J Fourier Anal Appl (2008) 14: 145-179
DOI 10.1007/s00041-008-9013-5

FFTs on the Rotation Group

Peter J. Kostelec - Daniel N. Rockmore

Received: 2 March 2005 / Revised: 27 September 2007 / Published online: 22 February 2008
© Birkhéduser Boston 2008

Abstract We discuss an implementation of an efficient algorithm for the numerical
computation of Fourier transforms of bandlimited functions defined on the rotation
group SO (3). The implementation is freely available on the web. The algorithm de-
scribed herein uses O (B*) operations to compute the Fourier coefficients of a func-
tion whose Fourier expansion uses only (the O (B?)) spherical harmonics of degree
at most B. This compares very favorably with the direct O(B®) algorithm derived
from a basic quadrature rule on O (B>) sample points. The efficient Fourier transform
also makes possible the efficient calculation of convolution over SO (3) which has
been used as the analytic engine for some new approaches to searching 3D databases
(Funkhouser et al., ACM Trans. Graph. 83-105, 2003; Kazhdan et al., Eurograph-
ics Symposium in Geometry Processing, pp. 167-175, 2003). Our implementation is
based on the “Separation of Variables” technique (see, e.g., Maslen and Rockmore,
Proceedings of the DIMACS Workshop on Groups and Computation, pp. 183-237,
1997). In conjunction with techniques developed for the efficient computation of or-
thogonal polynomial expansions (Driscoll et al., STAM J. Comput. 26(4):1066—1099,
1997), our fast SO (3) algorithm can be improved to give an algorithm of complexity
O(B31og? B), but at a cost in numerical reliability. Numerical and empirical results
are presented establishing the empirical stability of the basic algorithm. Examples of
applications are presented as well.

Communicated by Thomas Strohmer.

First author was supported by NSF ITR award; second author was supported by NSF Grant 0219717
and the Santa Fe Institute.

P.J. Kostelec

MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA

D.N. Rockmore (<)
Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
e-mail: dnrockmore @ gmail.com

BIRKHAUSER

146 J Fourier Anal Appl (2008) 14: 145-179

Keywords Fast Fourier transform - Rotation group - Spherical harmonics - Wigner
D-function - Discrete polynomial transform - Pattern matching

Mathematics Subject Classification (2000) Primary 43-04 - Secondary 43A75

1 Introduction

As usual, let SO (3) denote the rotation group in three dimensions, represented as
the three-by-three matrices of determinant one. Functions defined on SO (3) have
an expansion analogous to the Fourier series representation of a function defined
on the circle, also recognized as the group of one-by-one matrices of determinant
one. In the latter case there is a well-known notion of bandlimit, and in this case
the classic Fast Fourier Transform (FFT) is a family of algorithms that computes the
Fourier expansion of a function of bandlimit B in O (B log B) arithmetic operations,
as opposed to O(B?) required for direct computation. Moreover, the FFT is also
highly stable numerically (see, e.g., [13] and [27]).

A natural notion of bandlimit for SO(3) is given in terms of the highest degree
spherical harmonic used in the Fourier expansion of a function defined on the group.
In this case direct calculation of the corresponding Fourier transform of a function of
bandlimit B (using a concomitant quadrature formula) would require O (B®) opera-
tions. In this article we present and discuss an implementation of an O (B*) algorithm
for this calculation. The associated software package, which we named “The SOFT
Package,” is freely available on the web [32]. Note that for SO (3), bandlimit B im-
plies O (B3) Fourier coefficients obtained (according to our scheme) by using 0(B3
sample points. All results stated herein have these underlying assumptions.

