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Abstract

Matching points between multiple images of a scene is a

vital component of many computer vision tasks. Point

matching involves creating a succinct and discriminative

descriptor for each point. While current descriptors such

as SIFT can find matches between features with unique

local neighborhoods, these descriptors typically fail to

consider global context to resolve ambiguities that can

occur locally when an image has multiple similar regions.

This paper presents a feature descriptor that augments

SIFT with a global context vector that adds curvilinear

shape information from a much larger neighborhood, thus

reducing mismatches when multiple local descriptors are

similar. It also provides a more robust method for handling

2D nonrigid transformations since points are more effec-

tively matched individually at a global scale rather than

constraining multiple matched points to be mapped via a

planar homography. We have tested our technique on vari-

ous images and compare matching accuracy between the

SIFT descriptor with global context to that without.

1. Introduction

Given two or more images of a scene, the ability to match

corresponding points between these images is an impor-

tant component of many computer vision tasks such as

image registration, object tracking, 3D reconstruction, and

object recognition. Each point to be matched must be iden-

tified by describing it and its surroundings so that it can be

matched to descriptions of points in another image. It is

important that a point’s description be as unique as possi-

ble while also allowing for various image transformations

due to differences in lighting, object movement, and

changes in camera pose.

This paper presents a feature descriptor that combines a

local SIFT descriptor [9] with a global context vector sim-

ilar to shape contexts [2]. The global context helps dis-

criminate between local features that have similar local

appearance. As such, we believe that this technique more

closely matches human feature matching in that humans

are able to augment local regions with the “big picture”

that provides a overall reference to help disambiguate mul-

tiple regions with locally similar appearance.

We developed this descriptor as part of a environmental

monitoring and assessment project that classifies insects

according to their species. One such insect is stonefly lar-

vae extracted from streams and imaged under a micro-

scope (an example stonefly larva image is shown in Fig.

2(a)). In this project, we match feature points between dif-

ferent views of the insect for tracking, extraction of classi-

fication features, and ultimately 3D reconstruction.

Figure 1 illustrates the primary difficulty that this paper

addresses. In particular, an image may have many areas

that are locally similar to each other (such as the checker-

board pattern). Further, an object—such as the stonefly

larva in Fig. 2(a-b)—may have a complex shape and thus

exhibits non-affine distortions due to out-of-plane rota-

tions or other articulated or non-rigid object movements.

Multiple locally similar areas produce ambiguities when

matching local descriptors while non-rigid distortions pro-

duce difficulties when matching groups of feature points

with assumed 2D rigid body or affine transformations. The

global shape context addresses both these problems by

integrating global scope to resolve ambiguities while

allowing for non-rigid shape transformations.

Figure 1: Comparison of matching results. (a) Original 
checkerboard image. (b) Rotated 135°. (c-d) Matches 
(white) and mismatches (black) using ambiguity rejection 
with (c) SIFT alone—268/400 correct matches (67%)—and 
(d) SIFT with global context—391/400 correct (97.75%).

(a)

(d)

(b)

(c)
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2. Background

Point matching involves three steps: First, determine sta-

ble features that are of interest and/or are to be matched,

second, describe each point, and third, match each point to

those in another image by comparing descriptors. For

example, dense stereo matching estimates the distance of

every pixel from the camera by computing a pixel’s epipo-

lar disparity to triangulate its distance. In this case, every

pixel is a interest point and the descriptor can be simply

the pixel value itself or the pixel’s neighborhood—sam-

pled relative to epipolar geometry for rotation invariance

and normalized to account for brightness and contrast

changes. Since many areas produce nearly identical

descriptors, global matching is often employed to resolve

ambiguity by constraining epipolar matches.

The last few years has seen a lot of work in detecting,

describing, and matching sparse feature points. Harris and

Stephens [6] develop a corner detector that is robust to

changes in rotation and intensity but is very sensitive to

changes in scale. The Harris detector finds points where

the local image geometry has high curvature in the direc-

tion of both maximal and minimal curvature, as provided

by the eigenvalues of the Hessian matrix. They develop an

efficient method for determining the relative magnitude of

the eigenvalues without explicitly computing them.

