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Abstract
We describe a robust but simple algorithm to reconstruct a surface from a set of merged range scans. Our key
contribution is the formulation of the surface reconstruction problem as an energy minimisation problem that
explicitly models the scanning process. The adaptivity of the Delaunay triangulation is exploited by restricting the
energy to inside/outside labelings of Delaunay tetrahedra. Our energy measures both the output surface quality
and how well the surface agrees with soft visibility constraints. Such energy is shown to perfectly fit into the
minimum s-t cuts optimisation framework, allowing fast computation of a globally optimal tetrahedra labeling,
while avoiding the “shrinking bias” that usually plagues graph cuts methods.
The behaviour of our method confronted to noise, undersampling and outliers is evaluated on several data sets
and compared with other methods through different experiments: its strong robustness would make our method
practical not only for reconstruction from range data but also from typically more difficult dense point clouds,
resulting for instance from stereo image matching. Our effective modeling of the surface acquisition inverse prob-
lem, along with the unique combination of Delaunay triangulation and minimum s-t cuts, makes the computational
requirements of the algorithm scale well with respect to the size of the input point cloud.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

The problem of reconstructing a surface from a set of sam-
ple points in 3D is motivated by numerous applications in
reverse-engineering, prototyping, visualisation, or computer
vision and has consequently always been an active field of
research. In a laboratory setting, point clouds are typically
acquired as sets of range images by light-stripe laser scan-
ners with an optical triangulation system. With a registration
algorithm, these range images are then merged together to
form a dense point set. While recent reconstruction meth-
ods have exclusively considered unoriented point sets or, on
the opposite, prerequired good normal estimates for these
points, the only requirement to apply our method is the avail-
ability of approximate lines of sight: despite being either
available or easily recoverable, such datum is often simply
thrown away.

Our method put this additional information to use to for-
mulate the reconstruction problem as an energy minimisa-

tion on a Delaunay triangulation. Our energy basically mea-
sures how well an inside/outside labeling of Delaunay tetra-
hedra agrees with soft visibility constraints derived from
lines of sight and the likeliness of the output surface resulting
from this labeling. Fortunately, our energy can be interpreted
as an s-t cut in a special graph allowing a globally optimal la-
beling of tetrahedra with respect to these constraints and the
surface quality measure to be efficiently found as a minimum
s-t cut. This simple combination of a labeling of Delaunay
tetrahedra with the global optimisation of a visibility-based
energy exhibits strong resilience to various kinds of alter-
ations of the input data.

1.1. Related Work

Most surface reconstruction methods roughly fall into two
major categories: implicit surface methods and Delaunay-
based methods. Other less common approaches include de-
formable models or template-based methods.
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Figure 1: Berkeley angel. 361K vertices, 716K triangles,
genus 3 (the original model has genus 1).

Implicit methods

By constructing a function of space from the samples, a sur-
face can be implicitly defined as a level-set of the function
allowing smooth and approximating surface reconstruction.
A first example is [HDD∗92] where tangent planes are es-
timated from the k nearest neighbours of each sample. A
consistent orientation is found and the considered function
is the signed distance to the tangent plane of the closest
point in space. In [CL96], the importance of the scanning
process is acknowledged and lines of sight are exploited to
blend weighted distance functions derived from range im-
ages but restricted to a thin shell around the samples for ef-
ficiency reasons. Later methods represent the function as a
weighted sum of basis functions, typically radial basis func-
tions (RBF): RBFs are placed at contraint points where the
value of the function is known and the weights are globally
solved to satisfy the constraints exactly or approximately
and to minimise a smoothness measure. To avoid the triv-
ial solution, [CBC∗01] has to impose on- and off-surface
constraints. In [OBS04], compactly supported RBFs with
adaptive support are relied upon to handle noise. Other re-
cent approaches construct local functions near the sample
points and blend them together to obtain the implicit func-
tion using locally supported weight functions. In [OBA∗03],
the multi-level partition of unity implicit surface representa-
tion is introduced: low-degree polynomials approximate the
shape of the surface in each cell of an adaptive octree and
an efficient implementation is demonstrated to handle large
sets of points. Moving least squares (MLS) [LS81] can han-
dle moderate amount of noise and be used to define sim-
ilar implicit functions with signed distance to local planes
as local approximants, yielding the implicit MLS method
of [SOS04]: reconstruction guarantees are provided for suf-
ficiently dense and uniform point clouds [Kol08]. A related
but different method is the projection-based MLS of [Lev03]
where the surface is sought as the fixed-point of a parametric
fit procedure. [ABCO∗03] introduced the technique to the
field of computer graphics with a polynomial fitting step.
Numerous variants exists among which [FCOS05] which
cope with noise with a least-median-of-squares estimator
from robust statistics while still preserving sharp features.
The method however requires very dense sampling. Another

choice of function is the indicator function. [KBH06] align,
in the least-squares sense, the gradient of the indicator func-
tion with a vector field computed from the oriented input
samples. This leads to a Poisson problem: locally supported
RBFs are used over an adaptive octree for efficiency and
produce excellent results making the method very competi-
tive. Methods based on the minimal surfaces framework with
graph cuts of [BK03], such as [HK06,LB07], also belong to
this category: values of the indicator function are assigned to
whole elementary volumes over a regular grid so as to glob-
ally minimise an energy with a minimum s-t cut optimisa-
tion. Post-processing is required to remove artifacts arising
from the regular grid discretisation.