Beyond theoretical interest, the existence and implementation of an FFT for
SO (3) has many potential applications [2]. Many of these use the FFT on SO(3)
as a key step in a fast convolution algorithms on SO (3) or the 2-sphere, S (realized
as the quotient SO (3)/S0O(2)). In short, in the same way that convolution or corre-
lation on the cyclic group is used as a form of matched filter for time series data, we
can try to use convolution over SO (3) to find a pattern on the sphere by convolving
a template against an arbitrary function over SO (3). Of particular interest is some
recent work by Funkhouser et al. [11, 19] using these FFTs for the efficient searching
of 3D databases — volumetric databases. Objects are stored as discretized concen-
tric spheres each of whose spherical Fourier transforms are then computed and stored.
The norms of the sets of Fourier coefficients (grouped together according to degree of
the associated harmonic) give an analogue to the usual power spectrum descriptor of
a one-dimensional function, that can be used for a search algorithm. Other promising
possibilities for applications have been suggested in molecular biology [21], indus-
trial manufacturing [15, 16], cosmology [35] and even spherical near-field antenna
measurements [14].

1.1 Related Work

In addition to the approach detailed herein, there are other possible techniques for
computing the Fourier transform on SO (3). In particular, we would like to point

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 147

out that an implementation based the work of Risbo [28] would also give rise to an
O (B*) implementations. The critical difference between such an algorithm and our
own is that our separation of variables approach preserves the possibility of finding
an improvement through the use of a fast algorithm for the computation of a discrete
Wigner transform. Indeed, there is such an algorithm, based on the fact that these
special functions (like so many others) satisfy a three-term recurrence [7] (see the
remark at the end of Section 3). Gluing this fast algorithm into the middle of our
algorithm results in a O (B> log? B) algorithm. However, the improved complexity
estimate comes with a cost of some practical difficulties (see, e.g., [17, 18] for the
problems that occur in the case of implementing this for efficient spherical harmonic
expansions) that would need to be addressed in the SO (3) setting. We will discuss
these difficulties later. Both Risbo’s approach and ours are algebraic and exact in
exact arithmetic.

A different method of attack might come from so-called “approximate” tech-
niques whose complexity increases with an increase in accuracy. In particular, we
point to the recent interesting work of Rokhlin and Tygert [29], which gives an
O (N log N log(1/€)) algorithm for spherical harmonic expansions for functions on
S% where N is the number of nodes used in the associated discretization and e is
the precision. Thus, the running time is tied to accuracy in both sampling and preci-
sion. In [29] experiments are performed showing the stability and efficiency of this
approach, implemented in Fortran, for individual associated Legendre transforms. It
would be of interest to apply directly these ideas to the problem of finding a fast
Wigner transform.

1.2 Organization

This article is organized as follows. We begin with a brief introduction to SO(3),
including some discussion of the necessary harmonic analysis. This is then followed
by introducing a sampling theorem for functions defined on SO (3), and outlining ex-
actly what we mean by the “separation of variables” approach. The discrete Wigner
transform is also defined. Due to the plethora of conventions that exist, in Section 4
we provide explicit definitions of the Wigner-d functions as implemented in our soft-
ware. Section 5 gives error and timing results for SOFT. This is then followed by
discussion of an application of Fourier transforms defined on SO (3): Correlating
two functions defined on S2. We conclude with a brief recap and discussion.

2 Lifein SO(3)

We are interested in the Fourier analysis or harmonic analysis of functions defined
on SO(3). This is one of the most well-studied groups in all of mathematics. The
books [34, 37, 38] are standard places to look for this material. We collect here as
much as we need to keep things relatively self-contained.

BIRKHAUSER

148 J Fourier Anal Appl (2008) 14: 145-179

2.1 Euler Angle Coordinates

We may express any element g € SO (3) in terms of rotations about the z and y axes.
Let

cosa —sina 0 cosB 0 sing
u(@)=|\ sinae cosa O a(p) = 0 1 0 2.1
0 0 1 —sinf 0 cosp

where 0 < o <27 and 0 < 8 < . Geometrically speaking, u(c) corresponds to
rotation by « radians about the z-axis, and a(8) to rotation by g radians about the
y-axis. Using these two matrices, any rotation g € SO(3) has an associated Euler
angle decomposition:

g=g(B, y)=u@aB)uly). 2.2)

The Euler angle decomposition provides a natural coordinate system for working
with functions on SO (3), allowing us to write a function f(g) for g € SO(3) as
f(o,B,y),where 0 <o,y <2mand 0 < g8 <m.