Schmid and Mohr [16] detect key points with the Harris

detector and describe them using local differential gray-

level invariants. While the invariants are invariant to scale,

rotation, and intensity changes, the Harris detector is not

scale invariant, thus limiting the effectiveness of their

technique to scale changes. Mikolajczyk and Schmid [11]

develop a scale-invariant Harris detector that keeps key

points at each scale only if it’s a maximum in the Lapla-

cian scale-space [8]. More recently, Mikolajczyk, Zisser-

man, and Schmid [14] integrate edge-based features with

local feature-based recognition using a structure similar to

shape contexts [2] for general object-class recognition.

David Lowe [9] uses a scale-invariant detector that finds

extrema in the difference of Gaussian scale space. In [10],

he fits a quadratic to the local scale-space neighborhood to

improve accuracy. He then creates a Scale Invariant Fea-

ture Transform (SIFT) descriptor to match key points

using a Euclidean distance metric in an efficient best-bin

first algorithm where a match is rejected if the ratio of the

best and second best matches is greater than a threshold.

In [2,3], Belongie, Malik, and Puzicha start with a col-

lection of shape points (identified using the Canny edge

detector, for example) and, for each point, build the rela-

tive distribution of the other points in log-polar space. The

shape context is scale and rotation invariant and point dif-

ferences are measured using the χ2 statistic between the

log-polar histograms. They use the Hungarian algorithm to

find the best global one-to-one assignment followed by a

thin-plate spline fit to warp one shape to the other.

There has been a lot of other work in detecting, describ-

ing, and matching feature points [1,12,15,19,20]. How-

ever, for the most part, the descriptors fail to account for

global context and can therefore produce ambiguity when

matching. To remedy this, many techniques assume 2D

planar homographies (such as rigid or affine transforma-

tions) and reject bad matches using more computationally

expensive group-wise or global consistency checks. The

descriptor presented in this paper resolves the ambiguity

problem by augmenting the local descriptor with global

scope. As such, simple nearest neighbor matching is typi-

cally sufficient to resolve local ambiguity. Thus, our

matching algorithm allows for reasonable non-rigid trans-

formations since we do not need to constrain groups of

points to match under some restricted transformation.

3. Interest Point Detector

As noted, the first step in point correspondence is feature

(or interest) point detection. We have experimented with

various feature detectors including the Harris corner detec-

tor [6], curvilinear structure detector [18], and extrema in

difference of Gaussian (DoG) scale space [10]. To more

accurately quantify performance of the feature descriptors

without introducing variability due to differences in inter-

est point detectors, we use the scale-space DoG extrema

detection code available from David Lowe1 that provides

both interest points and the SIFT descriptor at each point.

The DoG is an approximation to the normalized Lapla-

cian, which is needed for true scale invariance [8]. DoG

scale space is sampled by blurring an image with succes-

sively larger Gaussian filters and subtracting each blurred

image from the adjacent (more blurred) image. In this

case, three levels of scale are created for each octave by

blurring the image with incrementally larger Gaussian fil-

ters with scale steps of . After completing one

octave, the image with twice the initial scale is resampled

by taking every other row and column and the process is

repeated for the next octave, thus reducing computation.

Interest points are characterized as the extrema (maxima

or minima) in the 3D (x, y, σ) space. As such, each pixel is

compared with its 26 neighbors in scale space and a pixel

is selected as a feature point if its value is larger or smaller

than all of its neighbors. Subsample accurate position and

scale is computed for each extrema point by fitting a qua-

dratic polynomial to the scale space function D(x, y, σ)

and finding the extremum, giving

(1)

where x = (x, y, σ) and  is the extremum position provid-

ing accurate position and scale.

1. PC linux binary code for detecting interest points and creating SIFT
descriptors is available at http://www.cs.ubc.ca/~lowe/keypoints/
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Finally, an orientation is assigned to each interest point

that, combined with the scale above, provides a scale and

rotation invariant coordinate system for the descriptor.

