifold mesh
by the formula

χ = vertices− edges+ faces = 2−2g. (1)

The Euler characteristic can also be calculated from the critical
points

χ = minima− saddles+maxima. (2)

(a) (b)

Figure 1: An altitude function (a) yields a complicated arrangement
of 3,605 critical points on the genus-6 Buddha. Our method yields
a fair Morse function (b) with the least number of critical points, in
this case one blue minimum, one red maximum and twelve green
saddles. Cutting along the indicated path separates the mesh into a
shape topologically a disk suitable for planar parameterization.

By combining these two equations we see that the smallest num-
ber of critical points possible on a genus g closed oriented manifold
is one minimum, one maximum and 2g saddles. However, an ar-
bitrarily chosen Morse function like altitude can yield many more
critical points, satisfying the Euler characteristic with any number
of additional extrema (minima or maxima) matched by the same
number of additional saddles. For example, the altitude function on
the genus-6 Buddha model, Fig. 1(a), yields 3,605 critical points.
A better choice of function (b) yields the minimum number of 14
Morse critical points for this shape. This paper describes how to
find such a function and how to use it to solve various problems in
meshed geometry processing.

These extra critical points are caused by the altitude function’s
sensitivity to surface undulation. A vertical wrinkle in the surface,
no matter how small, creates a pair of critical points. These undu-



lations could be removed by smoothing the surface, but it is easier
and less destructive to smooth the function. We leave the surface
unchanged, and instead apply Laplacian smoothing to the function
to remove its “wrinkles” until it converges to a smooth, in fact har-
monic, result that yields the least number of critical points. Be-
cause we are removing unwanted function variation over the sur-
face, we call this process Morse fairing and the resulting function a
fair Morse function.

Given a fair Morse function, one can trace gradient-descent flow-
lines down the edges of the mesh from the saddle points to the min-
imum. These flowlines form a seam that allows the mesh to be cut
into a shape topologically equivalent to a disk. Most other methods
used in graphics to cut a surface into a disk are based on a region-
growing Dijkstra’s algorithm. Sec. 2 reveals that Dijkstra’s algo-
rithm is in fact an arbitrarily chosen Morse function which leads to
extraneous topological events that must be identified and removed.

Sec. 3 reviews Morse theory and the state of the art in its ap-
plication to meshes. This section offers new solutions that make
Morse theory work more robustly on meshes, including managing
high-multiplicity saddles, the application of Conley index theory to
resolve degenerate “flat” regions, and “teflon” saddles that avoid a
degenerate Morse structure.

Sec. 4 describes the Morse fairing process, based on solving a
constrained Laplacian over the mesh. A theorem in this section
leads to a new “intermediate value propagation” multigrid solver
that performs Morse fairing in provably linear time, allowing it to
be applied in-core to any size mesh, and outruns an irregular-mesh
multigrid Laplacian solver.

Morse fairing can also produce a real function with a user-
specified number of critical points, and can place its extrema in
user specified positions. Sec. 3 reviews how the gradient-descent
paths of this function embed a graph, called the Morse complex,
in the meshed surface that contains a vertex for each minimum, a
face containing each maximum and the exact arrangement of edges
needed to ensure it matches the topology of the mesh. Section 5 de-
scribes applications of the faired Morse complex for cutting a sur-
face into a disk, constructing a feature-sensitive topology-correct
base domain, clustering faces toward developable charts and visu-
alizing the topology of a complex surface. Sec. 6 concludes with
a discussion of the limitations of Morse fairing and directions for
further research.

2 Previous Work

Cutting a Surface into a Disk. The problem of cutting a
closed genus-g mesh of n vertices into a single flattenable com-
ponent has been investigated as the polygonal schema problem in
computational topology [Vegter 1997; Dey et al. 1999a]. Finding
optimal cuts is NP-hard, but cuts within O(log2 g) of optimal can
be found in O(g2n logn) time [Erickson and Har-Peled 2002], and
paths through a common base point can be optimized in polynomial
time [de Verdière and Lazarus 2002]. Arbitrary cuts can be found
in O(gn) time [Lazarus et al. 2001]. Morse fairing finds the least
number of non-optimal cuts through a base point in time linear in
the number of vertices, but with an approach that is significantly
easier to implement.

Mesh topology methods in computer graphics, including topo-
logical noise removal [Guskov and Wood 2001], geometry images
[Gu et al. 2002], and feature detection [Zhang et al. 2003], find
mesh cuts primarily with region growing [Dey and Schipper 1995].
In a closed manifold, a front expanding from a base point will self
intersect, and these self intersections flag the presence of a handle.
Front propagation is robust and works well even on meshes with
boundaries, and Dijkstra’s algorithm can be used when the length
of cuts is important.

Front propagation generates a real function over the mesh, when
the mesh is sufficiently subdivided, the collisions of these fronts
form Morse critical points [Axen and Edelsbrunner 1998]. The
choice of distance-to-base-point as the Morse function is arbitrary
with respect to the surface topology which makes it unecessarily ex-
pensive and prone to generating more critical points than necessary.
Morse fairing provides a less expensive real function that generates
the same topological information as front propagation, but avoids
the maintenance of an prioriry-queued equidistant front and the ex-
pense of collision detection.

Morse Theory on Meshes. Morse theory was originally de-
vised for smooth functions on manifolds [Milnor 1963], though it
extends elegantly to piecewise linear functions on triangle meshes
[Banchoff 1970].