2.2 Fourier Analysis in SO(3)

Let L?(S0O(3)) denote the space of square integrable functions on SO (3). In coordi-
nates the inner product of two functions f and 4 on SO (3) is given as

2w b4 2w
<fih> = / d(x/ d,Bsin,B/ dy fla,B,y) i@ B.y) (23)
0 0 0

where h*(a, B, y) denotes the complex conjugate of A (a, B, y).
To each g € SO(3), we can associate a linear operator A(g) which acts on f
in L2(8%):

AR f(@) =f(g'w) . (2.4)

This is the left regular representation of SO (3) on L*(S?). The invariant (and pair-
wise orthogonal) subspaces of this action, denoted V}, are indexed by the nonnegative
integers with dim V; = 2/ + 1. The familiar spherical harmonics, {Y]" |l > 0; [m| <1},
span these invariant subspaces. To be precise, for a given integer [> 0, V; is spanned
by the spherical harmonics of degree / and orders [m| < I, denoted {Y}" (w) | |m| <1}.
We therefore have

AY" (@)= Y (@)Dy,, (2) 2.5)
k<l

where D,l{m (g) is a Wigner-D function.
Using the Euler angle decomposition, we can write the Wigner-D function as

Dl e, Boy)=e"Meal L (B)e ™M, (2.6)

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 149

where J ranges over the nonnegative integers, and 0 < |M|, |M’| < J, and d M, B)
denotes what we will refer to as the Wigner d-function. The Wigner-d functions
are related to the Jacobi polynomials, and satisfy a three-term recurrence relation.
Wigner-D functions are related to the more familiar ¥;" functions by

m m 2041 %
Y"(0,9)=(=1) o ——Dg,, (X, 0, ¢)

where x is an arbitrary angle. Explicit expressions for d/{,, y(B) will be given in
Section 4.

By the celebrated Peter-Weyl Theorem, the collection of functions {D?Y v (s
B, y)} form a complete set of orthogonal functions with respect to integration over
SOQ3):

> _ 87?2

<DJ1 D’ o
2J1+1

M\M'> — MyM', 81112 8M1M2 8M/1M/2 . (27)

Hence, any f € L?(SO(3)) may be written as a sum of Wigner D-functions:

flapy=>y Z Z Fin D@ B.) (2.8)
J>0 M=—J M'=
where
" 2J +1
ngM’ = + <f DMM’)

_2]+1
T 8x2

2 2
[t [“apsing [ay gyl e @9

We will refer to the set of values { f 1& y) as the Fourier coefficients of f, and the

map going from f(a, B, y) to the set of coefficients { f /4) as the SO (3) Fourier
transform of f. As a notational convenience, we will denote the SO (3) Fourier
transform of f as SOFT(f).

Let us now take a second look at the linear operator, A(g), and see its effect on a
function f € L?(S?). Such a function can be expanded in spherical harmonics:

f@)=>"3" f"Y"(w)
>0 |m|<l

where
"= / f@Y"do .
SZ

Applying the operator to a function f € L?(S%) can be thought of as rotating its
graph. And how do the Fourier coefficients of f relate to its rotated cousin? Us-
ing (2.5), we can elegantly obtain the Fourier expansion of the rotated f by means of a
matrix multiplication. The matrix in question is a semi-infinite block diagonal matrix,

BIRKHAUSER

150 J Fourier Anal Appl (2008) 14: 145-179

where the /" block is of size (2/4 1) x (21 + 1), and each block is D (g) = (D},,,) (g).
Using all this, the Fourier expansion of the rotated f is the matrix-vector product

D(g) i

[E— 0

D'(g) | 7l

D*(g)

2.3 Convolution on L2(SO(3))

Convolution of two functions fi, f> € L2(SO(3)) is defined to be
A= alhe™) s ds
S0(3)

where i € SO (3). Given the Fourier coefficients in the expansions of f] and f:

fi(g) = Z Z Z aMM’ MM’(g)

J>0 M=—J M'=
h)=)" Z Z by Diar (@) »
J>0 M=—J M'=

we find the Fourier coefficients of fj * f> to be

(F1% f2) o = Coparr = Z alubilyy - (2.10)
k=—J

Details may be found in Vilenkin [34].

