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The animation of delicate vortical structures of gas and liquids has been of

great interest in computer graphics. However, common velocity-based fluid

solvers can damp the vortical flow, while vorticity-based fluid solvers suffer

from performance drawbacks. We propose a new velocity-based fluid solver

derived from a reformulated Euler equation using covectors. Our method

generates rich vortex dynamics by an advection process that respects the

Kelvin circulation theorem. The numerical algorithm requires only a small

local adjustment to existing advection-projection methods and can easily

leverage recent advances therein. The resulting solver emulates a vortex

method without the expensive conversion between vortical variables and

velocities. We demonstrate that our method preserves vorticity in both vortex

filament dynamics and turbulent flows significantly better than previous

methods, while also improving preservation of energy.
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1 INTRODUCTION
A realistic animation of smoke or ink with intricate vortex phe-

nomena (Fig. 1 and Fig. 2) requires simulating an incompressible

fluid with low viscosity. The incompressible Euler equation, a.k.a. the
inviscid Navier–Stokes equation, governs the time-evolution of the

velocity vector field u : 𝑀 ⊂ R𝑛 → R𝑛 (𝑛 = 2 or 3) of such a fluid

with domain𝑀 :

𝜕
𝜕𝑡 u + u · ∇u = −∇𝑝, ∇ · u = 0. (1)

Here, 𝑝 : 𝑀 → R is the kinematic pressure of the fluid.

The majority of fluid solvers are based on splitting (1) into an

advection step and a projection step:

1: Set the flow velocity v← u; ⊲ freeze flow velocity

2: Transport u by ( 𝜕𝜕𝑡 + v · ∇)u = 0 for 𝛥𝑡 time; ⊲ advection

3: u← u − 𝛥𝑡∇𝑝 so that ∇ · u = 0 afterwards. ⊲ projection
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Fig. 1. Ink jet created after high initial velocity injection of ink into the
domain under gravity. Intricate vortex nucleation is made possible with our
Covector Fluids (CF) method. Left: Vorticity field visualized. Right: Ink jet
visualized using a high density field.

In practice, the advection step (Step 2) is achieved by generating an

inverse flow map Ψ : 𝑀 → 𝑀 with the flow velocity v for a time

span of 𝛥𝑡 and looking up the velocity field (Fig. 3a)

u(x) ← u (Ψ(x)) , x ∈ 𝑀. (2)

The update of the variable u keeps the velocity invariant on each

particle moving with the flow during the advection step.

A well-known problem of the splitting method is that it tends

to lose vorticity. As well illustrated by [Zhang et al. 2015] (see also

Fig. 3b), the transportation (2) rearranges the rotation component

of u to the divergent component, which is then removed by the

projection step. Hence, fluid solvers that aim at reproducing energetic

vortices must include some intervention in (2) that restores the

missing vorticity. Here, we name a few examples. The vorticity
confinement method modifies the flow velocity v with a centripetal

force to maintain vortex concentration [Fedkiw et al. 2001]. The

energy preserving method [Mullen et al. 2009], or the more recent

advection-reflection method [Zehnder et al. 2018], adds twice the

pressure at the halfway point of the advection rather than the end

of it. More direct methods restore the vorticity by simulating the

vorticity equation [Elcott et al. 2007; Zhang et al. 2015]. However,

the conversion between the vorticity and velocity variables requires

an expensive global integration.

In this paper, we propose a simple modification of (2):

u(x) ← (𝑑Ψ(x))⊺u(Ψ(x)), x ∈ 𝑀, (3)
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(a) MC+R [Zehnder et al. 2018] (b) BiMocq [Qu et al. 2019] (c) CF (Covector Fluids)+MCM (Ours)

Fig. 2. A bunny meteor falling. Smoke is generated from the surface of a bunny obstacle against a laminar flow with no other external force. Our method is
capable of shedding many more vortices from the surface of the obstacle. This results in a more detailed and heavier smoke cloud trailing the bunny.
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Fig. 3. (a) In a standard fluid solver, the velocity u is transported by the flow v
using an inverse flow map Ψ. (b) This process can turn a rotation motion into
a divergent one which is subsequently damped by the pressure projection.
(c) Our advection method maintains the vorticity by a multiplication with
the transposed Jacobian of the inverse flow map.

where (𝑑Ψ)⊺ is the transposed Jacobian of the inverse flow map. See

Fig. 3c. We show that (3) effectively simulates the correct vorticity
equation even in the absence of pressure (Section 4.4). Our method

splits the incompressible Euler equation while respecting vortic-

ity conservation, and requires no further vorticity restoration or

rescheduling of the addition of pressure. The modification (3) only

involves a local calculation, as opposed to other vortex methods that

require a global integration from vorticity to velocity. Fig. 1, Fig. 2,

and Fig. 4 showcase our method producing rich vortex structures.

The modified velocity update (3) transports the velocity field u
so that its line integrals along any curve 𝐶 carried by the fluid are

preserved:∫
𝐶
(𝑑Ψ(x))⊺u(Ψ(x))︸                 ︷︷                 ︸

updated u by (3)

·𝑑l =
∫
𝐶
u(Ψ(x))·𝑑Ψ(x)𝑑l =

∫
Ψ(𝐶) u·𝑑l. (4)

In particular, this transportation ensures that the circulation

∮
𝐶
u ·𝑑l

around every closed loop is conserved, which is the integral form of

the vorticity equation.

Equation (3) is a Lie advection of u treated as a covector field. This
transportation differs from the direct componentwise advection (2)

as they depict different conservation laws. The traditional compo-

nentwise advection (2) follows the conservation of linear momentum,

whereas the covector Lie advection follows Kelvin’s conservation of
circulation [Thomson 1868; Frisch and Villone 2014]. For simulating

vortex-dominant phenomena, computations based on the conserva-

tion of circulation [Elcott et al. 2007] are more advantageous.

The idea of using Lie advections in fluid simulations dates back to

the work of impulse methods [Oseledets 1989; Buttke 1993; Cortez
1995] and the development of discrete exterior calculus [Grinspun et al.
2006; Elcott et al. 2007; McKenzie 2007]. However, these methods

have mainly been studied either as smoothed particle methods

[Cortez 1995] or vortex methods [Elcott et al. 2007], which require

computational setups different from the common grid-based velocity

solver. Hence, there has been a lack of integration or discussion of

Lie advections in the mainstream fluid simulation paradigm. Our

new treatment (3) makes access to Lie advection exceedingly simple

in standard solvers. With this unification, we have access both

to accurate vortex dynamics from Lie advections and the detail-

preserving quality of the recent methods (Fig. 2).

Contributions. The proposed approach brings new machinery to

fluid simulations:

• Velocity-based vortex method: Because our method preserves

circulation, it emulates a vortex method (Section 4.4). However,

the computation of this new vortex method stays entirely

at the velocity level and within the advection-projection

computational paradigm. This alleviates the known tradeoffs

in vortex methods, such as the cost of velocity reconstruction

from vorticity and the stability problem of vortex stretching.

Compared to previous velocity-based methods, our method

preserves more details in a vortex-dominant flow (Fig. 2).

• Energy-preserving vortex method: Energy preservation has

been challenging for previous vortex methods. We demon-

strate that while our method is equivalent to a vortex method,

it preserves energy comparable to the advection-reflection

method [Zehnder et al. 2018] (Fig. 8 and Fig. 9).

• New Lie advection scheme:We introduce a simple Lie advection

integrator (Alg. 4) for covector fields using the technique of

ACM Trans. Graph., Vol. 41, No. 4, Article 113. Publication date: July 2022.
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Table 1. Method acronyms used throughout the paper.

Method Reference Acronym

Stable fluids [Stam 1999] SF

Back-and-forth error compensation and correction [Dupont and Liu 2003] BFECC

Stable and circulation preserving fluids [Elcott et al. 2007] SCPF

MacCormack [Selle et al. 2008] MC

Integrated vorticity of convective kinematics [Zhang et al. 2015] IVOCK

Reflection [Zehnder et al. 2018] R

Method of characteristic mapping [Sato et al. 2018] MCM

Bi-directional mapping of convective quantities [Qu et al. 2019] BiMocq

Covector fluids Our method CF

back-and-forth error correction and compensation (BFECC).

This is needed to reduce the numerical dissipation from which

semi-Lagrangian methods suffer [Elcott et al. 2007] (Fig. 5).

• Method of characteristic mapping with covectors: We demon-

strate that the covector fields can be pulled back using a

Lagrangian marker (Section 4.6, Section 5.3). We therefore

combine our method with the BiMocq scheme [Qu et al. 2019]

into a method of characteristic mapping that preserves more

spatial details by reducing the amount of interpolation (Alg. 5).

2 RELATED WORK
Our method stays close to the common computational framework for

physics-based smoke simulation in computer graphics introduced

by [Foster and Metaxas 1997] and [Stam 1999] (cf. the algorithm
below (1)). Foster and Metaxas [1997] employ the staggered Marker-
and-Cell (MAC) grid [Harlow and Welch 1965] and the projection
method [Chorin 1968; Temam 1969] from computational fluid dy-

namics (CFD). Stam’s Stable Fluids [1999] uses the semi-Lagrangian
scheme for the advection step, whose stability makes fluid simulation

highly practical for graphics applications. Prior to graphics, the

semi-Lagrangian scheme was primarily developed in meteorology

[Sawyer 1963; Staniforth and Côté 1991] and the finite element flow

analysis community [Douglas and Russell 1982].

A caveat in the vanilla Stable Fluids method (SF) is that it comes

with numerical viscosity. Such dissipation makes simulating inviscid

fluid phenomena such as vortex dynamics challenging, driving active

research interest in solving this problem. See Table 1 for a list of

relevant methods.