Edelsbrunner et al. [2002] further refined the application of
Morse theory to meshes. They first define persistence as the dif-
ference in value between a pair of critical points that would cancel
each other after the appropriate perturbation. Persistence prioritizes
the cancellation of critical points, which allows one to control the
simplification of features in terrain data and general 2-manifolds
[Edelsbrunner et al. 2003b; Bremer et al. 2003]. These methods
can remove all unnecessary critical points, but do so in order of
increasing persistence. Morse fairing leapfrogs this persistence or-
ganization and removes unwanted critical points in a single step.

The Reeb graph has also been used in graphics to represent shape
topology, e.g. [Shinagawa et al. 1991; Hilaga et al. 2001]. The Reeb
graph uses graph topology to represent solid topology (e.g. a Reeb
graph cycle represents a torus hole). Similar to us, Steiner & Fis-
cher [2001] also used a mesh Laplacian to simplify topology, but
instead generated a simplified Reeb graph that lacked extraneous
details from non-topological features. The Morse complex repre-
sents topology in a surface embeddable structure, and so makes it
more amendable to the application of surface processing.

Laplacian Smoothing. Bajaj et al. [1998] observed that
smoothing a Morse function with a Gaussian filter cancelled many
pairs of unnecessary critical points, which simplified the critical
point structure to aid in the visualization of scientific data. Bremer
et al. [2003] perform iterative Laplacian smoothing steps to can-
cel critical points in its multiresolution topology hierarchy (and to
smooth the jagged 1-cells of the Morse-Smale complex).

Ray & Levy [2003] devise a multigrid Laplacian solver similar to
ours to find a least-squares optimal conformal parameterization of a
surface triangle mesh. The solution needed for Morse fairing need
not be an exact Laplacian, and Sec. 4.3 capitalizes on this property
to simplify the multigrid implementation.

3 Morse Theory on Meshes

Morse theory relates the homotopy type of a manifold M with its
differential structure specified by the critical points of a Morse func-
tion f : M→R. This section reviews Morse theory for smooth func-
tions, then adapts it to PL functions, defining, classifing and using
critical points in the absence of derivatives.

3.1 Critical Points

Milnor [1963] provides a concise, deep but approachable descrip-
tion of Morse theory. Let p(u) ∈ M ⊂ R3 be a point on a closed
embedded 2-manifold M, in a neighborhood continuously param-
eterized by u = (u1,u2). Let f : M → R be any real function on
the manifold. A point is critical if its gradient [∂ f /∂ui] vanishes,
otherwise it is regular. A critical point is Morse if its Hessian ma-
trix [∂ 2 f /∂ui∂u j] is non-singular otherwise it is degenerate. If and
only if all its critical points are Morse, then the function f is a



Morse function. Degenerate critical points are unstable; any non-
Morse function can be perturbed into a Morse function. The index
of a Morse critical point is the number of negative eigenvalues of its
Hessian V, indicating the number of “downhill” principal directions
(eigenvectors). A Morse critical point on a 2-manifold is either an
index-0 minimum, an index-1 saddle or an index-2 maximum.

Banchoff [1970] showed not only that Morse theory extends to
triangle meshes, but moreover that its development there is even
more elementary than the smooth case. Here f is a piecewise-linear
real function. Its values are defined on the vertices of an oriented 2-
manifold triangle mesh M, and extend by linear interpolation across
the edges and faces of the mesh. For the moment, we assume for
each edge 〈v1,v2〉 ∈ M that f (v1) 6= f (v2). Hence the gradient is
constant, non-zero and well defined across the interiors of faces
and edges; critical points occur at the vertices.

Let Lk(v) denote the link of a vertex v, defined as the graph of
m vertices v1,v2, . . . ,vm that share an edge with v, along with the
edges 〈v1,v2〉,〈v2,v3〉, . . . ,〈vm,v1〉. We can decompose the link

Lk(v) = Lk+(v)tLk−(v)tLk±(v) (3)

where Lk+(v) is the upper link consisting of the vertices {vi ∈
Lk(v) : f (vi) > f (v)} and the edges {〈vi,v j〉 ∈ Lk(v) : f (vi) >

f (v), f (v j) > f (v)}) the lower link Lk−(v) (replacing > with <),
and the mixed edges Lk±(v) = {〈v+,v−〉 : f (v+) > f (v) > f (v−)}.
The number of mixed edges, #Lk±(v), is always even.

m

M0

regular
(m=0) ind=2,m=1 ind=0,m=1 ind=1,m=1 ind=1,m=2

maximum minimum  Morse saddle  monkey sad.

m x 2

Figure 2: Examples of regular and critical vertices.

We hence classify vertices as

Lk−(v) = /0 ⇒ v is a minimum with index 0,
Lk+(v) = /0 ⇒ v is a maximum with index 2,
#Lk±(v) = 2 ⇒ v is regular,
#Lk±(v) = 2+2m ⇒ v is a saddle, with index 1

and multiplicity m ≥ 1.

Assigning minima and maxima each a multiplicity m = 1 allows us
to compute the Euler characteristic as

χ(M) = ∑
v∈CritM

(−m)indv (4)

as proven by Banchoff [1970]. A saddle of multiplicity m = 1 is a
Morse saddle, but in the piecewise linear setting we have no need
for a neighborhood to be locally quadratic, so saddles of any mul-
tiplicity (e.g. m = 2 monkey and m = 3 dog saddles) can be man-
aged. Edelsbrunner et al. [2002] demonstrate that the vertex-split
of a monkey saddle perturbs it into two Morse saddles, but our ap-
plication can process non-Morse saddles directly.