Note that there is an elegant algebraic description of the Fourier coefficients of
f1* f>. Corresponding to each integer J is an irreducible representation of SO (3).
As described above the coefficients of f; and f> each can be arranged as a block diag-
onal matrix, where the J-th block, of size (2J + 1) x (2J + 1), contains the (suitably
ordered) Fourier coefficients at that degree J. The set of Fourier coefficients of the
convolution is just the product of the two matrices. So all that is happening is that the
J-th block in f’s matrix is multiplied with the J-th block in f,’s matrix. This is pre-
cisely the noncommutative analogue of the more widely known result describing the
Fourier transform of the convolution of two functions on the circle as the pointwise
product of the individual Fourier transforms.

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 151

2.4 Sampling Theorem

Much of the discussion which follows is based on [22, 23].

To compute SO FT (f) means to evaluate the inner products (2.9). In practice, to
even attempt to do this on the computer means that we must discretize the integral,
i.e., replace it with a finite sum. This compels us to sample f on some finite grid.
Ergo, the sum we need to evaluate is of the general form:

D w@) £ () DYy () (2.11)

xeX

where X denotes some finite sampling grid and w(x) is some weighting function.
Furthermore, to ensure that a collection of sums of the form (2.11) will accurately
compute the Fourier transform of f this way, certain conditions must be placed on f.

Definition 1 (Bandlimited functions on SO(3)). A conAtinuous function f on SO(3)
is bandlimited with bandlimit (or bandwidth) B if f /{4 o =0foralll>B.

The Euler angle coordinates (2.2) make possible an easily described sampling grid
for the exact recovery of bandlimited functions by a sum of the type (2.11). This is
better known as a quadrature rule. In particular, let X p denote the set of points:

Xp ={ulaj)aBu(yj)I0 < ji, j2, k <2B} (2.12)
27 T2k + 1)
where aj = y; = Y3 and By = —5 Furthermore, let wp(k),0 <k <2B, be

the unique solution to the system of linear equations

2B—1
> wp(K) Py(cosfi) =om for 0<m < B (2.13)
k=0

where P,, denotes the Legendre polynomial of degree m. We can now state the fol-
lowing result, whose proof may be found in [23].

Theorem 1 Suppose f € L*(SO(3)) is a bandlimited Sfunction with bandlimit B.
Then for all] < B, we have

2B—12B-12B-1

S D we) fle)y B vi) Dy (@i B vin) . (2.14)

J1=0 jo=0 k=0

R 1
1
Suw (2B)?

where the sample points are those defined in (2.12) and weights wp (k) are the solu-
tions to the linear system (2.13).

The method of computing the Fourier coefficients of f by summing (2.14) will be

called the Discrete S O (3) Fourier Transform of f, DSOFT(f).
The weights have a closed form expression.

BIRKHAUSER

152 J Fourier Anal Appl (2008) 14: 145-179

Lemma 1 (cf. [6]) Let B = w(2k + 1)/4B. The solutions to the linear system of
Equations (2.13) have the closed form expression

2 (a@j+ D\ 1o w
wB(k)_Esm< -);)2k+151n((2]+1)(2k+1)ﬁ) (2.15)

where 0 <k < 2B.