This family of implicit approaches is sometimes limited
by their sensitivity to noise, outliers or non-uniform sam-
pling or even simply by the lack of reliable and consistent
normal estimates and orientation.

Figure 2: INRIA/ISTI Livingstone elephant. 821K vertices,
1,586K triangles.

Delaunay methods

The other most common approach to surface reconstruction
follows the initial intuition of [Boi84] of using a Delaunay
triangulation for surface reconstruction: the underlying idea
is that when the sampling is noise-free and dense enough,
points close on the surface should also be close in space.
Eliminating facets of Delaunay tetrahedra according to some
criteria should then allow the reconstruction of a triangu-
lated mesh. Among Delaunay-based methods, perhaps the
most well-known algorithms are the Crust [ABK98,ACK01]
and the Cocone [ACDL02, DG03] families of algorithms.
Crust algorithms exploit the fact that Voronoi cells of points
on the surface are elongated in a direction perpendicular to
the inferred surface. The extremal vertices of these cells,
called poles can be used to estimate the medial axis and fil-
ter out facets not belonging to the surface. The Power Crust
[ACK01] is an extension, more robust for realistic inputs,
that instead relies on the power diagram, a weighted Voronoi
diagram of the poles. A simple modification, suggested in
[MAVdF05], improves the robustness of the method to noise.
Cocone algorithms use poles in a simpler way to compare
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facets normal with the vectors to poles. The Robust Co-
cone [DG06] generalises the definition of poles to cope with
a specific noise model. While [AB99] was the first to provide
theoretical guarantees for smooth surfaces with the notion of
local feature size and ε-sampling, several of the mentioned
algorithms are also provably correct in the absence of noise
and outliers or under specific noise model related to the local
feature size. In contrast with these computational geometry
approaches, [Cha03] proposes to translate the surface con-
vection scheme of [ZOF01] over the Delaunay triangulation
of the input points. Degradations of the input data may make
these local techniques fail. A notable exception to this rule
is the spectral surface reconstruction of [KSO04] which ap-
plies a global partitioning strategy to label Delaunay tetra-
hedra as inside or outside the surface and robustly handles
quantities of outliers. A more detailed review of Delaunay-
based surface reconstruction can be found in the recent sur-
vey of [CG06].

The recent work of [ACSTD07] mixes together a
Delaunay-based approach and an implicit one with a spectral
method. The method is thus not interpolatory and seems ro-
bust to noise. However, its computational requirements seem
high and may prevent its application to large amounts of
data.

Deformable models

Active contours [WT88] or deformable models have also
been applied to surface reconstruction. The work of [Whi98]
relies on the level set framework of [OS88] and the evolution
guides the model towards a maximum a posteriori by con-
sidering the squared error along the lines of sights. [ZOF01]
instead proposes to minimise a functional measuring the dis-
tance of the surface to the samples. These evolution methods
require a good initialisation and are prone to local minima.
More recently, [SLS∗06] evolve an explicit mesh in a scalar
field guided by the local feature size in a coarse to fine man-
ner to avoid local minima and capture details. The method
also requires a volumetric grid to evaluate the distance trans-
form and topological changes have to be tracked.

Other methods

In [OBS05], a reconstruction pipeline designed to cope with
measurement noise and varying density is described and
consists of different steps: estimation of unoriented normals
and weights, computation of an adaptive spherical cover-
ing and mesh extraction and cleanup. The pipeline is ef-
ficient, has low memory usage but is not suited to sparse,
non-uniform sampling or very noisy data. Bayesian model-
ing is used in [JWB∗06] to reconstruct an augmented point
cloud from the input samples as a maximum a posteriori
w.r.t. density, smoothness and sharpness priors. A standard
MLS surface reconstruction is then applied to reconstruct
a surface. The presented results on noisy data sets are im-
pressive but the method is computationally very expensive

even on small data sets. In [GSH∗07], the input point cloud
is also augmented but with patches of points coming from
a training set of prior models and matching according to
a multi-scale descriptor of local neighbourhoods. Again, a
standard MLS algorithm is applied to reconstruct a surface.
Finally, to cope with heavily incomplete data, approaches
based on templates may be more relevant than traditional
surface reconstruction algorithms to complete missing data
either with a single template mesh [KS05] or with an entire
shape database [PMG∗05]. Unfortunately, user interaction is
often required with correctly annotated models and the result
clearly depends on the used templates.

Figure 3: Stanford armadillo. 428K vertices, 841K trian-
gles. The original range scans contain many outliers but our
method has automatically eliminated them.

In the following section, we briefly give some background
about applying minimum s-t cuts for optimal surface recon-
struction in perspective of the more general cut minimisation
problem. We also discuss the shortcomings of previous cut-
based methods bearing some similarity to our approach to
surface reconstruction from 3D points.

1.2. Minimum cuts for optimal surface reconstruction

Let G = (V,E) be a directed graph with vertices V =
{v1, . . . ,vn} and oriented edges E with weights wi j. Graph
partitioning consists in removing the edges connecting two
sets of vertices, that is finding two disjoint sets S and T such
that S ∪T = V , S ∩T = ∅. This partition (S,T ) is called
a cut and is assigned a cost: the sum of the capacities of the
edges going from S to T (the oriented edges “crossed” by
the cut):

c(S,T ) = ∑
vi∈S
v j∈T

wi j (1)

This cost can be seen as a measure of similarity between the
two sets S and T .