3.2 The Morse Complex

A theorem of smooth Morse theory states that M is homotopic to
a cell complex that contains a λ -cell corresponding to each critical
point of index λ [Milnor 1963]. If f is Morse-Smale [Edelsbrunner
et al. 2002] then this 2-complex can be instantiated geometrically
as a graph embedded in M. This graph contains a vertex (0-cell) at

each minimum, an edge (1-cell) passing through each saddle (with
a minimum at each end), and each face (2-cell) contains exactly one
maximum. The 1-cells are constructed as integral curves of −∇ f
extending from the two “downhill” sides of the saddle points to the
minima. We call this structure the Morse complex1.

Figure 3: Altitude on a vertical torus (left) is Morse, but integral
lines flow from the upper saddle to the lower. Leaning the top of
the torus forward slightly (center) yields a Morse-Smale function
where integral lines flow from both saddles to the minimum. The
Morse complex (right) embeds a brown 0-cell at the minimum, two
orange 1-cells along the saddle-point integral lines and a single tan
2-cell in the rest of the torus surface, which contains the maximum.

As before, the embedding of the Morse complex in a smooth
manifold also extends to a meshed manifold. For a graph G let
argmin(G) return the vertex v− such that f (v−) = minv∈G f (v) In
the event G has multiple vertices that share the same least value,
assume argmin(G) returns only one of them, and always the same
one. The function argmin(Lk(v)) will act as a discrete version of
∇(− f (v)) since it returns the direction of steepest descent.

The analog of an integral curve on a mesh is the flow path. For
a regular vertex v0, the flow path, flow(v0), is the chain of vertices
(v0,v1, . . . ,vn) and edges 〈vi,vi+1〉 such that vi = argmin(Lk(vi−1))
and vn is a minimum. Flow paths do not cross but they can merge,
and once merged paths never separate.

2

Figure 4: Teflon Saddles: Flow paths are not allowed to reach a
saddle, and must travel around the saddle’s link instead in its quest
for a minimum.

We do not allow a flow path to penetrate the link of a saddle
(other than its origin). If a flow path reaches a vertex v in the link
of a saddle vs, the edge 〈v,vs〉 is not considered when computing
argminv. Thus flow paths can approach a saddle but do not reach it,
and more importantly cannot cross other paths at the saddle. This
procedure consistently and robustly reroutes paths leading into the
saddle to paths leading away from the saddle, without requiring the
careful ordering of paths prescribed in [Edelsbrunner et al. 2002].

These flow paths enable us to embed a 2-D Morse complex
X into a meshed manifold M. Let X0 be the set of 0-cells of X ,
constructed by placing a 0-cell at each minimum in M. Then for

1The Morse complex described here and by Milnor [1963] is different
than the Morse-Smale complex [Edelsbrunner et al. 2002; Edelsbrunner
et al. 2003b; Bremer et al. 2003] which more closely resembles slope dis-
tricts [Nackman 1984]. The Morse-Smale complex is the Morse complex of
f refined by the Morse complex of − f .



each Morse saddle v, decompose Lk−(v) into its two disjoint con-
nected components A and B, and let vA = argmin(A) and likewise
for vB. The 1-cell corresponding to saddle v is then the union of
flow(vA),〈vA,v〉,〈v,vB〉 and flow(vB) and its ends (minima) are at-
tached to the corresponding 0-cells. The remaining 2-cells, the con-
nected components of M−X1, will each contain a single maximum.

Figure 5: The Morse complex of the x-coordinate of a closed-
manifold version of the Utah teapot (the handle-to-spout axis). All
critical points lie in the xy-plane: blue = minimum, green = saddle
and red = maximum.

We can extend the Morse complex to handle saddles of multiplic-
ity m > 1 though it requires the rather inelegant addition of 0-cells
at these saddles2. First place a 0-cell at each saddle v of multiplicity
m. Then decompose Lk−(v) into its m + 1 connected components
{Ai} and let vi = argmin(Ai). For each of these, embed a 1-cell in
M corresponding to the flow path flow(vi), attaching one end to the
0-cell at v and the other to the 0-cell at the flow path’s terminating
minimum.

The two flow paths visiting vertices (v1,v2, . . . ,vn) and
(v′1,v

′
2, . . . ,v

′
n) can merge (vi = v′j for some minimal i < n and

j < n′). These merged paths invalidate the embedding, as it be-
comes two-to-one on the pair of corresponding 1-cells, and many-
to-one on the 2-cell between. We can repair this degeneracy of the
resulting complex by inserting a 0-cell at the merge vertex vi and
representing the two merged flow paths by a single 1-cell attached
to vi and the terminating minimum. Since we have added a 0-cell
and a 1-cell, the Euler characteristic remains unchanged, though the
resulting cell complex contains additional 0-cells that do not corre-
spond to any critical point.

3.3 Flat Regions

The flat edge limitation:〈v1,v2〉 ∈M → f (v1) 6= f (v2), can be over-
come by perturbation, but perturbation can introduce numerous
low-persistence additional critical points. A better solution for flat
edges can be drawn from Conley index theory [Mischaikow 1995;
Mischaikow and Mrozek 2002]. The Conley index simplifies the
classification of a complicated critical region in a vector field (more
general than the gradient field studied in this paper) by analyzing
the vector field along the boundary of a neighborhood of the criti-
cal region, which effectively contracts the critical region to a single
point.