3 Our Algorithm

Theorem 1 tells us that we can compute exactly the Fourier coefficients of a properly
sampled bandlimited function f of bandlimit B. However, if we were to evaluate
directly (2.14) as it is written, each Fourier coefficient would require O (B?) opera-
tions. There being O (B?) coefficients f 1{/1 o compute, the cost of computing the
complete Fourier transform of f is O(B®) operations. Is it possible to reorganize
the computation and hence reduce the total complexity? Yes, by application of the
separation of variables technique (see, e.g., [23, 24]).

3.1 Separation of Variables

The basic strategy is to make a prudent choice of factorization of the group elements
of SO(3) and use of a set of adapted representations, also called Gel fand-Tsetlin
bases, to re-index the sum (2.11) as a multiple sum. (Because we are using the Euler
angle decomposition, (2.14) is already in the proper form). Next, terms that do not
depend on particular indices are factored through the individual sums, and then the
sums are evaluated coordinate by coordinate.

By using the fact that Dé\lM/ (a, B, y) = e M dfwM' (B)e ™M we may rewrite
(2.14) as

2B—1 2B—1 2B—1
Fuw = gz 2 ws®dyy B 3 &M 37 &M @ proyi) - GD
k=0 J2=0 J1=0

This form lends itself to the efficient computation of f Ilv[- First sum over jy, then j»
and conclude by summing over k. To be slightly more explicit, first sum the following
quantities (note the indices they depend on) for 0 < j>, k < 2B and |M|,|M’| <
| < B:

. | 281 .
Sl(k, Mv]2) = Ao e I f(ajls ﬂka V]z) (32)
(2B) -
Jj1=0
2B—1
So(k, M, M) = —— MY Sk, M, j 3.3
2) (23)/ oe 1(J2) (3.3)
J2=

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 153

2B—-1

Foer = ws®)dhyp (BOS2 (k. M, M) . (.4)
k=0

For a given pair k, j», the sum Si(k, M, j,) for all M can be evaluated in
O(Blog B) operations using a standard, Cooley-Tukey-esque FFT. Therefore, to
compute Sy (k, M, jp) for all k, M, j, takes O(B3 log B) operations. For identical
reasons, the same big- O is applicable for computing S»(k, M, M’). All that remains
is evaluating that last sum (3.4). For given M, M’, O (B?) operations are needed to
compute f]{4 e for all [. Therefore, putting all the pieces together yields an O(B%)
algorithm for computing the Fourier transform of f, substantially smaller than the
original, “naive,’ 0(86) computation. From now on, we will refer to this method of
computing all the Fourier coefficients of f as the SO (3) Fast Fourier transform of
[, SOFFT(f).

Given the well-known numerical reliability of the Cooley-Tukey FFT (see, e.g.,
[27]), there is very little reason to investigate the quality of the sums (3.2)—(3.3). The
place where errors would be introduced (and exacerbated) is in the third sum (3.4).
Given its import, we are motivated to make the following definition.

Definition 2 For given integers (M, M'), define the Discrete Wigner Transform
(DWT) of a data vector s to be the collection of sums of the form
2B—1

S(L.M. M) =" wgk) dy 4 (BOIslk max (| M|,
k=0

M|)<i<B @35

where dﬁu y 18 @ Wigner d-function of degree / and orders M, M’, and f; =
72k +1)
4B

In our case, the data vector s is simply the original function f sampled at the
2 B-many locations S defined above. In Section 5 we report the results of our exper-
iments, testing the numerical validity of the DWT for a variety of bandlimits, as well
as the SOF FT algorithm.

Since, as we will soon see, the Wigner-d functions satisfy a three-term recur-
rence, it is possible to use the efficient algorithms given in [7] to compute the DWTs,
thereby reducing the O(B?) operation to O(Blog® B). This would then yield an
O (B3log? B) “really” SO F FT algorithm. However, this was not done in the C code.
We will explain our reasoning in Section 5.2.

Finally, we mention that DWT may be cast in a linear algebraic light. Let s = data
vector, § = coefficient vector, w = diagonal matrix whose entries are the weights, d =
sampled Wigner-d functions, d;; = d,,,(B;). Then

dxwxs=S§ (3.6)
is the forward DWT, and
d” xs=s 3.7

is the inverse DWT.