Surface reconstruction has already been expressed as a
problem equivalent to computing a cut with minimum cost.
In particular, spectral partitioning methods consider a nor-
malised version [SM00] of the cut cost (to avoid partitioning
out small sets of nodes). Such a cost requires non-negative
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and symmetric weights. Unfortunately, finding a normalised
cut with minimum cost is an NP-complete problem which
has to be relaxed into an eigenvalue problem followed by
a thresholding to get an approximate solution. The spectral
surface reconstruction of [KSO04] applies this criterion to
partition subsets of Delaunay tetrahedra but varies slightly
on this scheme by modifying the eigenvalue problem: the
Laplacian matrix involved in the objective function is altered
by allowing negative weights and modifying its diagonal to
make it positive definite. While these adjustments void the
interpretation of the solution as an optimal normalised cut, in
practice, they greatly improve robustness and increase speed.
The method is nevertheless still quite slow and besides re-
quiring two successive partitioning steps, several additional
ad hoc treatments seem to be needed for it to be applied
to real data (filtering out spurious tetrahedra by threshold-
ing and restricting the labeling to tetrahedra near the sample
points along their line of sights).

Another approach to graph partitioning adds two special
“terminal” vertices to V , the source s and the sink t. The
weights are restricted to non-negative values but asymmetry
is allowed. In addition to edges to its incident vertices, each
vertex vi now has links to s and t respectively weighted si
and ti. An s-t-cut C = (S,T ) is a cut such that s ∈ S and
t ∈ T . The cost of such a cut may be split as follows:

c(S,T ) = ∑
vi∈S\{s}
v j∈T \{t}

wi j + ∑
vi∈S\{s}

ti + ∑
vi∈T \{t}

si (2)

This cost can be interpreted as an energy E(C) attached to
the corresponding partition with a “regularising” term be-
tween the S and T sets (the sum of edge weights wi j which
is actually the cost of the cut without considering the termi-
nals) and a “data” term for S and T (the sums of the link
weights si and ti). The minimum s-t cut problem consists in
finding an s-t cut C with the smallest cost. According to the
Ford-Fulkerson theorem [FF62], this problem is the same as
computing the maximum flow from the source s to the sink t:
several efficient algorithms with low-polynomial complexity
have been developed to solve this problem, making it possi-
ble to globally minimise the energy E(C). Most often, meth-
ods using minimum s-t cuts for optimal binary segmentation
or partitioning straightforwardly apply the graph cuts frame-
work of [BK03]. The whole domain of interest is sliced with
a regular grid and the previous equation is interpreted as the
sum of the discretisations of an integral over the interface
(the surface S) between S and T and two integrals over S
(the outside volume Vout) and T (the inside volume Vin):

E(S) =
Z

S
f dS +

Z
Vout

gout dV +
Z

Vin

gin dV (3)

The few methods that rely on minimum s-t cuts for optimal
surface reconstruction from point clouds adopt this point of
view which has several weaknesses. First, a regular subdi-
vision of space seriously impedes the scalability of mini-
mum s-t cuts as empty space has to be modeled explicitly.

Then, the area-based regularisation term is the cause of the
“shrinking bias”: the optimal surface for such an energy is
the trivial empty one. Workarounds include restricting the
domain of interest or adding a uniform balloon force which
requires data-specific adjustment. The minimisation of such
an area-based term with other compensating terms often re-
sults in over-smoothing and is unable to recover thin pro-
tusions and concavities. The approach of [HK06] unfortu-
nately suffers from both problems: the domain is regularly
subdivided with a grid which introduces metrication errors
and requires a post-processing step to smooth out artifacts.
The computational burden of this grid is limited and the
empty solution avoided thanks to the use of “banded” graph
cuts of [LSGX05]. This actually reduces the minimum s-t
cuts optimisation to a local optimisation in a neighbourhood
of the initially computed proxy surface. [LB07] maximise
the flux of a coarsely oriented vector field which is equiv-
alent to an intelligent balloon force. However, to make this
approach robust against undersampling and outliers, the au-
thors have to resort to an area term and a regional term based
on lines of sight (a simple non-uniform balloon force). The
authors of [LB07] also use a dedicated algorithm that re-
quires proper initialisation to speed up the maximum flow
computation on the voxelised volume.

Alternatives to regular grids exist: [KG04] first proposed
to use graph cuts on complexes to globally optimise surface
functionals and developed the idea of using random sparse
complexes for their flexibility over regular subdivisions.

Our method strongly follows [LPK07] and circumvents
the two common drawbacks of graph cuts. First, instead of
imposing a regular grid, we exploit the adaptivity of the De-
launay triangulation to the input samples. A visibility term
taking into account the acquisition procedure is proposed:
this term explicitly avoids the empty surface solution. It is a
refinement of the term proposed in [LPK07] and is designed
in the context of densely (but noisily) sampled surfaces with
few lines of sight per sample. In addition to these soft visi-
bility constraints, a simple surface quality term derived from
a generalisation of the β-skeleton of [ABE98] in 3D is in-
troduced. This new term advantageously replaces the area-
weighted photo-consistency used in [LPK07]: that photo-
consistency term is obviously not applicable in our context.
It also awkwardly mixed area-based smoothing with a purely
discrete visibility term. Our new formulation is free from
any area-based smoothing that graph cuts methods systemat-
ically apply. This term lies at the root of the “shrinking bias”
problem and counterbalancing its influence usually requires
fine-tuning on each datum.