Orientation is determined by building a histogram of gra-

dient orientations from the key point’s neighborhood,

weighed by a Gaussian and the gradient magnitude. Every

peak in the histogram with a height of 80% of the maxi-

mum produces a key point with the corresponding orienta-

tion. A parabola is fit to the peak(s) to improve accuracy.

4. Feature Descriptor

For every interest point detected, we built a two-compo-

nent vector consisting of a SIFT descriptor representing

local properties and a global context vector to disambigu-

ate locally similar features. Thus, our vector is defined as

(2)

where L is the 128-dimension local SIFT descriptor, G is a

60-dimension global context vector, and ω is a relative

weighting factor.

4.1 SIFT

The SIFT (Scale Invariant Feature Transform) [9,10] has

been shown to perform better than other local descriptors

[13]. Given a feature point, the SIFT descriptor computes

the gradient vector for each pixel in the feature point’s

neighborhood and builds a normalized histogram of gradi-

ent directions. The SIFT descriptor creates a 16×16 neigh-

borhood that is partitioned into 16 subregions of 4×4

pixels each. For each pixel within a subregion, SIFT adds

the pixel’s gradient vector to a histogram of gradient direc-

tions by quantizing each orientation to one of 8 directions

and weighting the contribution of each vector by its mag-

nitude. Each gradient direction is further weighted by a

Gaussian of scale σ = n/2 where n is the neighborhood size

and the values are distributed to neighboring bins using tri-

linear interpolation to reduce boundary effects as samples

move between positions and orientations. Figure 2 shows

the SIFT descriptor created for a corresponding pair of

points in two stonefly images and a non-matching point.

(a)

(c)

Figure 2: (a-b) Original images with selected feature points 
marked. (c) Reversed curvature image of (b) with shape 
context bins overlaid. (d) SIFT (left) and shape context 
(right) of point marked in (a). (e) SIFT and shape context of 
matching point in (b). (f) SIFT and shape context of random 
point in (b).

(d)

(e)

(f)

(b)

F
ωL
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=
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4.2 Global Context

We use an approach similar to shape contexts [3] to

describe the global context of each feature point. Like

SIFT, shape contexts also create a histogram, but in this

case they count the number of sampled edge points in each

bin of a log-polar histogram that extends over a large por-

tion of the image. Rather than count distinct edge points—

detection of which can be sensitive to changes in contrast

and threshold values—we compute the maximum curva-

ture at each pixel. Given an image point (x, y), the maxi-

mum curvature is the absolute maximum eigenvalue of the

Hessian matrix

(3)

where rxx and ryy are the second partials of the image in x

and y, respectively, and rxy is the second cross partial. The

second derivatives are computed by convolving the image

with the corresponding second derivative of a Gaussian,

gxx, gxy, and gyy, with scale σ—in this work we use a scale

of σ = 2 pixels. Thus, the curvature image is defined as

(4)

where α(x, y) is the eigenvalue of (3) with the largest abso-

lute value. As noted in [18], α(x, y) can be computed in a

numerically stable and efficient manner with just a single

Jacobian rotation of H to eliminate the rxy term. Figure

2(c) shows the curvature image (reversed for printing),

C(x, y), resulting from the insect image in Fig. 2(b).

For each feature, the global shape context accumulates

curvature values in each log-polar bin. The diameter is

equal to the image diagonal and, like [3], our shape con-

text is a 5×12 histogram. Our implementation is not

exactly log-polar since the radial increment of the center

two bins are equal—thus, the bins have radial increments

, (5)

where r is the shape context’s radius. Each pixel’s curva-

ture value is weighted by an inverted Gaussian and then

added to the corresponding bin. The larger a pixel’s curva-

ture measure (shown as darker pixels in Fig. 2), the more it

adds to its bin. The Gaussian weighting function is

(6)

where (xf, yf) is the feature point position and σ is the same

scale used to weight the SIFT feature’s neighborhood in

Section 4.1. In this way, the weighting functions places

more importance on features beyond the neighborhood

described by SIFT and provides a smooth transition from

the local SIFT descriptor to the global shape context.