Let F be a simply connected maximal collection of equal-valued
vertices, as demonstrated in Fig. 6. Then the boundary of this neigh-
borhood is LkF, where the link is the boundary of the star and in

2These additional 0-cells do not affect the Euler characteristic because
they separate a single 1-cell passing through the saddle into 2 1-cells ex-
tending from the saddle.

F x

Figure 6: A flat region of vertices can be treated as a single vertex.
Each of the vertices in the flat region appears to be regular when
ignoring flat edges, but contraction of the flat region to a single
vertex reveals it to be a saddle.

this case is the set of vertices not in F one edge away from a ver-
tex in F, and the cycle of edges connecting them. (Alternatively a
flat edge can be processed as a single vertex by an edge collape,
and simply-connected flat regions can be converted to a single ver-
tex by a sequence of flat edge collapses.) Thus the lower link can
be evaluated and the flat region classified. Since a flat region will
have more edges incident on it than would a single vertex, they are
more likely to be saddles of high multiplicity, which we can process
directly as previously described.

The altitude of the Buddha model in Fig. 1(a) contains several
flat regions that were removed by flat edge collapse. Perturbation
of these edges would have resulted in 18 additional critical points.

One may encounter a multiply-connected flat region, especially
in models designed or reconstructed by sampling a rectilinear grid.
For example the altitude of the Utah teapot from a triangle mesh
derived from its control points contains numerous flat edge cycles.
Even the x-coordinate function used in Fig. 5 contains a single flat
edge cycle at its girth. Such cases require more sophisticated meth-
ods from Conley index theory that deserve a separate and more in-
depth treatment than possible here. Such cases can nevertheless be
overcome by perturbation techniques at the risk of additional low-
persistence critical points, and the teapot in Fig. 5 has been rotated
slightly. Such multiply-connected flat regions are far less common
in Morse-faired functions.

3.4 Boundaries

We can also extend Morse theory to meshed manifolds with bound-
ary. Such manifolds contain one or more boundaries each repre-
sented by a simple closed loop of edges. In preparation for Morse
function processing, we sew up each boundary loop by inserting
a temporary vertex and creating a face between it and each edge
of the boundary loop. The location of the temporary vertex is ir-
relevant for topological processing, but for geometric concerns can
be placed at the centroid of the boundary loop vertices. Likewise
the new faces may not generate a valid embedding, but they are
only used for combinatorial processing and will be removed once a
Morse function has been found. This is similar to the scaffolding
triangles of [Zhang et al. 2003] which were used on the much dif-
ferent application of individual patch layout and parameterization.

We will assign an extremal function value to each temporary ver-
tex. If the temporary vertex is not constrained to a global minimum
or maximum, then one runs the risk of it becoming a saddle. When
the temporary vertex and its face neighborhood are removed, the
mesh will be missing a key piece of its critical point structure.

For cutting the surface into a disk, we make the vertex a mini-
mum, which will connect at least one gradient descent flow to the
boundary. When the temporary vertex and its star are removed, any
flows to it will terminate at, and include, the boundary loop. Al-
ternatively, assigning a maximum value to the temporary vertices



will encourage (but not guarantee) the flows to avoid the boundary
loops, thus isolating and preserving them in the resulting domain.

The temporary vertex increments the Euler characteristic by one
(the additional edges and faces cancel), as does the additional ex-
tremal point. The agreement of Euler characteristics means that
Morse fairing will not introduce any new saddles in response to the
new extremum.

If edges of a non-manifold mesh are shared by more than two
faces, then these edges can be made into a boundary of their inci-
dent faces. This however affects the Euler characteristic, leading
to an unexpected critical point structure. In the polygon-soup limit
where every face is a disjoint component, all topology information
is lost and the Euler characteristic reveals no more than the number
of faces.

4 Finding Fair Morse Functions

Morse fairing is based on the observation that low-pass filtering
cancels critical points, which leads to solutions of Laplace’s equa-
tion that preclude the existence of extrema except at its boundary.
This section reviews the Laplacian and its solutions, concluding
with a new scalable and very simple multigrid solver that rapidly
constructs fair Morse functions given the positions of extrema.

4.1 Harmonic Functions and Laplacians

Let fi denote the value of the real function at the vertex vi ∈V . We
assume that we are provided with a set VC ⊂V of k > 0 constrained
points, where f must take on a specified value.

Our goal is to construct a suitable function f that has no local
extrema other than the constrained points VC. The lack of local ex-
trema, except at boundary points, is one of the primary properties
of harmonic functions, which are solutions of the Laplace equa-
tion. Thus, our solution to finding a fair Morse function is to find
a solution to the Laplace equation ∆ f = 0 subject to the Dirichlet
boundary conditions imposed by the constrained vertices VC. The
resulting function will be harmonic, and will be guaranteed to be
free of extraneous local extrema.

The standard definition of the Laplacian operator on a piecewise-
linear mesh M is the umbrella operator

∆ fi = ∑
〈i, j〉∈M

wi j( f j − fi) (5)

where wi j is a scalar weight assigned to the directed edge 〈i, j〉.
It is clear from (5) that any vertex for which ∆ fi = 0 has a value
fi which is a weighted combination of the function values at its
neighboring vertices. Thus, we can guarantee that fi is not a local
extremum provided that (1) ∑ j wi j = 1 and (2) wi j > 0 for all edges
〈i, j〉. These mirror the validity conditions for linear parameteriza-
tion methods [Floater 1997].