2. Reconstruction algorithm

The first step of our method computes the Delaunay triangu-
lation of the 3D point cloud composed of all merged range
images. Each finite vertex of this triangulation comes from
one range image, and the relative location of the laser and/or
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Figure 4: Visibility and soft visibility. How a single line of
sight (pink) of a vertex of the triangulation (red) from a sam-
ple point to a laser (or to a sensor) contributes to the weights
assigned to the origin tetrahedron, to the facets it crosses and
to the final tetrahedron (blue).

the sensor(s) is (at least, approximately) known. As a conse-
quence, the corresponding line(s) of sight emanating from a
vertex to the laser and/or the sensor(s) should not cross the
reconstructed surface.

2.1. Optimal labeling of the Delaunay tetrahedra with
minimum s-t cut

As previously mentioned, we consider the surface recon-
struction problem as a Delaunay tetrahedra labeling prob-
lem: tetrahedra are each assigned an inside or outside label.
The reconstructed surface, denoted by S in the following, is
therefore a union of oriented Delaunay triangles: it is guaran-
teed to be watertight and intersection-free as it bounds a vol-
ume. We define an energy E(S), attached to a reconstructed

surface S, and gathering two distinct terms:

E(S) = Evis(S)+λqual Equal(S) (4)

The term Evis(S) is a sum of penalties for misalignments
and wrong orientations of the surface S with respect to the
constraints imposed by all the lines of sight from the sam-
ple points. The term Equal(S) penalises the triangles of S un-
likely to appear on the true surface. λqual is a positive con-
stant weighting Equal(S).

In the next two sections, we present these two energy
terms and show how they can be interpreted as costs of s-
t cuts on a special graph, allowing our energy to be globally
and efficiently minimised with a standard maximum flow al-
gorithm as reminded in 1.2. The considered graph is obvi-
ously related to the Delaunay triangulation: it has vertices
representing the Delaunay tetrahedra and directed edges rep-
resenting the oriented triangles between adjacent tetrahedra.
This graph is augmented with the (abstract) source and sink
vertices and with links from each tetrahedron to the source
and the sink. The vertices linked to the source correspond
to tetrahedra labeled as outside and symmetrically, vertices
linked to the sink are inside tetrahedra. The directed edges
of a cut are triangles on the oriented surface.

Note that the infinite tetrahedra (the tetrahedra lying out-
side the convex hull of the input points) are also included
as vertices in our graph: this allows the labeling to recover
open surfaces. Such property is especially useful for outdoor
scenes as shown in section 4.

2.2. Surface visibility

In this section, the original visibility term of [LPK07] is first
described and then improved to better cope with scarce visi-
bility information and sample noise.

Let us consider one vertex of the triangulation and one
line of sight from this vertex to the laser (or sensor).

Provided the sample position is noise-free, the tetrahe-
dra intersected by this line of sight from this vertex to the
sensor or to the laser should be labeled as outside and the
tetrahedron behind the vertex should be labeled as inside.
By minimising the number of intersections of this line of
sight with the oriented surface and penalising a wrong ori-
entation, we can try imposing this visibility constraint: the
triangles crossed by a line of sight from the vertex to the
laser (or sensor) are to be penalised. In addition, the surface
should go through the vertex originating the line of sight and
the last tetrahedron traversed by the line of sight should be
labeled as outside. Let us translate this into weights in the
corresponding s-t graph (see Fig. 4a):

1. the left-most darker blue tetrahedron gets an αvis-
weighted link to the source (αvis is a positive constant
for the line of sight),

2. the darker green oriented facets on the left of the vertex,
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crossed by the line of sight and pointing towards the ver-
tex get an αvis-weighted edge,

3. the darker blue tetrahedron right behind the vertex gets
an αvis-weighted link to the sink.

If a confidence measure is available for the line of sight, it
should be incorporated into αvis: for instance, [CL96] as-
signed a confidence value that depends on the angle between
the sample normal (evaluated from the range image) and the
direction of the line of sight. A surface that goes through the
vertex and does not cross the line of sight will not cut any
of the weighted edges and links just constructed and will
therefore not increase the cost of the s-t cut. This construc-
tion is repeated for all available lines of sight of all the ver-
tices of the triangulation by summing their weight contribu-
tions: newly generated weights are added to the previously
assigned. This can be seen as a kind of “vote” from each
line of sight for tetrahedra to be labeled as inside or outside
and for oriented triangles to belong to the surface or not.
Note that the only tetrahedra to get a non zero-weighted link
to the source are those (possibly infinite ones) containing
the laser sources or sensors optical centers. This integration
over hundreds or thousands of thousands of line of sights
combined with a global optimisation allows our method to
exhibit a strong resilience to different kinds of errors in the
input data.

Figure 5: Stanford bunny (with visibility only). A constant
visibility term per line of sight is not suited to the reconstruc-
tion of densely (but noisily) sampled surfaces with few lines
of sight per sample: it tends to generate bumpy surfaces and
mislabels many interior tetrahedra.