To reduce boundary effects as pixels shift between bins

and to improve computational efficiency, the curvature

image is reduced by a factor of 4 with a low-pass Harr

wavelet filter and the resulting image is further smoothed

with a Gaussian filter of scale σ = 3 pixels. The shape con-

text samples this reduced and smoothed image. Finally, the

global context vector is normalized to unit magnitude so

that it is invariant to changes in image contrast.

More specifically, if  is the feature point

position with orientation θ, then

(7)

and

(8)

are the angular and radial-distance bin indices, respec-

tively, for a point x = (x, y)T, where ||·|| is the L2 norm and r

is the shape context radius as used in (5). Let Na,d be the

neighborhood of points with bin indices a and d, then bin

 of the unnormalized histogram is computed by

(9)

where C′ is the reduced and smoothed curvature image

from Eq. (4) as described in the previous paragraph.

Finally, the normalized global shape context is given by

(10)

In practice, G is computed by scanning the shape con-

text’s bounding box, computing the indices a and d for

each pixel and incrementing the corresponding bin by

C′(x, y), and finally normalizing it to unit magnitude.

4.3 Rotation and Scale Invariance

Our combined feature descriptor, F, in Eq. (2) is rotation

invariant since both the SIFT descriptor and the shape con-

text are constructed relative to the key point’s orientation.

Further, the SIFT descriptor is scale invariant since it is

constructed in the key point’s scaled coordinate frame.

However, the size of the global context vector is a function

of the image size rather than the interest point’s scale and,

as such, is not fully scale invariant—although some scale

invariance is afforded by the smoothing and by the log-

polar construction in that the log radial bins allow for

increasing uncertainty as relative distance increases.

There are two reasons why the shape context size is not

relative to the interest point scale. First, in our insect ID

project, we only have minor scale changes. As such, we

don’t have the need for large scale invariance. Second, the

range of scales returned by the feature detector is on the
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order of a couple of pixels up to hundreds of pixels. To

capture enough global scope for the feature’s with the

smallest scale, the radius of the shape context would need

to be many (perhaps a hundred or more) times larger than

the feature’s scale. This would be impractical for the fea-

ture’s with large scale since (a) a shape context that large

would extend well beyond the image boundary and (b) the

larger features don’t really need the global context, as they

already describe a large neighborhood.

As it is, the weighting function in Eq. (6) balances the

contributions of the fixed-size shape context with the vari-

able-size SIFT descriptor. When the SIFT scale is small,

the shape context extends well beyond the SIFT descrip-

tor’s neighborhood to give the small neighborhood a glo-

bal scope. For large local features that already describe

large portions of the image, the shape context size is pro-

portionally much smaller and Eq. (6) further reduces its

relative contribution.

For our insect recognition project, we have explored a

more robust option for achieving rotation and scale invari-

ance. Since we already segment the insect prior to feature

matching (the blue background simplifies automatic seg-

mentation), we compute the principal axis of the seg-

mented insect using principal component analysis (PCA)

and build our feature descriptor relative to this global ori-

entation. The principle axis is much more robust to noise

and local transformations that would otherwise effect the

local orientation computation described in Section 3. We

also achieve scale invariance by constructing our shape

context relative to the magnitude of the principal axis.

5. Matching

Given two or more images, a set of feature points that can

be reliably detected in each image, and robust descriptors

for those features, we next match feature points between

images. Since our descriptor already includes global shape

information, we don’t need to perform expensive group-

wise or global consistency checks when matching. Conse-

quently, we compare descriptors with a simple nearest

neighbor distance or nearest neighbor with ambiguity

rejection metric with a threshold on the match. If two or

more points match to a single point in an other image, we

keep the pair with the best match and discard the other(s).