We assemble the vertices’ function values fi into an n-vector f
and write the Laplace equation in matrix form

Lf = 0 (6)

where the elements of the n×n matrix L are given by

Li j =


∑〈i,k〉∈M wik if i = j,

−wi j if edge 〈i, j〉 ∈ M,

0 otherwise.
(7)

This matrix L is a weighted Laplacian matrix [Chung 1997]. Note
that (6) implies ∆ fi = 0 everywhere, though we have subtly flipped
a sign convention to ease the remaining derivation.

In order to enforce the specified boundary conditions, we con-
struct a constrained (aka “pegged”) Laplacian matrix L̂ where the
row for each constrained vertex is replaced with the corresponding
row of the identity matrix:

L̂i j =


1 if i = j and vi ∈VC,
0 if vi ∈VC, i 6= j,
Li j otherwise.

(8)

We then solve
L̂f = b (9)

where

bi =

{
fi if vi ∈VC,
0 otherwise,

(10)

which is unique for |VC| ≥ 2. Note that this system of equations
is entirely equivalent in form to the systems used in linear param-
eterization methods [Floater 1997; Desbrun et al. 2002], with the
exception that we are solving for a single scalar field.

If we constrain exactly two vertices vi,v j to field values fi, f j
such that fi < f j, then the function f will have a single minimum
at vi, a single maximum at v j, and by the Euler characteristic, two
saddles for each handle in M. Constraining additional vertex values
beyond the first two does not always guarantee them to be minima
or maxima. For example, constraining three vertices to three differ-
ent values could yield a solution where the middle-valued vertex is
a saddle. To control the number of minima and maxima, it is best to
constrain all maxima vertices to the same global maximum value,
and all minima vertices to the same global minimum value (so long
as no two maxima share an edge, and likewise for the minima).

Selecting Weights. In the linear system (9), we have the free-
dom to choose different schemes for assigning the edge weights
wi j. One natural choice are the combinatorial weights

Combinatorial weights: wi j = 1/deg(vi) (11)

which result in a standard graph Laplacian matrix. This system
is purely combinatorial in nature, and these combinatorial weights
ignore the geometry of the surface. The graph Laplacian uncovers
the topological structure of the surface purely from the connectivity
of its mesh.

Some applications, such as base domain construction, are sensi-
tive to the geometric properties of the field, and depend on a smooth
and well-shaped function over the manifold. These applications are
better served by geometry sensitive weight schemes, such as those
used in recent parameterization research.

The mean value weights

Mean Value weights: wi j =
tan(θ/2)+ tan(φ/2)

‖v j − vi‖
, (12)

were developed by Floater [2003] as a way to approximate har-
monic maps while maintaining the convex validity requirement.
The values θ and φ are the angles the edge 〈vi,v j〉 makes with
its two immediate neighboring edges at vi. These weights are non-
negative which prevents the introduction of unexpected local ex-
trema in the solution. They also produce exceptionally smooth and
well-graded scalar fields. Alternative weight schemes that mini-
mize the Dirichlet energy [Pinkall and Polthier 1993; Desbrun et al.
2002] also produce very smooth fields, but can take on negative
values in the presence of oblique triangles. This can introduce ad-
ditional unexpected local extrema in the solution, and makes them
unsuitable for our application.
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Figure 7: Morse functions, both smooth and fair, computed with an irregular multigrid Laplacian solver on a “zebrapus” (max: top, min:
tentacle ends), a “cazebramel” (max: nose, min: tail, feet) and a psychedelic skull (max: eyes, min: top & bottom).

4.2 Iterative and Sparse Solutions

Depending on the application and mesh size, a variety of techniques
exist to produce a fair Morse function by solving (9) or a related
system. The simplest of these is the Jacobi iteration

fi+1 = D−1b−D−1W fi (13)

where L̂ = D−W decomposes the pegged Laplacian L̂ into a di-
agonal matrix Dii = ∑k wik (which inverts elementwise) and the
weighted adjacency matrix Wi j = wi j. For the combinatorial and
mean-value weights, D = D−1 = I, and (13) simply replaces each
non-pegged vertex with the weighted average of its neighbors while
retaining the value of each pegged vertex. In this case one can sim-
ply iterate

fi+1 = L̄fi (14)

where

L̄i j =

{
0 if i = j and vi 6∈VC,
L̂i j otherwise.

(15)

is a matrix whose diagonal is zeroed at unpegged rows. Iterating
in-place performs a faster Gauss-Seidel solve. However iterated
Laplacians converge extremely slowly [Hackbusch 1985; Kobbelt
et al. 1998]. For example, mesh noise is often filtered by an iterated
unpegged Laplacian on vertex position, e.g. [Taubin 1995; Desbrun
et al. 1999], but the limit of this iteration would map all vertices to
the same position. Morse fairing is instead interested in the solution
of a pegged Laplacian.

Incremental Morse Fairing. When solving a pegged Laplacian,
the initial guess f 0 is irrelevant. However, the iteration (14) can be
used to smooth an initial function. This smoothing reduces and
eventually eliminates variation while retaining the characteristics
of the original function. This iteration has the effect of cancelling
critical point pairs in persistence order [Edelsbrunner et al. 2002]
though one does not know a priori how many iterations are required
for cancellation to occur, and cancellations may occur between un-
expected critical point pairs. We use iterative Morse fairing later in
Sec. 5 to cancel critical points for a curvature-based function.