Non-dissipative advections. The lower order of accuracy and ex-

ceeding amount of interpolation in the semi-Lagrangian method

cause significant numerical dissipation. This problem can be reduced

by methods of higher-order accuracy based on (W)ENO interpola-

tions [Losasso et al. 2006]. Kim et al. [2005] and Selle et al. [2008]
apply a simple back-and-forth error compensation and correction

(BFECC) [Dupont and Liu 2003] or a modified MacCormack method

(MC) to bootstrap a 1st order semi-Lagrangian advection to a 2nd

order method. Qu et al. [2019] employ the dual mesh characteristic
(DMC) method [Cho et al. 2018], also known as a non-interpolating
semi-Lagrangian method [Rančić and Sindjić 1989]. The method

of characteristic mapping (MCM) [Tessendorf and Pelfrey 2011;

Sato et al. 2018; Qu et al. 2019] keeps track of a full Eulerian-to-

Lagrangian map to evaluate the transported quantities with fewer

interpolations. Other full Lagrangian methods use particles (FLIP,

APIC, PolyPIC) to carry out the advection with a general goal of

reducing the interpolation cost when transferring fields between

particles and the grid [Zhu and Bridson 2005; Jiang et al. 2015; Fu

et al. 2017]. Kinetic models or the lattice Boltzmann methods (LBM)

[Li et al. 2018, 2020; Lyu et al. 2021] represent the statistics of moving

particles on a grid, which are more immune to interpolations as

distributions in different velocity directions do not automatically

blend like in a macroscopic model.

However, most previous work on non-dissipative schemes only

tackles the traditional advection equation for scalar or compo-

nentwise vector fields. Except for [McKenzie 2007; Mullen et al.

2011] featuring WENO interpolations, few authors have explored

non-dissipative methods for Lie advection equations for covectors
and other differential forms. Our work introduces a simple non-

dissipative scheme for Lie advections by using the BFECC technique.

Reduction of splitting error. Besides the dissipation from the ad-

vection solver, the source of vorticity loss comes from the splitting

error between the advection and projection steps (Fig. 3b). To coun-

teract the loss of vorticity, Fedkiw et al. [2001] employs a vorticity
confinement [Steinhoff and Underhill 1994] which adds an artificial

centripetal force to confine the vorticity. The energy preserving fluid
by Mullen et al. [2009] reschedules the addition of pressure to the

halfway point of the advection rather than the end of advection.

However, the energy preserving fluid is an implicit method that

requires an expensive nonlinear Newton solve at every time step.

A more efficient variant of this energy-preserving scheme is the

advection-reflection method [Zehnder et al. 2018], which can be

viewed as an application of Strang’s splitting [Strang 1968; LeV-

eque 2002, Sect. 17.4]. The reflection method is also included in the

BiMocq method [Qu et al. 2019].

Our method removes the splitting error by modifying the advec-

tion into a covector advection. The covector advection commutes

with the pressure projection (Section 4.5).

Vortex methods. The collection of vortex methods is a major line

of work that aims at simulating vortical phenomena. In a vortex

method, one constructs a representation of the fluid vorticity and

advances it with the vorticity equation. Such representations include

vortex particles [Selle et al. 2005; Park and Kim 2005; Zhang and

Bridson 2014; Angelidis 2017], filaments [Cottet et al. 2000; Angelidis

and Neyret 2005; Weißmann and Pinkall 2009, 2010; Padilla et al.

2019], segments [Chorin 1990; Xiong et al. 2021], sheets [Brochu

et al. 2012; Pfaff et al. 2012], volumes [Elcott et al. 2007; Zhang

et al. 2015], spectral elements [De Witt et al. 2012; Liu et al. 2015;

Cui et al. 2018], and Clebsch level sets [Chern et al. 2016, 2017;

Yang et al. 2021]. While the vorticity equation is a straightforward

scalar transport equation in 2D [Yaeger et al. 1986; Chiba et al. 1994;

Azencot et al. 2014], the 3D counterpart has a vortex stretching term

which can cause numerical instability. This stretching instability is

most severe in 3D vortex particle methods, which therefore require

artificial clamping or diffusion sacrificing energy conservation. The

stretching problem is reduced with filaments, segments and sheets,

but at a cost of sophisticated vortex reconnection or re-meshing. The

Lie advection based vortex volume [Elcott et al. 2007] can maintain

a conditional stability, but suffers from loss of energy due to the

semi-Lagrangian scheme. Another caveat of vortex methods is the

demand for a stream function solver, a Biot–Savart integrator, or a
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Fig. 4. Von Kármán vortex street simulated for different methods. Our method results in increasingly more vortex nucleation close to the obstacle compared to
other methods (see Table 1 for method acronyms). The additional vortex nucleation allows our method to achieve more vortical structures throughout the
simulation (see video 4:41).

MC SCPF CF (Ours) CF+MCM (Ours)

SF SF+R MC+R BiMocq

MC SCPF CF (Ours) CF+MCM (Ours)

SF SF+R MC+R BiMocq

0 10

abs. vorticity (1/s)

velocity-to-Clebsch variable converter [Chern et al. 2017]. These

global integrators are more expensive than the pressure solver in

the velocity-based methods.

Our method simulates the vorticity equation only using the veloc-

ity variables (Section 4.4) and hence bypasses the cost of variable

conversions. Under a mild CFL condition similar to [Elcott et al.

2007], we do not observe vortex stretching instabilities, and therefore

do not require additional treatments that may sacrifice conservation

of energy.

Covector formulations. Over the years, covector formulations have

been re-introduced many times. Covectors and differential forms

were commonly used in the early studies of the incompressible

Euler equations [Lagrange 1788]. Such formalism has led to several

discoveries of conservation laws in the Lagrangian coordinates

[Frisch and Villone 2014] for several quantities including vorticity

[Cauchy 1815; Hankel 1861], velocity covector fields [Weber 1868],

and their line integrals along closed and open curves [Thomson 1868].

Unfortunately, covectors began to attract less attention during the

development of vector calculus in the later half of the 19th century.

The covector formulation resurfaced in Geometric Hydrodynamics

[Arnold 1966; Marsden and Weinstein 1983; Arnold and Khesin

1998] due to its natural role in a fluid’s particle relabeling symmetry.
Oseledets [1989] also introduces this formulation in the context of

Hamiltonian formulation of fluid dynamics [Clebsch 1859; Holm

et al. 1983; Morrison 1998; Pavlov et al. 2011; Mumford and Michor

2012; Chern 2017].

Several researchers adopted Oseledets’ covector formulation into

the impulse methods [Buttke 1993; Cortez 1995; E and Liu 1997;

Russo and Smereka 1999; Feng et al. 2022]. The impulse methods

were approached using smoothed particles [Buttke 1993] and finite

differencing [E and Liu 1997]. However, there is limited research on

extending these impulse methods into semi-Lagrangian schemes

or methods of characteristics. For example, the recent attempts of

impulse method [Feng et al. 2022] split the “stretching” term in the

Lie advection away from the semi-Lagrangian advection, failing to

be a true characteristic mapping. More recently, the impulse method

has evolved into the gauge method, whose focus has shifted to the

commutativity between the impulse advection and the addition of

pressure (Section 4.5) for interfacial treatments [Saye 2016; Yang

et al. 2021]. Beyond these lines of work, relatively few papers have

explored covector fluids computationally. To our knowledge, we are

the first to introduce a simple and general treatment (3) to obtain

covector fluid simulation that can be integrated into mainstream

fluid solvers based on semi-Lagrangian schemes and methods of

characteristic mappings.

3 PRELIMINARIES
In this section, we cover the necessary background to work with

covectors. Readers can find similar coverage for covectors in [Hirani

2003; Grinspun et al. 2006; Needham 2021]. Those readers who are

familiar with exterior calculus may skip ahead to Section 4.

3.1 Covectors
v ∈ 𝑇x𝑀

0

1

2

3

4

b ∈ 𝑇 ∗x𝑀

b⟦v⟧

x

We use 𝑀 to denote our fluid domain:

it can be an open and connected region

in R𝑛 with 𝑛 = 2, 3.1 At each point

x ∈ 𝑀 , the tangent space 𝑇x𝑀 is the

space of tangent vectors based at x. For
𝑀 ⊂ R𝑛 , 𝑇x𝑀 � R𝑛 using the Carte-

sian coordinates. The dual space of 𝑇x𝑀 , the cotangent space 𝑇 ∗x𝑀

1
Although we focus on Euclidean spaces R𝑛 in this paper, the theory covered in

Section 3.1 applies to general Riemannian manifolds.
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= (𝑇x𝑀
linear−−−−−→ R), represents the collection of all linear scalar func-

tions on 𝑇x𝑀 . Each element of 𝑇 ∗x𝑀 is called a covector based at x.
The evaluation, a.k.a. the dual pairing, of a covector b ∈ 𝑇 ∗x𝑀 and a

vector v ∈ 𝑇x𝑀 is denoted by b⟦v⟧ (see inset). A covector field is

an assignment of covector b (x) at each point x ∈ 𝑀 . We let 𝔛(𝑀)
and 𝔛∗ (𝑀) denote the space of all vector fields and covector fields

on𝑀 respectively.
2
A covector field b ∈ 𝔛∗ (𝑀) is also understood

as a differential 1-form, which is an object that can be integrated

along an oriented curve 𝐶 as

∫
𝐶
b⟦𝑑l⟧, or

∫
𝐶
b for short. Here, 𝑑l

represents an infinitesimal directed element of curve 𝐶 .