BIRKHAUSER

154 J Fourier Anal Appl (2008) 14: 145-179

Table 1 Amount of memory, in megabytes, required to hold all the complex-valued
function samples necessary for a discrete Fourier transform on SO (n), using the C-

type double.
Bandwidth SO(3) SO4) S0(5) S0(6) SO(7)

4 <1 <1 1/2 4 32

8 <1 1 16 256 4096

16 12 16 512 16384 524288
32 4 256 16384 1.05x 100 6.71 x 107
64 32 4096 524288 6.71 x 107 8.59 x 10°
128 256 65536 1.68 x 107 4.29x10° 1.10 x 1012
256 2048 1.05x 1006 537x108 275x 1111 141 x 104

Generalizations to higher order rotation groups. Certainly the Separation of Vari-
ables technique can be applied to the higher order rotation groups, SO (n). However,
certain practical challenges are encountered which need to be overcome, not the least
of which is having sufficient memory simply to hold the function samples. Table 1 il-
lustrates this quite clearly. In it, we give the amount of RAM, in megabytes, required
to hold all complex-valued function samples required to take the discrete Fourier
transform of a function f € L2(SO(n)) at various bandlimits. Note how quickly
memory requirements grow as bandwidth and n increase. If someone really wants to
calculate the Fourier coefficients of a function on SO(7), probably they will not get
very far.

3.2 Alternative Approaches

Computing the inverse FFT of f € L2(SO(3)), ie., to go from the Fourier coeffi-
cients { fllw) to the function samples {f (a,, Bk, ¥j,)}, can be done in one of two
ways. One way, as suggested by (3.2)—(3.4), is to first to do all the necessary inverse
DWTs, followed by all the necessary inverse Cooley-Tukey-esque FFTs. This can be
loosely described as doing one set of inverse DWTs, followed by two sets of inverse
“classical” FFTs.

Another way is to apply Risbo’s technique [28], which uses the identity

i)
dyp(B) =1MM Z dl, /e M Pal, (7/2) (3.8)
M//=*j

(here, we quote the version from [26]). The expression (3.8) is the Fourier expansion
of dfvz 1 (B). Edmonds [8] seems to have been the first to publish this observation,
citing unpublished work of Wigner [36]. It all arises from considering the rewriting
of a rotation about the y-axis in terms of a rotation about the z-axis:

8(0,8,0) =g(=7/2,0,0) g(0, =7/2,0) g(B,0,0) g(0,7/2,0) g(7/2,0,0) .

Note that the rotation 8 is now about the z-axis.

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 155

We will not go into details here, but Risbo gives efficient and stable recursive al-
gorithms for evaluating dfw a(B). Unlike the more familiar three-term recurrences
(which we will give in Section 4), these mix both the degree and orders when incre-
menting by half-degree steps. The basic recurrence can be realized as a clever convo-
lution involving a certain 2 x 2 matrix whose entries are related to the Cayley-Klein
rotation parameters

B _ ety
a =cos —e 2
2
. B jar
b=sin=e' 2
2

Risbo mentions that this algorithm may be gleaned from an appendix to Chapter 7 of
Courant and Hilbert [3].

The point of all this is that it makes possible an algorithm in which we first
efficiently calculate dfw v (7/2), then replace djlw w(B) with its Fourier expansion
in (3.1), move summations around, and from there go on to computing the inverse
SO (3) FFT via three sets of classical inverse FFTs. No inverse DWTs need be done.
This technique has seen application in a number of different areas, including cosmol-
ogy [35], molecular biology [21], and elsewhere [12].

However, the algorithm is still O (B*), and its structure precludes the possibility
of obtaining an asymptotically faster algorithm. That is not to imply that it is not fast,
i.e., in terms of looking at the clock on the wall. It all depends on the application,
and what is important to the user. Both Risbo’s technique and the approach presented
here get the job done.