Sparse Solution. The Laplacian system is sparse, with only
deg(vi) + 1 out of n elements in each row i. This allows sparse
solvers, such as SuperLU or netlib’s “sparse” package, to be used

which can save both space and time for large meshes. Moreover,
Morse fairing could be implemented on the GPU by solving (9)
using conjugant gradients [Bolz et al. 2003].

4.3 Multigrid Solutions

For large meshes, even very efficient sparse solution methods can be
undesirably slow. Fortunately, the structure of the fields we desire
to compute lend themselves very naturally to efficient hierarchical
solution techniques.

In order to build a suitable mesh hierarchy, we repeatedly
coarsen the mesh via edge contraction. In a single pass, we greedily
select a maximal independent set of edges to contract. We do this
by ranking all edges according to their cost of contraction as de-
termined by the quadric error metric [Garland and Heckbert 1997].
We then process edges in order of increasing costs, selecting all
contractions v j → vi that meet all of the following validity require-
ments: (1) the vertex v j is not a constrained point, (2) Neither v j
nor any of its neighbors are already marked for deletion, and (3)
The edge passes the link condition [Dey et al. 1999b] (contracting
it will not alter the topology of the surface). The result of this coars-
ening phase is a sequence of meshes M0,M1, . . . ,Mk, where M0 is
the original mesh, and Mi is the mesh after the ith coarsening step.
The simplest mesh, Mk, we refer to as the base domain mesh.

Having produced a suitable base domain, we can solve a sim-
plified constrained Laplacian system (9) on it. Note that by con-
struction, all constrained vertices must still be present in the base
domain, and it must have the same genus as the input. However,
unless an unusually large number of vertices are constrained, the
base domain can have a very simple structure. For example, the
minimal base domain for a genus-0 mesh with 2 constrained points
is a tetrahedron. Even for the turbine blade model (Fig. 13) with
295 separate connected components and 165 handles, the minimal
base domain has only 2,744 triangles and 1,632 vertices. Any rea-
sonably efficient sparse matrix solver can solve systems of this size
in a small fraction of a second on modern hardware.

4.3.1 Irregular Multigrid

Having computed an approximate solution field on the base domain
Mk, we want to extend this solution back to the original mesh M0.
We do this by a standard irregular multigrid approach quite similar



in form to those recently developed independently by Aksoylu et
al. [2003] and Ray and Levy [2003].

We repeatedly refine the mesh, undoing the contractions per-
formed during coarsening. During each refinement phase, we per-
form vertex splits corresponding to all the contractions performed
during the corresponding coarsening phase. Our validity rules guar-
antee that, when a vertex vi is reintroduced into the mesh during
refinement, the approximate solution field already exists at all of its
neighbors. Our initial estimate for the field value fi at the new ver-
tex vi is simply formed by the linear combination of its neighbors
fi = ∑ j wi j f j. This produces an approximate solution, which we
must iteratively relax (§4.2) until convergence.

This multigrid algorithm produces the same solution field as a
full matrix solver (subject to the convergence tolerance used) as
demonstrated in Fig. 7. However, its running time is dependent
on the quality of the intermediate mesh approximations, and is not
guaranteed to be O(n) if the approximations are poor3.

4.3.2 Intermediate Value Propagation

Recall that no unpegged vertices of the base domain Mk are ex-
tremal. The multigrid Laplacian solver performs a relaxation after
each vertex split is to ensure that the function value assigned to each
re-introduced vertex creates no new extrema. In fact our interest in
the Laplacian is for its elimination of extrema. The following the-
orem shows that we can avoid extrema during refinement without
constructing an expensive Laplacian solution, leading to the inter-
mediate value propagation algorithm.

vv*
i jv i

Ml-1 Ml

A B C

Figure 8: Neighborhood of a vertex split.

Theorem 1. Let non-extremal vertex vi split into edge 〈v∗i ,v j〉 and
assign f (v∗i ) = f (vi). Define the open intervals

U = ( f (vi), min
v∈Lk+(vi)

f (v)), (16)

L = ( max
v∈Lk−(vi)

f (v), f (vi)), (17)

and let

A = Lk(vi)\Lk(v j) (18)
B = Lk〈v∗i ,v j〉 (19)
C = Lk(vi)\Lk(v∗i ) (20)

categorize the vertices sharing an edge with vi. Then setting the
value of the new vertex v j such that

f (v j) ∈


L if Lk−(vi)⊂C, (Case 1)
U if Lk+(vi)⊂C, (Case 2)
L if Lk+(vi)⊂ A, (Case 3)
U if Lk−(vi)⊂ A, (Case 4)
U ∪L otherwise, (Case 5)

(21)

creates no new extrema.
3Poor approximations are in general unavoidable as no provably-good

surface simplification algorithms are yet known.

Proof. Vertex vi is not extremal: Case 1: ∃v ∈ Lk+(vi)∩ (A∪B)
such that f (v j) < f (vi) < f (v). Case 2: ∃v∈Lk−(vi)∩(A∪B) such
that f (v) < f (vi) < f (v j). Cases 3–5: ∃v1 ∈ Lk−(vi)∩(A∪B),v2 ∈
Lk+(vi)∩ (A∪B) such that f (v1) < f (vi) < f (v2).