Given the definition of our feature descriptor in Eq. (2)

and two descriptors, Fi and Fj, our distance metric is a

simple Euclidean distance metric

(11)

for the SIFT component, L, of the feature vector and a χ2

statistic

(12)

for the shape context component, G. The χ2 measure is

appropriate since it normalizes larger bins so that small

differences between large bins—which typically have

much greater accumulated values—produce a smaller dis-

tance than a small difference between the small bins

(which have small values to begin with) [3]. The final dis-

tance measure value is given by

(13)

where ω is the same weight used in Eq. (2). For the results

presented here, we use a value of ω = 0.5.

Finally, we discard matches with a distance above some

threshold Td. Since the components of our feature vector,

F, are normalized, we can apply a meaningful threshold

that will be consistent across multiple images and transfor-

mations. In this work, we use Td = 0.5.

6. Results

To assess matching rate, we artificially transform images

so as to automatically determine if a match is correct. Fig-

ures 1, 3-5 compare the matching rate between SIFT alone

and SIFT with global context (SIFT+GC). For a given

descriptor (SIFT or SIFT+GC), we match each feature

point in the original image with feature points in the trans-

formed image using both nearest neighbor (NN) and ambi-

guity rejection (AR). Like [10], ambiguity rejection

throws out matches if the ratio of the closest match to the

second closest match is greater than 0.8. The resulting

matches for both NN and AR (after discarding ambiguous

matches) are then sorted from best (lowest matching dis-

tance) to worst and the best 50, 100, 200, 300, 400, etc.

matches are chosen for comparison. A match is correct if it

is within 4 pixels of its predicted position.

In Figure 3, SIFT alone correctly matches some of the

windows since the reflection of clouds disambiguates the

otherwise similar local features. Note that the SIFT scale

for both the checkerboard squares in Fig. 1 and the win-

dows in Fig. 3 are large enough to include neighboring

squares or windows. Thus, SIFT correctly matches squares

on the edge of the checkerboard since the feature neigh-

borhoods extend beyond the edge of the checkerboard;

likewise for the windows. Despite this, SIFT+GC still

increases the matching rate significantly for these images.

Figure 4 plots the matching rate as a function of the

number of matched points for SIFT and SIFT+GC using

both NN and AR matching. Matching rates are computed

using the artificially transformed images in Figures 1, 3,

and 5—four images each for rotation, skew, and both rota-

tion and skew. Note that SIFT+GC has a consistently

higher matching rate for a given matching technique and,

in many cases, SIFT+GC using NN matching produces a

higher matching rate than SIFT alone using AR matching.

dL Li Lj– Li k, Lj k,–( )2

k

= =
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Finally, Fig. 6 plots the matching rate of SIFT+GC as a

function of the relative weighting factor, ω, used in Eqs.

(2) and (13) for the images in Figures 1 and 3 as well as

the average over all images. As noted earlier, we use a

value of ω = 0.5 in all our results.

7. Conclusion and Future Work

This paper presents a technique for combining global con-

text with local SIFT information to produce a feature

descriptor that is robust to local appearance ambiguity and

non-rigid transformations. Future improvements include

making the global context scale invariant by making its

size a function of the SIFT feature size and normalizing

each bin by the amount of actual image data it contains

relative to the bin area—thus ignoring bins that are mostly

or completely outside the image. We will also explore

another idea where we accumulate descriptors themselves

in the shape contexts bins and compare bins by comparing

differences between descriptors in each bin. Finally, we

will conduct a more comprehensive quantitative study

comparing matching rate of SIFT+GC to other techniques

using various options for detection, description, and

matching under various image transformations.
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Figure 5: Images used to compute matching rates 
shown in Fig. 4. Rotated images (top) also include Fig-
ures 1.b and 3.a(center) and the skewed images (mid-
dle) also includes Fig. 3.a(right). The bottom row of 
images exhibit both skew and rotation.

Figure 6:  Correct matching rate for 200 matching points 
as a function of the relative weighting factor (ω) as used 
in Eqs. (2) and (13).
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