3.2 Musical isomorphisms
When 𝑇x𝑀 is equipped with an inner product ⟨·, ·⟩, each vector

a ∈ 𝑇x𝑀 is uniquely associated with a covector a♭ ∈ 𝑇 ∗x𝑀 so that

a♭⟦·⟧ = ⟨a, ·⟩. Mirroring what ♭ (flat) and ♯ (sharp) entail in the

musical context, they are the mathematical inverse of each other:

♭ turns a vector a ∈ 𝑇x𝑀 into a covector a♭, so ♯ turns a covector

b ∈ 𝑇 ∗x𝑀 into a vector b♯ . In this paper, wewill be using the Euclidean

R𝑛 inner product for our musical isomorphisms.

3.3 Differential of a function
The differential 𝑑 𝑓 of a function 𝑓 : 𝑀 → R is a covector field

defined so that (𝑑 𝑓 )⟦v⟧ is the directional derivative of 𝑓 in the

direction v. In fact, when there is an inner product structure, we

have (grad 𝑓 ) = (𝑑 𝑓 )♯ or that ⟨grad 𝑓 , v⟩ = 𝑑 𝑓 ⟦v⟧ = ⟨𝑑 𝑓 ♯, v⟩ for
all directions v. The differentials of functions form an important

subclass of covector fields. Note that not all covector fields are the

differential of a function.

3.4 Pullback operator

(Ψ∗b ) (x)

x

Ψ(x)

b (Ψ(x) )

𝑀

𝑊

Ψ

Ψ∗

Pullback is the exterior calculus

version of change of variables. In
the context of fluids, this encom-

passes the communication between

the Lagrangian and the Eulerian co-

ordinates. While a change of vari-

ables for a function is simply a func-

tion composition, a change of vari-

ables for a covector field requires

the chain rule. Suppose there are

two domains 𝑀 and𝑊 and a map

Ψ : 𝑊 → 𝑀 . The pullback of a scalar function 𝑔 : 𝑀 → R by Ψ
becomes a function on𝑊 given by

Ψ∗𝑔 :𝑊 → R, (Ψ∗𝑔) (x) = 𝑔(Ψ(x)), x ∈𝑊 . (5)

Now, the pullback of a covector field b ∈ 𝔛∗ (𝑀) by Ψ is a covector

field Ψ∗b ∈ 𝔛∗ (𝑊 ) defined so that

(Ψ∗b) (x)⟦v⟧ = b (Ψ(x))⟦𝑑Ψ(x)v⟧ for all v ∈ 𝑇x𝑊, x ∈𝑊 . (6)

Here, 𝑑Ψ(x) : 𝑇x𝑊
linear−−−−−→ 𝑇Ψ(x)𝑀 is the Jacobian matrix of Ψ at x

(see inset). This definition ensures that for exact differentials

Ψ∗ (𝑑𝑔) = 𝑑 (Ψ∗𝑔) for 𝑔 : 𝑀 → R, (7)

2
A common notation is 𝔛 (𝑀) = Γ (𝑇𝑀) and 𝔛∗ (𝑀) = Ω1 (𝑀) .

and that under the integration sign∫
𝐶
Ψ∗b =

∫
Ψ(𝐶) b (8)

for each oriented curve 𝐶 in𝑊 . The right-hand side of (6) can

further be expressed in terms of the adjoint (matrix transpose)

𝑑Ψ⊺ (x) : 𝑇 ∗
Ψ(x)𝑀

linear−−−−−→ 𝑇 ∗x𝑊 as follows:

b (Ψ(x))⟦𝑑Ψ(x)v⟧ =
(
𝑑Ψ⊺ (x)b (Ψ(x))

)
⟦v⟧. (9)

In sum, the pullback of a covector by Ψ involves a composition and

a matrix multiplication by the Jacobian transpose:

(Ψ∗b) (x) = 𝑑Ψ⊺ (x)b (Ψ(x)) . (10)

3.5 Lie Derivative
In continuum mechanics, the map between the Lagrangian and

Eulerian coordinates evolves over time as the continuum flows.

The associated change of variables, i.e. pullback, also changes over

time as a result. The Lie derivative is the generalization of the

directional derivative that measures the rate of change of a time-

varying pullback field.

Suppose we have a one-parameter family of maps Φ𝑡 : 𝑀 →𝑊 ,

𝑡 ∈ R. At each instance 𝑡 , the time-derivative ¤Φ𝑡 represents the
velocity of the flow. Each scalar field 𝑔 :𝑊 → R and covector field

b ∈ 𝔛∗ (𝑊 ) renders a one-parameter family of pullback scalar fields

Φ∗𝑡𝑔 and pullback covector fields Φ∗𝑡 b on 𝑀 . In the more familiar

case of scalar functions, the rate of change of the pullback scalar

field is equivalent to a directional derivative of 𝑔 along the vector

field ¤Φ𝑡 = 𝜕Φ
𝜕𝑡 on𝑊 :

𝜕
𝜕𝑡 (Φ

∗
𝑡𝑔) (x) = 𝜕

𝜕𝑡 (𝑔(Φ𝑡 (x))) =
( ¤Φ𝑡 · ∇𝑔) (Φ𝑡 (x)). (11)

In terms of pullbacks,
𝜕
𝜕𝑡 (Φ

∗
𝑡𝑔) = Φ∗𝑡

(
( ¤Φ𝑡 · ∇)𝑔

)
. We define the

quantity ( ¤Φ𝑡 · ∇)𝑔 as the Lie derivative for the scalar field 𝑔.
For a covector field b ∈ 𝔛∗ (𝑊 ), the Lie derivative L ¤Φ𝑡

b along the

vector field ¤Φ𝑡 is defined in the same manner by the equation

𝜕
𝜕𝑡 (Φ

∗
𝑡 b) = Φ∗𝑡

(
L ¤Φ𝑡

b

)
. (12)

Integrating both sides on the image Φ𝑡 (𝐶) ⊂𝑊 of a curve 𝐶 ⊂ 𝑀 ,

𝑑
𝑑𝑡

∫
Φ𝑡 (𝐶) b =

∫
Φ𝑡 (𝐶) L ¤Φ b . (13)

The above equation shows that the Lie derivative expresses the result

of differentiating an integral with a varying integration domain

Φ𝑡 (𝐶).
In terms of vector calculus, the Lie derivative of the covector field

b = a♭ along the vector field v = ¤Φ is given by
3
(Appendix A.1)

(Lv b)♯ = v · ∇a + (∇v) · a. (14)

4 THEORY
We use this section to elucidate the mathematical foundation of the

proposed method. The key is to rewrite the incompressible Euler

equation in terms of the velocity covector field and its Lie derivative.

We explain why the covector formulation is more resilient to time

splitting. We also demonstrate that a simulation algorithm based on

3
In index notation, (v · ∇a + (∇v) · a)𝑖 = 𝑣 𝑗 𝜕𝑗𝑎𝑖 + 𝑎 𝑗 𝜕𝑖 𝑣

𝑗
.
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(a) Initial (b) Traditional Transport with MacCormack

(c) Covector Transport with semi-Lagrangian (d) Covector Transport with BFECC

Fig. 5. (a) This covector field, visualized as a level set, is initialized differently
inside and outside of the Zalesak’s disk. (b) Component-wise advection of
covector fields fails to correctly transport the field, resulting in a wrong
orientation of the covector field. (c) The field is correctly transported using a
covector advection scheme. Despite correct transportation of the covector
field, the field is heavily dissipated due to sampling error. (d) Using BFECC,
the field is accurately transported through time. This results in a field which
matches the initial orientation while being rotated with the flow.

the covector formulation is equivalent to a vortex method computed

at the velocity level.

4.1 Transportation of covector fields
One fundamental building block of a fluid solver is the linear ad-
vection equation or the transport equation. Traditionally written

using the material derivative 𝐷
𝐷𝑡

= 𝜕
𝜕𝑡 + v · ∇, the transport equation

𝐷
𝐷𝑡

𝑋 = 0 describes a quantity 𝑋 being transported along a flow with

a given velocity v. However, this notion of material derivative only

applies to scalar fields and fails to capture the transportation of

covector fields. Here, we discuss a generalized transport equation

that incorporates covector fields. This transportation of covector

fields will be a fundamental building block of our Covector Fluids

method.