While this construction effectively avoids the empty sur-
face solution and thus the “shrinking bias”, it suffers from
several flaws in the context of reconstruction from range
scans which sample a surface very densely (but noisily): it
tends to generate overly complex surfaces (see Fig. 5 and
6) that are bumpy and have many handles inside the model.
The measurement noise found in range image is responsible
for the bumpiness of the surface, and the large tetrahedra be-
ing mislabeled inside the model appear because each sample
point only has one or two line(s) of sight: the tetrahedra that
should be labeled as inside because they lie behind a vertex
are at a much greater risk of being mislabeled because no ray
from their vertices will ever intersect them. This is precisely
what happens in Fig. 5: some inside tetrahedra of the bunny

Figure 6: Stanford dragon (visibility vs. soft visibility). On
the left, no tolerance is used and the reconstruction is bumpy
and overly complex (1,176K vertices, 2,322K triangles).
On the right, a reconstruction with tolerance generates a
smoother and much coarser mesh (304K vertices, 580K tri-
angles).

Figure 7: Stanford happy buddha. 380K vertices, 738K tri-
angles. Setting the tolerance parameter σ too high might cre-
ate unwanted holes (inside the square).

get mislabeled as outside. In multi-view stereo, [LPK07] cir-
cumvented this problem first by aggregating nearby pair-
wise reconstructed 3D points together (merging their line of
sight information) and also by relying on an area-weighted
smoothing. Here, these two problems are solved differently
and more elegantly by relaxing the visibility constraints: a
tolerance parameter σ is introduced and we modify the edges
and links weight constructions. As shown in Fig. 4b, the pre-
vious construction is extended so that the final tetrahedron
on the line of sight does not lie strictly behind the considered
vertex but a bit further: it is actually shifted to a distance of
3σ along the line of sight. We also make the oriented facets
weights decay with the distance of the intersection of the
line of sight with the vertex: each oriented facet intersected
by the line of sight of a vertex at a distance d of this vertex
gets a weight of αvis(1− e−d2/2σ

2
) from this line of sight.

As shown in Fig. 7, the value of σ should be set conserva-
tively. However, changing it reasonably allows to generate
more or less complex output meshes (see Fig. 8). Finally,
note that σ = 0 is equivalent to the first (flawed) visibility
weight construction.
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σ = 0.0625
131K vertices
263K triangles

σ = 0.125
109K vertices
214K triangles

σ = 0.25
65K vertices

126K triangles

σ = 0.5
34K vertices
66K triangles

σ = 1
17K vertices
34K triangles

σ = 2
11K vertices
21K triangles

Figure 8: Influence of the tolerance parameter σ on the re-
construction details and complexity of the UU sheep.

2.3. Surface quality

The soft visibility constraints of the previous visibility term
are sometimes insufficient to get a good reconstruction: han-
dles might still appear due to tiny elongated tetrahedra be-
ing wrongly labeled as outside because few (or no) line of
sight intersected them. We contrast with [LPK07] by elimi-
nating the cumbersome combination of a purely discrete vis-
ibility term with an area-weighted smoothing which requires
datum-specific parameter tuning.

At first, a simple heuristic can be used to filter out these
tetrahedra and ensure the “quality” of the triangles in the
output surface: the quality of surface triangle is evaluated as
the ratio of the length of their longest edge over the length of
their shortest edge (minus one). In our graph, each oriented
triangle is weighted with this value. This new quality term
tries preventing “badly-shaped” triangles from appearing on
the surface. In practice, this quality measure gives satisfying
results and also happens to be used in the second labeling
step of [KSO04]; it is however slightly too discriminating
towards skinny triangles that may be required on the surface
itself especially in areas where holes in the range images are
to be patched (thanks to the Delaunay triangulation).

Instead, we propose to apply a “soft” generalisation to 3D
of the β-skeleton described in [ABE98] for curve reconstruc-
tion. In 2D, the β-skeleton algorithm computes the Delaunay
triangulation of the sample points and chooses the edges of
the triangulation whose adjacent triangles have circumcir-
cles centered on opposite sides of the edge and whose ra-
dius are both greater than β/2 times the length of the edge.
For dense enough samples, this selection of edges with large
empty circumcircles is guaranteed to output a correct recon-

struction. Unfortunately, in 3D, almost flat tetrahedra can lie
on the surface despite having small empty circumspheres,
so the β-skeleton does not generalise well to 3D and may
introduce holes. Rather than crudely relabel some tetrahe-
dra selected with a threshold (or even in a greedy way), we
integrate this quality criterion into our global optimisation
framework. For a given facet of the triangulation, we con-
sider its two adjacent tetrahedra as pictured in Fig. 9: the cir-
cumscribing spheres of these tetrahedra intersect the plane
of the facet at an angle φ and ψ. To favor facets with large
empty circumspheres, a weight 1−min{cos(φ),cos(ψ)} is
added to the two oriented weights of each facet. This way,
facets with large empty circumspheres get small penalties
for being cut as they are more likely to belong to the surface
and conversely, facets with smaller empty spheres are more
penalised.

Figure 9: Soft 3D β–
skeleton. A facet of the
triangulation, its two
adjacent tetrahedra (red)
and their circumscribing
spheres (green). Their
angles φ and ψ with the
plane (blue) of the facet
influence the weight of this
facet.

Applying the two con-
structions described above
for the surface visibil-
ity term and for the sur-
face quality term assigns
oriented edge and link
weights to nodes in a di-
rected s-t graph. By com-
puting a minimum s-t cut
on this graph, an optimal
labeling of tetrahedra with
respect to these two com-
bined criteria is obtained
and a resulting watertight
and intersection-free sur-
face mesh can then be ex-
tracted.