Vertex v j is not extremal: Cases 1, 2 and 5: ∃v1 ∈ Lk−(vi)∩(B∪
C),v2 ∈ Lk+(vi)∩ (B∪C) such that f (v1) < f (v j) < f (v2). Case
3: ∃v ∈ Lk−(vi)∩ (B∪C) such that f (v) < f (v j) < f (vi). Case 4:
∃v ∈ Lk+(vi)∩ (B∪C) such that f (vi) < f (v j) < f (v).

Vertices in A do not become extremal since their links do not
change. Vertices in B do not become extremal since v j is simply
added to their links. Vertices in C do not become extremal, for if
vi was a lesser or a greater neighbor of any vertex in C, then for all
five cases setting f (v j) ∈ L∪U will continue that role.

For meshes with bounded valence, single vertex simplification
and refinement are constant-time operations. Therefore, a multi-
grid fairing algorithm using this refinement operation runs in time
linear in the number of vertices, making Morse fairing a scalable
procedure up to the size constraints of main memory. This refine-
ment results in a Morse function with the least number of critical
points.

(a) (b) (c)

Figure 9: Combinatorial weights (a) ignore the geometry of the
mesh, and can produce undesirable field variation (though no new
critical vertices). Mean value weights (b) produce a very smooth
field. Our new intermediate value propagation solution produces a
very random field (c), but surprisingly (and provably) no new criti-
cal points.

4.4 Discussion

Properly accounting for the geometry of the surface has a substan-
tial effect on our resulting fields, as demonstrated in Figure 9. Using
the purely combinatorial weights wi j = 1/deg(vi) produces a field
with a great deal of unwanted variation. In contrast, the mean value
weights produce a very smooth, pleasingly symmetric field. Inter-
mediate value propagation picks an arbitrary value within bounds
during refinement which leads to wild fields that nevertheless avoid
extrema and by the Euler characteristic result in the least necessary
number of saddles.

Table 1 compares the running times of the two multigrid ap-
proaches. Intermediate value propagation avoids the relaxation step
that a multigrid Laplacian solution requires, resulting in at least a
threefold speedup. Fig. 10 shows the scalability of both multigrid
solvers.



Mean-Value Intermediate Value
Model Vertices Laplacian Multigrid (s) Propagation Multigrid (s)
Teapot 553 0.050
V2 1,923 1.36 0.220
3-torus 4,236 1.99 0.471
Camel (S) 11,225 4.8 1.48
Cranium 12,365 1.76
Octopus 16,554 11.9 2.43
Bunny 34,834 6.17
Camel (M) 44,897 25.9 6.85
Horse 48,485 7.51
Turbine 50,260 8.49
Camel (L) 179,585 110. 34.8

Table 1: Multigrid solver execution times (256MB 1.2GHz P3).
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Figure 10: Both the mean-value and propagation multigrid solvers
scale linearly (slope of both log-log graphs is one) making them
appropriate for in-core processing of any size mesh.

5 Applications

Having derived a more robust Morse theory for meshes and a fast
algorithm for fair Morse function construction, we now turn to its
application to problems important in computer graphics.

5.1 Cutting a Surface into a Disk

Often a closed meshed surface needs to be cut into a single flatten-
able piece, which can aid surface texturing, deformation, integra-
tion, navigation, sampling and storage, and is a key ingredient of,
for example, the recently popular geometry images technique [Gu
et al. 2002]. Once cut, the mesh can be flattened into a compact
subset of the plane using any number of existing techniques, e.g.
[Floater 1997; Piponi and Borshukov 2000; Sheffer and De Sturler
2002].

We cut a surface into a disk by assigning a single minimum that
will serve as the base point, and a single maximum representing the
single face in the Morse complex. These choices can be made arbi-
trarily, e.g. as the vertices with the lowest and highest altitude. We
then solve the constrained Laplacian, which yields a Morse func-
tion with two saddle points for each handle. Each saddle will have
a cycle (pair of gradient descent paths) extending from it to the
minimum. Each handle will generate two non-separating cycles,
one around the hole, and one around the handle. Both of these
paths will extend from the base point. Thus cutting and straighten-
ing these paths yeilds a polygon with 2g sides [Firby and Gardiner
1991]. (In the event a multiple saddle occurs, the saddle is counted
with multiplicity and a gradient descent path is extended from each
connected component of its lower link.)

5.2 Constructing a Base Domain

The base domain of a polygonal mesh is a highly simplified repre-
sentation. The base domain is often constructed as the result of a
long sequence of mesh simplification steps, and sits at the root of
a surface’s multiresolution hierarchy. The faces of a base domain
correspond to clusters in the mesh, and mapping each face into the
plane leads to a multiple chart texture atlas.

A combinatorial base domain is an abstract 2-D cell complex X
and is often also a simplicial complex. The MAPS method for sur-
face parameterization [Lee et al. 1998] forms a combinatorial sim-
plicial base domain as the end result of repeated vertex removals
[Dobkin and Kirkpatrick 1985]. Though the base domain con-
structed by MAPS simplification matches the topology of the re-
fined mesh, the organization of the domain is rather arbitrary.

The Morse complex embedded in the mesh can be used to con-
struct a combinatorial base domain. The faces of the complex may
not be triangular, but the Morse-Smale complex [Edelsbrunner et al.
2002] provides a method for their tessellation. We can trace gradi-
ent ascent paths extending from the uphill sides of each saddle, and
these uphill paths will lead to a maxima. For a saddle, we con-
struct an ordered list of alternating minima and maxima that are the
endpoints of paths extending from the alternating uphill and down-
hill paths in counterclockwise order about the saddle. We tessellate
the 2-cells of the complex with these saddle-minimum-maximum
triangles4.