Suppose we have a known time-independent vector field v ∈
𝔛(𝑀). In the following, we use𝑀𝑡 instead of𝑀 to provide a visual

cue of the space at different time stamps. The vector field v generates
a (forward) flow map Φ𝑡 : 𝑀0 → 𝑀𝑡 by tracing the vector field:

𝜕
𝜕𝑡 Φ𝑡 = v ◦ Φ𝑡 , Φ0 = id𝑀 . (15)

Let the inverse flow map Ψ𝑡 : 𝑀𝑡 → 𝑀0 be the inverse function of

the flow map, Ψ𝑡 = Φ−1𝑡 . By taking the derivative of Ψ𝑡 ◦ Φ𝑡 = id𝑀

and (15), the equation satisfied by Ψ𝑡 is

𝜕
𝜕𝑡 Ψ𝑡 = −𝑑Ψ𝑡⟦v⟧, Ψ0 = id𝑀 . (16)

The classical transport equation for a scalar field 𝑞𝑡 : 𝑀𝑡 → R is

given by

𝐷
𝐷𝑡

𝑞𝑡 =

(
𝜕
𝜕𝑡 + v · ∇

)
𝑞𝑡 = 0, (17)

which describes that the value of 𝑞 is invariant along the flow,

𝑞𝑡 (x) = 𝑞0 (Ψ𝑡 (x)) for all x ∈ 𝑀𝑡 . Simply put, for any scalar field

𝑞𝑡 : 𝑀𝑡 → R,

𝐷
𝐷𝑡

𝑞𝑡 = 0 ⇔ 𝑞𝑡 = Ψ∗𝑡 𝑞0 . (18)

The transportation for a covector field b𝑡 ∈ 𝔛∗ (𝑀𝑡 ) is also char-

acterized by the flow-invariance in terms of pullback

b𝑡 = Ψ∗𝑡 b0, or equivalently b0 = Φ∗𝑡 b𝑡 . (19)

By taking 𝜕/𝜕𝑡 on both sides of b0 = Φ∗𝑡 b𝑡 , we obtain
4

0 = 𝜕
𝜕𝑡

(
Φ∗𝑡 b𝑡

) (12)

= Φ∗𝑡
(
𝜕
𝜕𝑡 b𝑡

)
+ Φ∗𝑡 (Lv b𝑡 ) . (20)

This relation is similarly summarized as(
𝜕
𝜕𝑡 +Lv

)
b𝑡 = 0 ⇔ b𝑡 = Ψ∗𝑡 b0 . (21)

We call the equation ( 𝜕𝜕𝑡 + Lv)b𝑡 = 0 the transport equation for
the covector fields. We shall refer to ( 𝜕𝜕𝑡 +Lv) as the Lie material
derivative.
The distinction between (18) and (21) is demonstrated in Fig. 5

where a covector field is transported with a rigid rotating flow. Evolv-

ing a covector field using traditional advection (18) (Fig. 5b) only

transports the field component-wise. Advection with (21) correctly

co-rotates the covector field (Fig. 5c).

Geometrically, the covector Lie material derivative measures the

rate of change of the line integral of a covector field b𝑡 along any

curve 𝐶 pushed by the flow Φ𝑡 ,

𝑑
𝑑𝑡

∫
Φ𝑡 (𝐶) b𝑡 =

∫
Φ𝑡 (𝐶)

(
𝜕
𝜕𝑡 +Lv

)
b𝑡 . (22)

In particular, the covector field satisfies the transport equation if and

only if its line integral along the flowing curve Φ𝑡 (𝐶) stays constant
over time.

Remark 1. In terms of the vector counterpart a𝑡 = b
♯
𝑡 , the covector

transport equation reads (cf. (14))
𝜕
𝜕𝑡 a𝑡 + v · ∇a𝑡 + (∇v) · a𝑡 = 0. (23)

This equation is also the basis for the impulse methods [Buttke 1993;
Cortez 1995; Feng et al. 2022]. In the literature, (23) is treated as a non-
trivial dynamical system for each flowing particle 𝐷a𝑡

𝐷𝑡
= −(∇v) · a𝑡 .

According to (21) and (10), (23) has an explicit integral solution

a𝑡 (x) = 𝑑Ψ
⊺
𝑡 a0 (Ψ𝑡 (x)) . (24)

4
In (12), we define Lie derivative for time-independent covector field b and time-

dependent forward flow map Φ𝑡 . Adding
𝜕
𝜕𝑡

1

Φ∗𝑡
1

b𝑡
2
= Φ∗𝑡

1

(Lvb𝑡
2
) to 𝜕

𝜕𝑡
2

Φ∗𝑡
1

b𝑡
2
=

Φ∗𝑡
1

( 𝜕b𝑡2
𝜕𝑡

2

) with the relation 𝑡1 = 𝑡2 = 𝑡 , we obtain the subsequent equation.
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In later sections, we will apply this formula to solve the covector
transport equation.

4.2 Euler equation in covector form
Here we derive the incompressible Euler equation in covector form.

Adding (∇u) · u = 1

2
∇|u|2 to both sides of (1) yields

𝜕
𝜕𝑡 u + u · ∇u + (∇u) · u = −∇

(
𝑝 − 1

2
|u|2

)
. (25)

Following Remark 1, the left-hand side is the Lie material derivative

of the covector field [ = u♭, and by Section 3.3, the right-hand side is

the differential of _ B 𝑝 − 1

2
|u|2. We call [ the velocity covector field

and _ the Lagrangian pressure. Rewriting (25) with the notations

introduced in Section 3, we obtain the incompressible Euler equation

for the velocity covector field

𝜕
𝜕𝑡 [ +Lu [ = −𝑑_, u = [♯, ∇ · u = 0. (26)

Although they are equivalent, (1) and (26) focus on different

motion laws. The left-hand side of (1) measures the rate of change of

the linear momentum u of every flowing particle. On the other hand,

the left-hand side of (26) measures the rate of change of the line
integral

∫
𝐶𝑡

[ =
∫
𝐶𝑡

u ·𝑑l along every curve 𝐶𝑡 flowing with the fluid

(see (22)). Equation (26) as a whole describes that this rate of change

of the line integral matches the difference of the Lagrangian pressure

_ at the two ends of the curve
5
[Thomson 1868]. This property is a

generalization of the better-known conservation of circulation on

flowing closed curves [Chorin and Marsden 1990].

The difference between the two motion laws (1) and (26) becomes

apparent in a flow dominated by vorticity. In (1), the pressure force is

responsible for the concentration of vorticity. Without the pressure,

the inertial motion (conservation of linear momentum) turns into

a centrifugal force that makes vortices disintegrate. In (26), the

Lagrangian pressure plays no role in the persistence of vorticity.

The mechanism for the conservation of vorticity is entirely encoded

in the left-hand side of the equation. Such a property makes an

algorithm based on time-splitting into advection and pressure steps

especially appealing (Section 4.3). We explore this property in more

detail in Section 4.4 and Section 4.5.

4.3 The Covector Fluids (CF) method
Now we describe our Covector Fluids (CF) method. Similar to a

classical advection-projection solver (Section 1), CF advances the

fluid state u by splitting (26) into the following three substeps.

1: Estimate a flow velocity, e.g. v← u; ⊲ freeze flow velocity

2: Solve ( 𝜕𝜕𝑡 +Lv)u♭ = 0 for 𝛥𝑡 time; ⊲ covector advection

3: u← u − 𝛥𝑡∇_ so that ∇ · u = 0 afterwards. ⊲ projection

These steps are visualized in Fig. 6 along side traditional advection-

projection and vortex methods. In particular, the advection step

(Step 2) is carried out by (3),

u(x) ← (𝑑Ψ(x))⊺u(Ψ(x)), x ∈ 𝑀, (27)

where Ψ is the inverse flow map generated by velocity v for a time

step of 𝛥𝑡 (Remark 1). The minor modification of (27) from the

standard methods allows one to map the technology in standard

fluid methods to the new method rather seamlessly (Section 5).

5
If a curve𝐶 connects point a to point b, then

∫
𝐶
𝑑_ = _ (b) − _ (a) .

Freeze velocity

v← u Output velocity u

Advect vector u
𝜕
𝜕𝑡 u + ∇vu = 0

Solve 𝑝 such that

div(u − ∇𝑝) = 0

Advect vorticityw
𝜕w
𝜕𝑡 + ∇vw = ∇wv

Solve u such that

∇ × u = w
div u = 0

Advect covector [
𝜕
𝜕𝑡 [ + Lv[ = 0

Solve _ such that

div([ − 𝑑_) = 0

Traditional advection projection

Vortex method

Covector advection projection (ours)

Fig. 6. Vortex methods are better at capturing vorticity, with an expensive
velocity reconstruction as a trade-off. Our method emulates the vortex
method with comparable costs to traditional advection methods.

In the remaining parts of Section 4, we explain the advantage of

the CF advection (
𝜕
𝜕𝑡 +Lv

)
[ = 0, [ = u♭, (28)

or (Remark 1)

𝜕
𝜕𝑡 u + v · ∇u + (∇v) · u = 0, (29)

over the traditional advection ( 𝜕𝜕𝑡 + v · ∇)u = 0.

4.4 Equivalence to a vortex method
The traditional advection-projection method introduces a splitting

error that destroys vorticity [Zhang et al. 2015; Zehnder et al. 2018].

This phenomenon arises solely from the advection step, since the

projection step only modifies the velocity u with a pure gradient

which leads to no change in the its curl.

Under the classical advection equation ( 𝜕𝜕𝑡 + v · ∇)u = 0, the
vorticity w = ∇ × u evolves according to

6
(Appendix A.3)

𝜕
𝜕𝑡w + v · ∇w −w · ∇v = ⟨∇u × ∇v⟩. (30)

This modified vorticity equation deviates from the correct vorticity

equation by a term ⟨∇u×∇v⟩. By contrast, the evolution ofw = ∇×u
that undergoes (29) is (Appendix A.2)

𝜕
𝜕𝑡w + v · ∇w −w · ∇v = 0 (31)

which is the correct vorticity equation. By advancing u via the

covector transportation (28) or (29), we implicitly solve the vorticity

equation (31), which is the modeling equation for vortex methods.

The ability to solve (31) at the velocity level without using the

vorticity variable is significant. Previous vortex methods which solve

(31) have to include an expensive integration that converts vorticity

back to velocity.

4.5 Commutativity between covector transportation and
pressure projection

In a traditional fluid solver, the splitting error between traditional

advection and the projection arises because two operations do not

commute. Here we show that advection and projection commute in
CF. This property of CF fundamentally removes the splitting error

of these two operations.