For very noisy range
scans, any interpolat-
ing method may output
bumpy surfaces when
applied directly to the
point cloud. As seen in
4.2, our method can still be used, at least to help boot-
strapping local PDE-based refinements [Whi98, ZOF01]
whose initialisation is often problematic. For rendering
purpose, in Fig. 1, 2, 3, 6, 7, and 8, at most two steps of a
Laplacian-based smoothing were applied.

3. Implementation

The presented algorithm was implemented in C++ and re-
lies on the latest CGAL library [BDTY00] for the computa-
tion and traversal of the Delaunay triangulation. It also uses
Kolmogorov’s max-flow algorithm [BK04] and implemen-
tation for the partitioning. We believe our current prototype
still allows for improvement in both running time and mem-
ory use. The max-flow library was designed for efficiency on
grid graphs and energies typically used in computer vision.
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While our network graphs also have fixed connectivity (each
node has 4 neighbours), the visibility term in our energy de-
sign does not lead to short paths from the source to the sink.
Switching to a more adapted max-flow algorithm may sig-
nificantly improve running times. Moreover, due to limita-
tions of the max-flow library, edge weights are required to
be computed, and only after the whole network graph can be
constructed at once. This means that storage for the weights
is duplicated. The graph itself, which can be trivially derived
from the Delaunay triangulation, is actually stored twice in
memory. Finally, an important increase in memory use can
be observed in Tab. 1 between the weights and the minimum
s-t cut computations. The algorithm of Kolmogorov’s library
caches entire search trees which again impacts seriously on
the memory footprint.

4. Experimental Results

We tested our method on several (variously sized) publicly
available sets of range scans from either the Stanford 3D
Scanning Repository (bunny, dragon, armadillo and bud-
dha), the AIM@SHAPE Shape Repository (sheep and ele-
phant) or the U.C. Berkeley Computer Animation and Mod-
eling Group (angel) and also on a new outdoor large-scale
data set (rue Soufflot). Only for the Stanford and rue Souf-
flot data sets a reliable estimation of the laser position and/or
direction to the sensor(s) was available. This should however
not be seen as a strong limitation since for the other data sets,
we used less precise, approximate lines of sight and this did
not result in significant artefacts in the reconstructions (the
more strongly penalised facets and tetrahedra lies inside or
far outside the object). Moreover, even if lines of sight can
not be reliably guessed, the hidden point removal operator
of [KTB07] could potentially be applied from virtual laser
positions to recover such visibility information, at least for
properly sampled data without outliers.

In all the experiments, the same value of 5 for λqual was
used to balance visibility and quality. Instead of weighting
lines of sight with a confidence estimation as in [CL96] and
suggested in 2.2, αvis was purposefully fixed to a constant
32. These two constants were heuristically found on one data
set and kept for all the presented results. Finally, the toler-
ance σ which is supposed to reflect the expected noise level
in the data was uniformly set on a per model basis but es-
timated the same way for every model (1/2 of the median
range grid diagonal).

As indicated in Tab. 1 and 2 and despite the shortcom-
ings of our implementation, our method proves to be fast and
scales well (almost linearly) with the size of the input point
cloud both in running time and peak memory use (much bet-
ter than spectral methods): this might be a hint that modeling
the surface reconstruction problem by taking into account as
much information as possible about the scanning process ac-
tually leads to a better posed minimisation problem. Due to
the implementation issues discussed above and its interpo-

latory nature, our method is unfortunately not as competi-
tive as Poisson surface reconstruction [KBH06] in terms of
memory resources but compares favorably with it in recon-
struction time.

In addition to the previously shown reconstructions, we
highlight in the next three sections the robustness of our ap-
proach compared to several other methods: the Delaunay-
based local algorithms Robust Cocone [DG06] and Power
Crust [ACK01], and the implicit methods Adaptive Com-
pactly Supported Radial Basis Functions [OBA∗03] and
Poisson surface reconstruction [KBH06]. The two implicit
methods require oriented normal estimates. While more
elaborate methods exist (see [DLS05] for a recent study),
these normals were computed in each scan by fitting a plane
to the neighbours of each sample with distance-weighted
least squares and were correctly oriented using the lines of
sight. In the experiments, the normals were obviously esti-
mated from the modified data to make the comparison fair.
More involved methods should not be expected to provide
much more precise normal estimations for the different al-
tered data used in the experiments.

Finally in the last section, Poisson surface reconstruction
and our approach are challenged on a difficult large-scale
outdoor scene.

4.1. Robustness to non-uniform sampling

Fig. 10 illustrates the adaptivity of our method to a non-
uniform sampling of the surface (plus a decent amount of
measurement noise): a plane partitions the input point set
in halves and one of these halves is heavily downsampled.
While Robust Cocone seriously degrades when a 128× un-
dersampling is reached, from the beginning, Power Crust
splits the two front paws of the sheep. It better handles the
undersampling until a 1024× downsampling when its local
approach make some important details disappear on the front
part of the sheep: the right ear fades away, and the bottom
right part around the paw almost vanishes. Poisson progres-
sively shrinks the right part of the sheep, losing all features
and Adaptive CS RBF is quickly in trouble. By relying on
the visibility information available from the scarce samples,
our method is still able to reconstruct a surface that resem-
bles the original model.