(a) (b)

(c) (d)

Figure 11: The greedy base domain (a) corresponding to face clus-
ters (b) constructed by MAPS. Morse fairing allows the user to
specify base domain vertices (minima) at feature tips (e.g. nose,
feet) and faces (maxima) at feature areas (e.g. shoulder, hip) to
create a more geometrically representative base domain (c) corre-
sponding to face clusters (d).

The two steepest descent flows extending from the downhill
sides of a saddle can lead to the same minimum, and likewise
the two steepest ascent flows can lead to the same maximum,
though both conditions cannot occur simultaneously for an individ-
ual Morse saddle. The geometry of the triangulated base domain

4A Morse saddle is surrounded by four such triangles, creating the
“quad” structure used for multires topology processing [Bremer et al. 2003].



may self intersect and may contain degenerate or inverted triangles,
but nonetheless serves as a viable combinatorial topological base
domain for the purposes of supporting a parameterization. More-
over, as demonstrated in Fig. 11, Morse fairing allows the user to
pick extrema which can preserve features in the base domain lost
by otherwise local and greedy simplification steps.

The quality of some multiresolution algorithms depend directly
on the quality of the base domain. For example, multiresolution
mesh morphing [Lee et al. 1999] relies on the ability to construct
meaningful correspondences between the base domains of a source
and target object. Using Morse fairing to preserve features in a base
domain makes it easier to find good source-target correspondences.

5.3 Clustering

When constructing an atlas, it is often desirable to form charts that
approximate developable patches. Multichart Geometry Images
[Sander et al. 2003] are generated from a rather expensive curva-
ture clustering algorithm that formed clusters using Dijkstra’s algo-
rithm, then repeatedly recenters these clusters using Lloyd’s algo-
rithm.

Figure 12: Morse complex of Laplacian-smoothed squared Gaus-
sian curvature yields a rapid clustering toward developable charts.

The Morse complex of Laplacian-smoothed negated squared
Gaussian curvature provides a more rapid clustering toward devel-
opable patches. Maximal regions will occur at developable regions
whereas minima mark vertices of maximal curvature. Sheffer &
Hart [2002] showed that forcing chart boundaries through high cur-
vature vertices helps minimize atlas distortion. The paths of the
Morse complex will likewise pass through the minima found at
high curvature regions. An iterated pegged Laplacian simplifies the
Morse complex to the more persistent critical vertices correspond-
ing to curvature features in the mesh, as demonstrated in Fig 12.

5.4 Visualization

We conclude the applications with the fair Morse complex of the
cooling tunnels on a jet engine turbine shown in Fig. 13. This
polygonal mesh was reconstructed from volume data and contained
294 extraneous small simply-connected components most of which
were tetrahedra that we were able to identify and remove. What
remained was a single genus-165 component. The 330 paths of the
fair Morse complex work their way around or through each of the
165 tunnels in the dataset and could be used for example as fly-
through paths for visual inspection.

Figure 13: The Morse complex of a genus-165 turbine.

6 Conclusion

Morse theory is an exciting and powerful mathematical tool for rea-
soning about the global topological structure of a shape based only
on local differential information. The unbounded number of criti-
cal points has thus far limited the application of Morse theory to a
wider variety of problems in computer graphics, mesh processing
and scientific computing. We have overcome this limitation with
the concept of a fair Morse function that minimizes its variation
across a manifold to produce the least possible number of critical
points.

Though we have made Morse theory on meshes more robust
by now handling simply-connected flat regions, preventing gradi-
ent descent paths from reaching saddles and temporarily patch-
ing boundaries, we still find it necessary to repair meshes for the
method to work properly. Though the critical points and paths can
be made to handle non-manifold cases, these special cases make it
more difficult to reason about the mesh geometry based on its Euler
characteristic, and often our implementation contains hard-coded
dependencies based on this reasoning. Stratified Morse theory pro-
vides insight into the application of Morse theory to cell complexes
and perhaps the key to extending these techniques beyond mani-
folds.

6.1 Future Work

The 1-cells of the Morse complex are simple gradient descent paths
and are by no means optimal. We believe that the gradient de-
scent paths of a harmonic Morse function are probably geodesic,
but leave the precise formulation, analysis and proof of such a state-
ment for a future manuscript. Shortening the 1-cell loops like rub-
berbands would lead to shorter cuts, but these cuts may still not be
the most basic cuts, as they can loop around any number of torus
holes any number of times. Computational homology provides a
way to optimize these cuts to avoid multiple loops and multiple
holes [de Verdière and Lazarus 2002], but we leave its integration
into Morse fairing for future study.

It is natural to consider the extension of these techniques to
piecewise linear 3-manifolds and tetrahedral meshes. For exam-
ple, Kartasheva [1999] investigated cutting a tetrahedral-mesh solid
into a topological 3-ball through the application of homology, and
Edelsbrunner et al. [2003a] applied their persistence-based topol-
ogy simplification to 3-manifolds. Unfortunately, 3-manifolds con-
tain two kinds of saddles and its Euler characteristic is the differ-
ence between the minima plus one kind of saddle, and the maxima
plus the other kind of saddle. Thus one can have a restricted num-



ber of extrema and an unbounded number of saddles and still satisfy
the Euler charateristic. (If this were not the case, then Morse fair-
ing would have led to a very easy algorithm for the classification of
3-manifolds.)
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