6
In index notation ⟨∇u × ∇v⟩𝑖 = 𝜖𝑖 𝑗𝑘𝜕𝑗𝑢

ℓ 𝜕𝑘 𝑣
ℓ .
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Consider the equivalence classes of 𝔛∗ (𝑀) where [b] = [[]
whenever b−[ = 𝑑𝜑 for some function𝜑 . This is a natural abstraction

for our discussion since two covector fields are equivalent if and

only if they share the same pressure projection result. The pressure

projection can be understood as extracting the unique divergence-

free representative in each equivalence class [[] ∈ 𝔛∗ (𝑀)/im(𝑑).
Now consider two covector fields b0, [0 ∈ 𝔛∗ (𝑀), divergence-free

or not, and transport them by the covector advection equation (28)

to obtain b𝑡 , [𝑡 respectively. Then

[b0] = [[0] if and only if [b𝑡 ] = [[𝑡 ] . (32)

To see this assertion, use (21) to express b𝑡 − [𝑡 as the pullback of

b0 − [0 by the inverse flow map

b𝑡 − [𝑡 = Ψ∗𝑡 (b0 − [0) (33)

and apply (7) so that the pullback of an exact differential is still exact.

Therefore, whether one first projects then advects, advects then

projects, or inserts a projection (or reflection [Zehnder et al. 2018])

at the halfway point of the advection, one will obtain covector fields

all in the same equivalence class and hence the same divergence-free

representative.

Note that the same argument does not apply to the traditional

advections. The transportation with a simple value look-up (2)

generally turns an exact gradient vector field into a non-gradient

field.

4.6 Extending CF with a long-time characteristic mapping
The analysis in Section 4.5 implies that we may delay the pres-

sure projection for a longer time (rather than a time step) and just

transport the velocity covector field [ using a long-time flow map.

LetΨ𝑡 : 𝑀𝑡 → 𝑀0 be the inverse flowmap (Eulerian-to-Lagrangian

map) which is the Lagrangian marker carried by the history of the

solution

𝜕
𝜕𝑡 Ψ𝑡 + u𝑡 · ∇Ψ𝑡 = 0, Ψ0 = id𝑀 . (34)

Then the velocity covector field at the current time 𝑡 is the pressure

projection of

[𝑡 = Ψ∗𝑡 [0 . (35)

In other words, if we maintain a Lagrangian marker Ψ𝑡 we obtain
the fluid state through a single-step look up. This drastically reduces

the amount of interpolation in the advection-projection iteration.

Such a long-time method of characteristic mapping (MCM) is

proposed by [Tessendorf and Pelfrey 2011; Sato et al. 2018; Qu et al.

2019]. We call the variant of the CF method based on (34) and (35)

CF+MCM.

Remark 2. CF+MCM is subtly different from the traditional MCM.
The latter requires an accumulation of the pressure gradient over time
whereas the former does not. In the traditional MCM [Qu et al. 2019],
one evaluates u𝑡 by (1) integrating over time along particle trajectories:

u𝑡 (x) = u0 (Ψ𝑡 (x)) +
∫ 𝑡

0
(∇𝑝𝜏 ) (Φ𝜏 (Ψ𝑡 (x))) 𝑑𝜏 . (36)

In CF+MCM, the time integration of (26) yields

[𝑡 = Ψ∗𝑡 [0 +
∫ 𝑡

0
(Φ𝜏 ◦ Ψ𝑡 )∗𝑑_𝜏 𝑑𝜏

= Ψ∗𝑡 [0 + 𝑑
(∫ 𝑡

0
(Φ𝜏 ◦ Ψ𝑡 )∗_𝜏 𝑑𝜏

)
.

(37)

(a) Density. (b) Vorticity.

1st order 2nd order 1st order 2nd order

0 10

abs. vorticity (1/s)

Fig. 7. 2D leapfrogging demonstrated with our method in its 1st and 2nd
order variants. By lowering diffusion with the 2nd order covector advection
scheme, the leapfrogging phenomenon is better captured.

which in a comparable notation to (36) corresponds to

u𝑡 (x) = 𝑑Ψ
⊺
𝑡 u0 (Ψ𝑡 (x))

+
∫ 𝑡

0
𝑑Ψ
⊺
𝑡 𝑑Φ

⊺
𝜏 (∇(𝑝𝜏 −

|u𝜏 |2
2
)) (Φ𝜏 (Ψ𝑡 (x))) 𝑑𝜏

= 𝑑Ψ
⊺
𝑡 u0 (Ψ𝑡 (x)) + ∇

(∫ 𝑡

0
(𝑝𝜏 − |u𝜏 |

2

2
) (Φ𝜏 (Ψ𝑡 (x))) 𝑑𝜏

)
.

(38)

As omitted in (35), the second terms in (37) and (38) can be absorbed
in a single pressure projection as they are exact differentials. This
is possible since 𝑑 (resp. ∇) in (37) (resp. (38)) can be pulled out of
the integral by the commutativity property (cf. (7)) between 𝑑 and
pullback operators. By contrast in (36), the ∇ in the pressure term
cannot be pulled out of the time integral. The accumulated pressure∫ 𝑡

0
(∇𝑝𝜏 ) ◦ Φ𝜏 ◦ Ψ𝑡 𝑑𝜏 is generally not an exact gradient. Therefore, a

traditional MCM must carefully record the accumulated pressure. This
procedure is entirely removed in CF+MCM.

5 ALGORITHM
In this section, we describe the algorithmic details of the Covector

Fluids (CF) method as discussed in Section 4.3. Our core advection

based on (28) can replace the traditional advection step and enable

us to leverage all of the standard solution techniques.

We use the following notations similar to [Zehnder et al. 2018]. Let

A (𝑞; v, 𝛥𝑡) denote an advection solver that solves ( 𝜕𝜕𝑡 + v · ∇)𝑞 = 0

for a 𝛥𝑡 timestep for a generic field 𝑞. Let Acovec (u; v, 𝛥𝑡) denote
a Lie transportation ( 𝜕𝜕𝑡 + Lv)u♭ = 0 of a covector field u♭. We

detail the algorithm of the advection step in Alg. 3 and Alg. 4. Let

P : 𝔛(𝑀) → 𝔛(𝑀) be the pressure projection operator.

5.1 Base method
Our base method is given by

Algorithm 1 Covector Fluids (1st order)

Input: Initial velocity u; step size 𝛥𝑡 ;

1: for each time step do
2: v← u; ⊲ freeze flow velocity

3: u← Acovec (u; v, 𝛥𝑡); ⊲ covector Lie advection

4: u←P (u); ⊲ pressure projection

5: end for

A simple modification using the midpoint method (a 2nd order

Runge–Kutta method) can reduce the truncation error arising from

the freezing of the flow velocity (Fig. 7):
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Algorithm 2 Covector Fluids (2nd order)

Input: Initial velocity u; step size 𝛥𝑡 ;

1: for each time step do
2: v←P

(
Acovec (u; u, 𝛥𝑡

2
)
)
; ⊲ estimate flow velocity at

𝛥𝑡
2

3: u←P (Acovec (u; v, 𝛥𝑡)); ⊲ full step

4: end for

5.2 Covector advection
The core covector advection solver is based on (27). A direct applica-

tion of (27) yields the following semi-Lagrangian (sL) method for

the covector advection A sL

covec
(u; v, 𝛥𝑡).

Algorithm 3 Subroutine A sL

covec
(u; v, 𝛥𝑡)

Input: Field to advect u, flow velocity v, time span 𝛥𝑡

1: for each point x ∈ 𝑀 do ⊲ construct inverse flow map

2: Ψ(x) ← RK4 backtrace from x with flow velocity v;
3: end for
4: u← 𝑑Ψ⊺ (u ◦ Ψ); ⊲ Pullback (Section 5.4.1)

Output: u;

Our covector advection routine A sL

covec
is simple enough, and

with a few function calls, one can derive the back-and-forth error
compensation and correction (BFECC) [Dupont and Liu 2003; Kim

et al. 2005; Selle et al. 2008] for covector advection. Fig. 5 shows

that the covector BFECC advection transports velocity correctly

in a non-dissipative manner, while the covector semi-Lagrangian

advection and the vanilla vector-based BFECC yield a dissipated

result.

Algorithm 4 Covector advection solver A BFECC

covec
(u; v, 𝛥𝑡)

Input: field to advect u, flow velocity v, time span 𝛥𝑡

1: u1 ← A sL

covec
(u; v, 𝛥𝑡);

2: ũ0 ← A sL

covec
(u1; v,−𝛥𝑡); ⊲ back-and-forth advection

3: e← ũ0 − u; ⊲ roundtrip error

4: u← u1 −A sL

covec
( e
2
; v, 𝛥𝑡); ⊲ error correction

Output: u;

5.3 Characteristic mapping (CF+MCM)
As we described in Section 4.6, the covector advection integrates

seamlessly with methods of characteristic mappings (MCM). We

combine our method and BiMocq [Qu et al. 2019] (CF+MCM) by

delaying the reinitialization of the Lagrangian Marker Ψ𝑡 . This
largely reduces the amount of interpolation during subsequent

advection steps, by only needing to advect the map Ψ and not the

velocity components. The calculation of 𝑑Ψ⊺ (u ◦ Ψ) can utilize the

values from this map, where u is a snapshot of the velocity from

the last reinitialization event. This incurs only a minor change to

our previous algorithms, as shown in Alg. 5. We choose the same

reinitialization criteria as [Qu et al. 2019], where the map is reset

either after a certain number of frames or when the map is no longer

accurate (i.e. Φ ◦ Ψ ≠ Ψ ◦ Φ).