4.2. Robustness to noise

While all the data sets used to present our result already con-
tain various amounts of measurement errors, we provide fur-
ther evidence of the ability of our method to cope with severe
amounts of noise. In Fig. 11, we adopt a protocol analogous
to [KSO04] which add isotropic Gaussian noise to the orig-
inal point coordinates in the Stanford bunny scans. We in-
stead add anisotropic Gaussian noise along the laser line of
sight only. Results are exceptionally presented not only with
the usual fixed tolerance parameter σ but also results with a
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(a) Point cloud (right half downsampled by a factor 16, 128
and 1024)

(b) Robust Cocone

(c) Power Crust

(d) Adaptive CS RBF

(e) Poisson

(f) Our method

Figure 10: Robustness to undersampling. The right-most
bottom view corresponds to a 1024× downsampling.

varying value of σ matching the amount of added noise. The
standard deviation of the added noise is measured in terms
of the median length d = 0.001 of the range grids diago-
nals. Point clouds altered with a noise of deviation several

times this length are extremely fuzzy, and a correct recon-
struction is hardly expected. Holes quickly appear at +0.8d
with Power Crust. Robust Cocone which is designed to cope
with reasonable amount of noise quickly loses the features
of the model (ears, neck and front paws) between +0.4d to
+0.9d. Adaptive CS RBF is unable to handle the additional
noise. Poisson, however, is extremely resistant and still re-
constructs a smooth surface even at very high noise levels.
It nevertheless begins to seriously degrade after +2d. Our
method still outputs a genus 0 (albeit bumpy) surface with
deviation +2d, after this point, the ears of the model begin to
fade away and after a +3d deviation the reconstruction irre-
versibly but slowly degrades. Our method with an adapted σ

outputs a much smoother reconstruction and degrades more
gracefully.

4.3. Robustness to outliers

As illustrated in Fig. 3, range scans usually contain some
outliers. On a synthetic example of 26K noise-free points,
the spectral surface reconstruction method of [KSO04] was
shown to handle 1,200 outliers (or 4.5% of outliers) without
any degradation, it then slightly degrades with 1,800 out-
liers (6.5%) and completely disintegrates with about 10,000
outliers (28%). Here, outliers (along with estimated oriented
normals for implicit methods) are added to the original data
in much larger amount or ratio. In Fig. 12 and 13, we show
how the results of other algorithms and ours degrade as ran-
domly generated outliers are gradually added to the 362K
points of the Stanford bunny (in fact, we are showing ro-
bustness to measurement noise and synthetic outliers): the
outliers are added scan per scan, their position projects to
the range grid and their location is randomly chosen within
the bounding box of the range image. This protocol effec-
tively simulates outliers generated during the acquisition. All
other tested methods are defeated earlier than ours and un-
able to recover any useful reconstruction. Poisson surface
reconstruction is the strongest contender, but the estimated
oriented normal field tends to be inconsistent at outliers and
this may actually help this method to filter out outliers.

It is nevertheless pleasant to observe that taking into ac-
count the visibility information from the scanning process
allows our method to deal with an impressive number of
outliers (up to 850,000 or ∼70% of outliers) with only very
slight degradation of the recovered surface (a handful of out-
side tetrahedra might be mislabeled now and then). We have
consistently observed that our reconstructions irreversibly
degrade only when the number of outliers begins to exceed
twice the number of inliers: this definitely confirms the suit-
ability of a global optimisation based on lines of sight for
outlier removal. While such massive amounts of outliers are
not realistic for laboratory acquisitions, our method can be
applied with success to outdoor range data or to quasi-dense
point clouds from image matching or video tracking that
would contain some amount of outliers.
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(a) Power Crust: +0.1d and +0.8d (b) Robust Cocone: +0.4d and +0.9d

(c) Adaptive CS RBF: +0.3d and +0.5d

(d) Poisson: +0.9d, +1.5d, +2d and +3d

(e) Our method with fixed σ: +0.9d, +1.5d, +2d and +3d (f) Our method with varying σ: +0.9d, +1.5d, +2d and +3d

Figure 11: Robustness to noise. The input point cloud is on the left of the first corresponding reconstruction result.
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Sheep (Fig. 8) 153K 966K 2s 3s 1s 3s 10s � 1m

Bunny (Fig. 12) 362K 2,252K 10s 11s 2s 7s 31s < 1m
Dragon (Fig. 6) 1,770K 11,383K 38s 68s 15s 59s 180s 3m

Angel (Fig. 1) 2,008K 12,637K 41s 86s 16s 48s 190s 3m 10s
Armadillo (Fig. 3) 2,247K 14,519K 47s 58s 13s 177s 295s 4m 55s

Buddha (Fig. 7) 2,644K 17,167K 62s 120s 14s 74s 271s 4m 31s
Elephant (Fig. 2) 4,413K 27,487K 98s 274s 35s - -

Elephant (Fig. 2) / 64-bits 4,413K 27,487K 93s 189s 32s 102s 417s 6m 57s
rue Soufflot (Fig. 14) / 64-bits 6,592K 42,062K 176s 416s 40s 521s 1154s 19m 14s

Sheep (Fig. 8) 153K 966K 48M 67M 133M
Bunny (Fig. 12) 362K 2,252K 109M 154M 306M
Dragon (Fig. 6) 1,770K 11,383K 543M 771M 1.6G

Angel (Fig. 1) 2,008K 12,637K 605M 858M 1.7G
Armadillo (Fig. 3) 2,247K 14,519K 690M 981M 2.0G