Algorithm 5 Covector Fluids (CF+MCM)

Input: Initial velocity u; step size 𝛥𝑡 ;

1: u0 ← u; backward map Ψ← id; forward map Φ← id;

2: for each time step do
3: v← EstimateVelocity𝑡+𝛥𝑡/2; ⊲ for midpoint method

4: Ψ← A (Ψ; v, 𝛥𝑡); ⊲ advect inverse flow map

5: u1 ← 𝑑Ψ⊺ (u0 ◦ Ψ); ⊲ pullback velocity

6: Φ← SolveODE( 𝜕Φ𝜕𝑡 = v ◦ Φ;𝛥𝑡); ⊲ march flow map

7: ũ0 ← 𝑑Φ⊺ (u1 ◦ Φ); ⊲ back-and-forth transport

8: e← ũ0 − u; ⊲ roundtrip error

9: u← u1 − 𝑑Ψ⊺ ( 1
2
e ◦ Ψ); ⊲ error correction

10: u←P (u); ⊲ pressure projection

11: if reinitialization condition then
12: Φ,Ψ← id, ⊲ reset flow maps

13: u0 ← u; ⊲ reset velocity

14: end if
15: end for

Line 6–9 is the BFECC treatment, where we use RK4 for line 6.

We estimate the flow velocity at line 3 by the result of line 4–10

using flow v = u.

5.4 Additional details

𝑝,Ψ, etc. 𝑢
1
, 𝑣
1

𝑢
2
, 𝑣
2

𝑢
3
, 𝑣
3

5.4.1 Staggered Grid. We use the standard MAC

grid [Harlow and Welch 1965; Bridson 2015]

to store our variables (see inset). In Step 4 of

Alg. 3, we evaluate the velocity u ◦ Ψ by tracing

back face centers and the Jacobian 𝑑Ψ⊺ on the

corresponding entries of the Jacobian on face

centers using finite difference from neighboring cell centers. For

example, the first component of the equation u← 𝑑Ψ⊺ (u ◦ Ψ) is
computed on the face center 𝐹𝑖 𝑗 with e1 normal located between

cell 𝐶𝑖 and 𝐶 𝑗 :

𝑢1
��
𝐹𝑖 𝑗
←

[
𝜕Ψ𝑥
𝜕𝑥

𝜕Ψ𝑦

𝜕𝑥
𝜕Ψ𝑧
𝜕𝑥

] ���
𝐹𝑖 𝑗

[𝑢1

𝑢2

𝑢3

] ���
Ψ(𝐹𝑖 𝑗 )

, (39)

where

𝜕Ψ𝛼
𝜕𝑥

��
𝐹𝑖 𝑗

= 1

𝛥𝑥

(
Ψ𝛼

��
𝐶 𝑗
− Ψ𝛼

��
𝐶𝑖

)
, 𝛼 ∈ {𝑥,𝑦, 𝑧}. (40)

5.4.2 BFECC Limiter. The BFECC technique requires an extrema
(minmod) limiter [Selle et al. 2008; Qu et al. 2019] to reduce the

oscillatory dispersion. When using Alg. 4, the output value u is

clamped to the minimum and maximum values of u1 componentwise

within the immediate neighboring stencils.

Simulation 𝐶

IVOCK 1.45

SCPF 4.85

CF (Ours) 6.18

5.4.3 Conditional Stability. Our method is nu-

merically stable given a reasonably small step-

size 𝛥𝑡 . For the trefoil knot (Fig. 9) and smoke

plume (Fig. 14) experiments, we tested various

timesteps to find the maximal Δ𝑡 where the sim-

ulation remains stable. The critical CFL number is this largest Δ𝑡
normalized with the grid size Δ𝑥 and the maximal fluid speed

𝑈 = maxx,𝑡 |u(x, 𝑡) |
𝐶 = 𝑈Δ𝑡 critical

Δ𝑥 . (41)

We use 𝐶 to compare our conditional stability against various vor-

ticity methods: IVOCK [Zhang et al. 2015] and SCPF [Elcott et al.
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2007] (see inset). In our experiments we observe a stability condition

similar to SCPF and much stabler than advect-and-stretch methods

such as IVOCK.

5.4.4 Buoyancy. For gravity or buoyancy force, we apply the Boussi-
nesq model [Qu et al. 2019] f = 𝑐𝜌g where is 𝑐 is a constant, g the

gravity, and 𝜌 is an advected scalar field representing density or

temperature. We update the velocities by u← u + 𝛥𝑡f right before
the pressure projection.

5.4.5 Boundary Conditions. We employ standard boundary condi-

tions for fluid simulation [Bridson 2015]. To prescribe solid bound-

aries, we choose a Neumann, commonly referred to as a no stick,
boundary condition where the normal component of the velocity is

equal to the velocity of either the walls (zero) or obstacles (u
solid

).

To set free surfaces, we select a Dirichlet boundary condition where

pressure on the interface is set to zero. This causes a pressure gradi-

ent and velocity pointing outwards from the domain, allowing the

smoke to leave. The tracebacks during advection are another com-

putation that require boundary treatments. If the traceback reaches

outside of the domain, we set the field value using the closest point

inside the domain (sometimes referred to as the streak boundary).

6 RESULTS
In this section we discuss the numerical experiments conducted

to demonstrate our method. We modified the codebase shared by

[Qu et al. 2019] for our method as well as for the comparisons. The

codebase offers implementations of Stable Fluids, MacCormack,

Reflection, and BiMocq methods. On top of adding our Covector

Fluids algorithm to the codebase, we also implemented a few addi-

tions (e.g. 2nd order MC+R [Narain et al. 2019], RK4 traceback, and

SCPF [Elcott et al. 2007]) for a thorough comparison with relevant

methods. We include our modified codebase in the supplementary

material.

We run the 2nd order version of CF (Alg. 2) with BFECC (Alg. 4)

in all of our experiments except in Fig. 7, where we compare 2nd

order advection against 1st order. To keep the comparisons fair, we

also run the MC+R method in its 2nd order variant [Narain et al.

2019]. For experiments of BiMocq [Qu et al. 2019] and CF+MCM, we

use one-level mapping, set reinitialization frequency to every 5 time

steps, and adopt Dual Mesh Characteristics (DMC) (3D BiMocq) and

RK4 (2D BiMocq and all CF+MCM) for mapping advection.

Performance Summary. We performed our 2D experiments with

CPU-parallelism on a laptop with 2.3GHz 8-Core Intel Core i9

processor and 16GB of memory. For 3D experiments, the advection

part is GPU-parallelized using a CUDA implementation while the

remaining computations stay on the CPU. The 3D results were

computed on a desktop machine with 3.6GHz 8-Core Intel Core i7-

9700K processor, NVIDIA GeForce RTX 2080, and 16GB of memory.

We summarize the performance details of our method in Table 2.

Overall, we observe a 15% increase in computational time of a full

time step compared to existing methods. This computational cost is

mainly due to tracing back Ψ in addition to (𝑢1, 𝑢2, 𝑢3) compared

to traditional methods (e.g.MC). When compared against BiMocq

[Qu et al. 2019], we utilize the existing tracebacks of Ψ for our 𝑑Ψ⊺

computation and the increase in our computational cost is mainly

Table 2. Performance and statistics.

Figure Domain size Grid resolution 𝛥𝑡
Comp. time/step

CF CF+MCM

Ink jet (Fig. 1) 5× 10× 5 m3
128×256×128 1/48 s 12.2 s 9.3 s

Bunny meteor (Fig. 2) 10× 5× 5 m3
256×128×128 1/96 s 12.7 s 10.8 s

Von Kármán vortex street (Fig. 4) 2𝜋 × 𝜋 m
2

512 × 256 1/10 s 1.3 s 1.3 s

Covector transport (Fig. 5) 1 × 1 m2
200 × 200 2 s 21 ms 15 ms

Leapfrogging pairs (Fig. 7) 2𝜋 × 2𝜋 m
2

256 × 256 1/40 s 0.3 s 0.3 s

Taylor vortices (Fig. 8) 2𝜋 × 2𝜋 m
2

256 × 256 1/40 s 0.2 s 0.2 s

Trefoil knot (Fig. 9) 10× 5× 5 m3
256×128×128 1/48 s 8.0 s 4.8 s

Leapfrogging rings (Fig. 10) 10× 5× 5 m3
256×128×128 1/48 s 6.4 s 4.8 s

Ink drop (Fig. 11) 0.2 × 0.2 m2
512 × 512 1/100 s 1.4 s 1.2 s

SIGGRAPH ink drop (Fig. 12) 0.2 × 0.25 m2
420 × 520 1/100 s 1.2 s 1.0 s

Pyroclastic cloud (Fig. 13) 5× 10× 5 m3
128×256×128 1/192 s 11.9 s 10.7 s

Smoke plume (Fig. 14) 5× 10× 5 m3
128×256×128 1/192 s 11.3 s 9.7 s

Ground truth comp. (Fig. 15) 2𝜋 × 𝜋 m
2

1024 × 512 1/40 s 2.5 s 2.1 s

Moving obstacle (Fig. 16) 10× 5× 5 m3
256×128×128 1/48 s 9.2 s 5.1 s

Delta wing (Fig. 17) 5 × 5 × 5 m3
128×128×128 1/96 s 6.7 s 5.9 s
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Fig. 8. Evolution of Taylor vortices simulated with different methods. Using
our method, energy is conserved as well as energy preserving methods such
as MC+R. Note that error correction schemes, such as BFECC/MC, are
crucial to energy preservation.

due to the 2nd order velocity estimate. This is a relatively small

computational overhead for our improvement in capturing vortex

dynamics.

6.1 Validation
We evaluate our method in both 2D (Fig. 8) and 3D (Fig. 9 and Fig. 10)

experiments.

6.1.1 2D Taylor Vortices (Fig. 8). Following the setup from [McKen-

zie 2007; Qu et al. 2019], two shielded gaussian vortices, com-

monly referred to as Taylor vortices, are placed 0.81 meters apart.

Concretely, the vorticity distribution for each vortex is given by

𝜔 (x) = 𝑈 /𝑎(2 − 𝑟2/𝑎2) exp(0.5(1 − 𝑟2/𝑎2)), where 𝑟 is the distance
from x to the vortex center, 𝑎 = 0.3 m is the core size, and𝑈 = 1 m/s
is the maximum tangential velocity. We plot the energy loss of our

methods, compared to previous ones, in Fig. 8. There are two main

sources to this energy loss: splitting the Euler equation into an

advection step and a projection step, and the sampling error during

the advection step. Previous methods (e.g. SF+R or SCPF) that target

only the splitting error fail to preserve the energy because they still

suffer from sampling error. Our method uses covector advection and

ACM Trans. Graph., Vol. 41, No. 4, Article 113. Publication date: July 2022.



Covector Fluids • 113:11

0 1 2 3 4 5

2

3

4

5

6

7

Time (s)

En
er
gy

(J
)

SF
SF+R

SCPF

MC

MC+R

BiMocq

CF (Ours)

CF+MCM (Ours)

SF SF+R MC+R BiMocq

MC SCPF CF (Ours) CF+MCM (Ours)

Frame 134Frame 66Frame 33

0 40

vorticity norm (1/s)

(a) Evolution of trefoil knot by our CF+MCM method. (b) Trefoil knot simulated using different methods. (c) Energy plot.

Fig. 9. Trefoil Knot evolution simulated under different methods. Our methods capture the vortex seperation of the knot as shown in physical experiments
[Kleckner and Irvine 2013] (a), while best maintaining vortex strength (b). This experiment further shows that our methods improve energy preservation
compared to recent methods such as MC+R and BiMocq (c).
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Fig. 10. A pair of leapfrogging vortex rings in 3D. Here, a cross-section of
the vorticity of the rings after each leapfrog is shown. Using our method,
we are able to preserve the vortex rings after three leapfrogs, while other
methods merge during earlier leaps and heavily lose their vorticity.

BFECC to remove both the splitting and the sampling error, and is

thus able to effectively preserve energy and match the results from

previous methods like MC+R or BiMocq.

6.1.2 3D Trefoil Knot (Fig. 9). We use the parametric equation for

the trefoil knot[
𝑥 (𝜏)
𝑦 (𝜏)
𝑧 (𝜏)

]
=

[
sin(𝜏)+2 sin(2𝜏)
cos(𝜏)−2 cos(2𝜏)
− sin(3𝜏)

]
, 𝜏 ∈ [0, 2𝜋),

to set up a knotted vortex with circulation 1 m
2/s. According to

physical experiments [Kleckner and Irvine 2013], the trefoil knot

should evolve and reconnect into one smaller and one larger ring.

As shown in Fig. 9a, our method captures this vortical behavior. Our

method also maintains stronger vorticity and shows better energy

preservation compared to other methods (Fig. 9b, Fig. 9c).

6.1.3 3D Vortex Leapfrogging (Fig. 10). We initialize the experiments

with two concentric rings of radii 1.2 m and 2.0 m. Both rings have

a circulation of 0.56 m
2/s. In inviscid fluids, the two vortex rings

should influence each other and leapfrog indefinitely. We use the

duration of leapfrogging to compare different fluid simulators. As

shown in Fig. 10, the vortex rings in our method remain separate

beyond the third leap, while in the other methods the rings merge

after one or two leaps.

6.2 Buoyancy and gravity
Fluids with spatially varying density are one of the main sources of

intricate vortical phenomena. Examples include rising hot smoke

and sinking heavy ink. The change in density results in a differential

gravitational acceleration, which in turn creates a vortex sheet

that eventually rolls up into mutually interacting vortices. Such a

sequence of events is commonly referred to as the Rayleigh–Taylor
instability. We set up computational experiments with the presence

of gravitational acceleration and variation in density. We compare

the qualitative results of this vortex dominated phenomenon using

different fluid solvers.

6.2.1 2D Ink Drop (Fig. 11 and Fig. 12). We design a numerical

experiment of a heavy ink drop sinking in a surrounding fluid in

a 2-dimensional space. The ink drop is initialized as a disk with

diameter 8 cm. The densities of the two phases are set so that the

effective differential acceleration is 0.85 m/s2. In an ideal continuous

setting with little viscosity, the interface will nucleate vortices across

multiple scales leading to a fractal with many details. As shown in

Fig. 11, different methods achieve different levels of detail despite the

same computational resolution. Methods with diffusive advections

(SF, SF+R, SCPF) or splitting errors (SF, MC) can only reproduce

vortices at a larger scale but fail to capture the small scale details.

The non-diffusive reflection-based solvers (MC+R, BiMocq) are

able to bring more small scale vortices. Our covector-based solvers

outperform previous methods by achieving the most detailed vortical

structures. In Fig. 12 we show that our method can apply to ink of a

general shape to obtain attractive animations (see video 4:08).

6.2.2 3D Ink Jet (Fig. 1). In nature, when ink dye is shot into water at
a high speed, the density evolves to form intricate vortical patterns.
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CF+MCM (Ours)SF MC

Initial

Final

Fig. 11. Ink drop from an initially stationary sphere blob under the influence
of gravity. Our method is able to achieve more detailed vortical structures
compared to the state-of-the-art methods.

Initial Frame 28

Frame 54 Frame 80

Fig. 12. Ink drop from an initially stationary blob in the shape of the
SIGGRAPH logo under the influence of gravity. Our method is able to
achieve highly detailed vortical structures.

We construct a similar setup for this experiment. Heavy ink is

injected into the domain at a speed of 2 m/s. The density field is

further accelerated under a gravity of 0.5 m/s2. As presented in Fig. 1,

our method faithfully recreates the vortical phenomenon. With the

vorticity field visualized, we are able to see the detailed vortical

structures evolving with the ink.

Fig. 13. Pyroclastic cloud forming out of hot smoke rising under buoyancy
using our Covector Fluids (CF) method. Our method is capable of generating
dense vortical structures, allowing for energetic and intricate smoke densities.

6.2.3 3D Smoke (Fig. 13 and Fig. 14). The evolution of smoke, where

hot, buoyant smoke is released from an outlet into the air (e.g.
volcanoes emitting pyroclastic clouds; see Fig. 13), is one fascinating

phenomenon in nature that is commonly reproduced in computer

animation. In this case, the denser and the more energetic the vortical

structures formed, the more pleasant and realistic the plumes look

to the eye. We use the amount of vorticity to compare our methods

against the state-of-the-art methods.

To set up the experiment in Fig. 14, hot smoke is emitted into the

scene from a ball with diameter 0.16 m. Given buoyancy accelera-

tion of 5 m/s2, the plume rapidly rises in the domain with time. As

seen in Fig. 14, diffusive methods (SF, SF+R, SCPF) fail to produce

noticeable vortical structures throughout the simulation. Previous

methods (e.g. MC, MC+R, BiMocq) can reduce this diffusion, but our

method delivers the most intricate vortical structure and the highest

vorticity energy. We demonstrate this advantage of our method with

pyroclastic clouds in Fig. 13, with a large circular smoke outlet of

0.46 m radius randomly injecting smoke and causing a buoyancy

acceleration of 0.5 m/s2.

6.3 Flow around obstacles
Generating flow around obstacles is essential in animations. With

relatively low viscosity, the laminar flow around the obstacle sheds

vortices downstream. In 2D (Fig. 4), the shed vortices form the iconic
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Fig. 14. Smoke plumes rising under buoyancy acceleration simulated with different methods. Top Row: Smoke plumes visualized with heavy density smoke.
Bottom Row: Vorticity visualization of the smoke plumes compared in the insets. Note that our method is capable of producing much more interesting and
detailed vortical structures throughout the simulation (see video 5:40).
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von Kármán vortex street. In 3D, the vortex shedding generates

turbulent wakes (Fig. 2) or structured vortices (Fig. 17) depending

on the obstacle geometry.

6.3.1 2D von Kármán Vortex Street (Fig. 4 and Fig. 15). In this exper-

iment, we place a disk in a laminar flow with a velocity of 0.5 m/s.
The minor asymmetry of the obstacle causes the laminar flow to

start shedding vortices and form a well known pattern, commonly

known as the von Kármán vortex street. As seen in Fig. 4, our method

manages to produce more vortices against the surface of the obstacle

compared to other methods. This signifies that our method simulates

fluid flows at higher Reynolds numbers. Previous methods either

suffer from numerical diffusion causing the pattern to match the

behavior of lower Reynolds numbers (e.g.MC) or produce unwanted

noisy results (e.g. BiMocq).

To validate this claim, we compare our method against ground

truth given by an established method (e.g. MC+R), both run with a

high resolution, a small timestep, and a controlled Reynolds number.

We add small amounts of viscosity that meets the given Reynolds

numbers. Fig. 15 shows our method producing results consistent

with the ground truth at both low (repeating pattern) and high

(broken symmetry) Reynolds numbers [Blevins 1990]. Our results in

Fig. 4 match a high Reynolds number von Kármán vortex street.

6.3.2 3D Moving Obstacle (Fig. 16). A known weakness of vortex-

based methods is the difficulty of dealing with moving obstacles

[Bridson 2015]. Since our method is velocity-based, we employ the

Fig. 15. Ground truth comparisons using the von Kármán vortex street
experiment. Here, we show our method (CF+MCM) is consistent with ground
truth computed using a established method (MC+R) both at low and high
Reynolds numbers. Note that as the Reynolds number increases, symmetry
breaks and there is no longer a repeating pattern.