Buddha (Fig. 7) 2,644K 17,167K 815M 1.1G 2.4G
Elephant (Fig. 2) 4,413K 27,487K 1.3G 1.8G -

Elephant (Fig. 2) / 64-bits 4,413K 27,487K 2.2G 2.7G 6.5G
rue Soufflot (Fig. 14) / 64-bits 6,592K 42,062K 3.6G 5.2G 9.9G

Table 1: Running time and peak memory use (rounded) of the different steps of our algorithm for the presented reconstructions
on an Intel Xeon 3GHz computer. The elephant and rue Soufflot data sets required a 64-bits environment to complete the
computation. Note: 1G = 1024M.
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(a) Point cloud plus 0, 200 and 4,000 outlier(s)

(b) Robust Cocone

(c) Power Crust

(d) Adaptive CS RBF

(e) Poisson

(f) Our method

Figure 12: Robustness to relatively few outliers.

(a) Point cloud plus 50,000, 300,000 and 850,000 outliers

(b) Poisson

(c) Our method

Figure 13: Robustness to large amounts of outliers.

4.4. Large-scale outdoor range data

In this section, we show the result of our reconstruction algo-
rithm compared to Poisson surface reconstruction [KBH06]
on a challenging data set. The range data was acquired in the
rue Soufflot in Paris while driving a mobile vehicle equipped
with a time-of-flight range finder paired with a GPS/IMU
unit which automatically registers the acquired data (the ve-
hicle was also equipped with several cameras). This datum
is particularly difficult: it hardly meets satisfying sampling
conditions, it includes moving objects (the pedestrians and
the other vehicles), features are present at a wide range of
different scales (the street is about 250 meters long) and
many parts are occluded. In addition the whole point cloud
counts 6.7M samples.

While the presented results would probably require some
post-processing before any use in applications, they still
demonstrate the potential of our approach even on data ac-
quired without controlled scanning conditions. The running
time and peak memory use of our method are about 19m
and 9.9G. Poisson surface reconstruction was executed at
the largest possible depth (14) on the same machine and
takes 26m and 9.5G of memory. As shown in Fig. 14, 16,
15 and 17, our method reconstructs the whole open scene
with very thin details (however, for illustration purposes,
large triangles close to the convex hull had to be filtered
out from the reconstruction by thresholding). Poisson recon-
structs a closed scene (which thus required editing) which is
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Figure 14: Top view of rue Soufflot. Reconstruction results
for Poisson (top) and our method (bottom).

less complete than ours (the side streets are much less ex-
tended and the roofs are missing, see Fig. 14 and 16). It also
tends to smooth out the fine structures our method is able to
recover (Fig. 15 and 17).

Figure 15: Reconstruction details of rue Soufflot. Acquired
images (top), corresponding reconstruction results of Pois-
son (middle) and our method (bottom).

5. Conclusion and future work

We have presented an algorithm to reconstruct a watertight
and intersection-free triangular mesh from range images:
this algorithm is based on simple acquisition information.
The surface reconstruction is cast as an energy minimisation
problem that can be globally optimised by computing a min-
imum s-t cut problem in a graph. Our approach has two key
differences with previous cut-based ones: it does not use a
regular subdivision of the domain to approximate integrals
but rather label Delaunay tetrahedra and, thanks to a special
visibility term and corresponding weight construction, it ex-
plicitly avoid the “shrinking bias” that often plagues graph
cuts approaches for segmentation. Moreover, the robustness
of our method is demonstrated on several examples: it is able
to cope with severe undersampling, noisy data and outstand-
ing amounts of outliers. While such conjunction of data al-
terations are rare on range scanner laboratory data, they are
much more commonplace on outdoor range data acquisitions
or on dense point clouds from image matching, which justi-
fies our approach and makes our method a versatile tool for
surface reconstruction. In spite of a currently limited imple-
mentation, great scalability is achieved with respect to the
size of the input point cloud both in running times and mem-
ory use.

Our surface reconstruction algorithm is however interpo-
latory, which is probably one of its main limitations. A pos-
sible remedy would be to try to account for the noise model
in the spatial subdivision, or more realistically, to split the
visibility-based outlier filtering and the final surface recon-
struction into two distinct successive steps. Another limita-
tion is the scalability to very large data sets that are becom-
ing more widespread in range scanning [LPC∗00,BMOI08].
Some reconstruction algorithms have been extended with
out-of-core or streaming versions to handle massive data sets
with limited memory [FCS07, ACA07, BKBH07]. In partic-
ular, Poisson surface reconstruction [KBH06] is particularly
well suited to such extension [BKBH07] with its simple oc-
tree subdivision structure, locally supported RBFs, and a
Poisson equation that results in a sparse symmetric system
suitable to multigrid techniques. In contrast, our method is
a special linear programming problem over an unstructured
domain where the visibility of a sample may have a long
range influence. While streaming Delaunay computation ex-
ists [ILSS06] and the work of [ACA07] has shown success
in extending a local Delaunay-based method to a streaming
one, our case seems more difficult and a more plausible first
step in this direction would be a simpler adaptive filtering
of the input point cloud as in [ACA06] but based on visibil-
ity to eliminate redundant or inconsistent sample points be-
fore applying our final reconstruction. Finally, applications
and generalisations of our approach to possibly other prob-
lems are expected, mesh repair or shape reconstruction from
cross-sections, for instance.
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