C
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M
C
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ur
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C
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standard approach of modifying the no-through boundary condition

in the pressure projection step [Bridson 2015]. In this experiment,

the speed of the moving obstacle is set to 1 m/s. Our method handles

the moving boundary and leaves intricate vortex wakes (Fig. 16).

6.3.3 3D Delta Wing (Fig. 17). We setup a delta wing with a 20
◦

angle of attack, 70
◦
sweep angle, and a thickness of 0.125 m [Lyu

et al. 2021]. The background flow velocity is set to 1 m/s. Due to
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Fig. 16. A moving obstacle in the shape of Stanford bunny passing through
smoke walls, generating intricate vortical wakes.

the design of the delta wing, vortices start to nucleate along the

sides of the triangle and roll up to create lift. Fig. 17 shows our

method qualitatively capturing the vortex dynamics around the

delta wing, similar to the physical experiments. Note that an accurate

aerodynamics simulation requires a more careful treatment of the

solid-fluid interaction and boundary layermodeling, which is omitted

in this paper.

6.3.4 3D Bunny Meteor (Fig. 2). This example demonstrates turbu-

lent wakes behind an obstacle with irregular shape, e.g. a Stanford
bunny. The speed of the background flow is 1 m/s. We evaluate the

qualitative behavior of different solvers by the amount of vortical

structures they generate. Our method outperforms the state-of-the-

art in creating more vortices against the obstacle (Fig. 2).

7 CONCLUSION
We introduce a new advection-projection method for simulating

incompressible fluids using a Lie advection of the velocity covec-

tor field. This method only requires an extra multiplication by the

Jacobian transposed of the inverse flow map in the advection step.

The simplicity of the modification makes our approach highly com-

patible with the previous fluid simulation framework. For example,

the techniques of BFECC and MCM integrate seamlessly into the

new method. Remarkably, the new covector advection emulates a

vortex method that is capable of capturing intricate vortex dynamics.

Our method also provides better energy preservation compared to

previous methods. A number of examples of ink and smoke simula-

tions with obstacles and buoyancy demonstrate that our method is

applicable to realistic computer animations.

The conditional stability of our method is a minor drawback, in

contrast with the unconditional stability in many of the previous

fluid solvers (e.g. SF [Stam 1999], MC [Selle et al. 2008], MC+R

[Zehnder et al. 2018]). While our method is stable as long as we set

𝛥𝑡 based on an empirical CFL number similar to [Elcott et al. 2007],

we do not have an analytical stability criterion. The main source of

instability is the inclusion of the Jacobian of the flow maps, which

can be sensitive to the flow configuration. Nevertheless, our method,

which emulates a vorticity solver, is still much more stable than

most vortex methods because our method does not require special

treatment regarding the vortex stretching.

While our work has only explored Covector Fluids as an advection-

projection method on an Eulerian grid, the insights brought by this

CF (Ours)

Physical Experiment

Fig. 17. A delta wing obstacle generating smoke against a laminar flow,
with the velocity field visualized by colors. Top: Simulation results using our
Covector Fluids (CF) method. Bottom: Physical experiment results by Henri
Werlé at the Onera Hydrodynamics Visualization Laboratory [Délery 2011].

paper are general. Many other fluid computational and analytical

paradigms, previously formulated with (1), can shift to covector-

based counterparts with only simple modifications such as (3). For

example, studying kinetic models (lattice Boltzmann methods) [Li

et al. 2018, 2020] with velocity covectors may be fruitful. It is exciting

to see whether such a combination with Covector Fluids will better

capture the vorticity aspect of fluids.
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A DERIVATIONS
This appendix derives equations (14), (30) and (31).

7

7
The derivations involve vector-valued differential forms A ∈ Ω𝑘 (𝑀 ;𝑇𝑀) =

Γ ( (∧𝑘𝑇 ∗𝑀) ⊗ 𝑇𝑀) . For example, the differential A = ∇v of a vector field v ∈
𝔛 (𝑀) = Ω0 (𝑀 ;𝑇𝑀) is a vector-valued 1-form A ∈ Ω1 (𝑀 ;𝑇𝑀) , A⟦a⟧ = ∇av for

each vector a. Whenever a vector field or vector-valued form is taken derivative, we use

the covariant derivative (Levi-Civita connection) ∇ : Ω0 (𝑀 ;𝑇𝑀) → Ω1 (𝑀 ;𝑇𝑀) and
the exterior covariant derivative 𝑑∇ : Ω𝑘 (𝑀 ;𝑇𝑀) → Ω𝑘+1 (𝑀 ;𝑇𝑀) . We will use the

interior product 𝑖v : Ω𝑘 (𝑀) → Ω𝑘−1 (𝑀) as well as the identity vector-valued 1-form

I ∈ Ω1 (𝑀 ;𝑇𝑀) , 𝑖vI = I⟦v⟧ = v for all vector v. Note that for each v,w ∈ 𝔛 (𝑀) ,
𝛼 ∈ Ω𝑘 (𝑀) , 𝛽 ∈ Ωℓ (𝑀) A ∈ Ω𝑘 (𝑀 ;𝑇𝑀) , B ∈ Ωℓ (𝑀 ;𝑇𝑀) ,

• v♭ = ⟨v, I⟩, (♭ in terms of I) (42a)

• 𝑑 ⟨A ∧ B⟩ = ⟨𝑑∇A ∧ B⟩ + (−1)𝑘 ⟨A ∧ 𝑑∇B⟩, (Leibniz rule, metric) (42b)

A.1 Derivation of (14)
Here we show that Lv (a♭) = (∇va)♭ + ⟨∇v, a⟩:

Lv a♭
(42a,f)
= (𝑑𝑖v + 𝑖v𝑑)⟨a, I⟩

(42b)

= 𝑑 ⟨a, v⟩ + 𝑖v (⟨∇a ∧ I⟩ + ⟨a, 𝑑∇I︸︷︷︸
=0 (42d)

⟩)
(42b,c)
= ⟨∇a, v⟩ + ⟨a,∇v⟩ + ⟨∇va, I⟩ − ⟨∇a, v⟩

(42a)

= ⟨∇v, a⟩ + (∇va)♭ .

A.2 Derivation of (31)
Here we show that if u satisfies (29) under a divergence-free v,
then

𝜕
𝜕𝑡w + ∇vw − ∇wv = 0 (eq. (31)) holds for w = curlu. By

(14), eq. (29) implies that [ = u♭ satisfies 𝜕
𝜕𝑡 [ +Lv [ = 0 (eq. (28)).

Applying 𝑑 to (28) and using (42h), we obtain
𝜕
𝜕𝑡𝜔 +Lv 𝜔 = 0 for

the vorticity 2-form 𝜔 = 𝑑[. In 3D, the relationship between the

2-form 𝜔 = 𝑑u♭ and the vector field w = curl u is given by 𝜔 = 𝑖w`
where ` ∈ Ω3 (𝑀) is the volume form. Using this relationship we

obtain

0 = 𝜕
𝜕𝑡𝜔 +Lv 𝜔 = 𝜕

𝜕𝑡 (𝑖w`) +Lv (𝑖w`)
(42g)

= 𝑖𝜕w/𝜕𝑡 ` + 𝑖 [v,w]` + 𝑖wLv `︸︷︷︸
=0

(Lv ` = 0 since div v = 0)
= 𝑖 (𝜕w/𝜕𝑡+[v,w]) `.

Therefore,
𝜕
𝜕𝑡w+ [v,w] = 0. Finally, we arrive at (31) by substituting

[v,w] = ∇vw − ∇wv (eq. (42d)).

A.3 Derivation of (30)
We show that if v is divergence-free and u satisfies

𝜕
𝜕𝑡 u + ∇vu = 0,

then w = curlu satisfies (30). Differing from Appendix A.2 by the

term ⟨∇v, u⟩, the 1-form [ = u♭ satisfies
𝜕
𝜕𝑡 [ + Lv [ = ⟨∇v, u⟩.

Taking 𝑑 on both sides of the equation yields

𝜕
𝜕𝑡𝜔 +Lv 𝜔 = 𝑑 ⟨∇v, u⟩ (42b)= ⟨𝑑∇∇v︸︷︷︸

=0 (42e)

, u⟩ − ⟨∇v ∧ ∇u⟩
= ⟨∇u ∧ ∇v⟩.

Converting 2-forms to vector fields in 3D using 𝜔 = 𝑖w`, we obtain

𝜕
𝜕𝑡w + ∇vw − ∇wv = ⟨∇u × ∇v⟩.

• 𝑖v (𝛼 ∧ 𝛽) = (𝑖v𝛼) ∧ 𝛽 + (−1)𝑘𝛼 ∧ 𝑖v𝛽 , (Leibniz rule for 𝑖v) (42c)

• 𝑑∇I = 0; or [v,w] = ∇vw − ∇wv, (Torsion-free) (42d)

• 𝑑∇𝑑∇ = 0, (Curvature-free on flat spaces) (42e)

• Lv 𝛼 = 𝑑𝑖v𝛼 + 𝑖v𝑑𝛼 , (Cartan’s formula) (42f)

• Lv (𝑖w𝛼) = 𝑖 [v,w]𝛼 + 𝑖w (Lv 𝛼) , (Lie derivative on contraction) (42g)

• 𝑑 Lv 𝛼 = Lv 𝑑𝛼 , (Commutativity between 𝑑 and Lv). (42h)

Here [v,w] ∈ 𝔛 denotes the Lie bracket of vector fields v,w.
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