4 Explicit Wigners
Everyone agrees that the Wigner D-function may be written as
D/{/[M’(O" B,y)=e M dI{,IM,(,B) e MY

where, we remind the reader, d AJ/I e (B) denotes the Wigner d-function. There are,
however, at least a few common expressions for d /{/, y(B). One such (see [1]) is

/ _ / M —M M+M'
e ETITTET TR R N

J+M)!(J - M) 2

x pM MMM (o5) .1

where P (x) denotes a Jacobi polynomial. Another common formulation is in
terms of derivatives [26] and is given by:

T+ M) , /
dl‘\llM’(’B) = CJM/ W (1 _ t)_(M_M)/2(1 +l)_(M+M)/2

BIRKHAUSER

156 J Fourier Anal Appl (2008) 14: 145-179

J—-M

X dt]*M [

(=0 M 1+ t)”M’] 42)

Q)
(J+M)H(J — M)

In the interests of clarity and full disclosure we feel it appropriate to provide the
reader with the precise definition of d 1{,1 e (B), as well as other relevant functions,
upon which our C code for computing SO F FT (f) for band-limited f is based. All
these definitions may be found in [33].

Following (4.1) we too use Jacobi polynomials to express the Wigner d-function,
though at first glance, the expressions may not seem equivalent:

[sts+u+v)! /. B\ B\"
d]‘/WM’(ﬂ):éMM/ m(SIHE) <COSE>

x PV (cos B) 4.3)

where t =cos 8 and Cjyy = (_I)J—M’Z—J

where
n+v

p=|M-M|v=|M+M|s=J- 5

and

1 it M >M
SMM = MM e vy

Note that unless J > max(|M|, |M’|), we have d]{,[M, (B) = 0. The d-functions satisfy
the orthogonality condition

/0 A}y (B (B) sin B dp = 81, (4.4)

2J +1

in addition to the following three-term recurrence:

\/[(J +1? = M2 [+ P - M7
J+DQRJI+1D

MM’ o
+ (m —COSﬂ) MM’(IB)

PR s

J2J+1)

0= ditL(B)

dinn(B) . (4.5)

To properly initialize the above recurrence, we have found the following special
cases, where 0 < M < J, especially useful:

, ~ N B J+M B J-M
dJM('B)_\/(J+M)!(J—M)! (Cosz> (sz) (4.6)

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 157

J _ @J)! B\ M/ B\'tM
Coub) = \/(J ¥ M)I(J — M) (COS E) (Sm E) S

J B (2])! '3 J+M . ,3 J—M
dMJ(ﬁ)—\/(J_i_M)!(J_M)! (cos5> (sm§> (4.8)

; _ (2]), E J—M . E J+M
dM_](ﬁ)_\/(J+M)!(J—M)! <cosz> < sm2> .49

Using the above, we were able to confirm correct generation of the d-functions by
comparison with the tables found in [33].
For computational purposes we deal with the L2-normalized cousins of the Wigner

d-functions,
- 2J + 1
iy (B) =\ “5— i (B) (4.10)

Therefore, for the convenience of the reader, here is the three-term recurrence relation
satisfied by the functions d 1{,1 - This is the actual relation the C code uses to generate
the normalized Wigner d-functions:

B /2J+3 (J+DQRJ+1) MM -,
B 2J+1\/](Cosﬁ J(JH))dMMr(ﬁ)

[+ 12 = m2] [+1)* = M7

2 _ M2 2 2
2J+3 \/[J M][J M/] J+1

dingB) . (411
2 \/[(J+1)2—M2][(J+1)2—M/2] /

So how stable is the above recurrence? To try to get a handle on this question, let
us consider the DWT from the perspective of linear algebra.

At a given bandwidth B and orders M, M’, let J = max(|M|, |M’]), and let w
denote the 2B x 2B diagonal matrix containing the quadrature weights. Let d be the
(B —J 4+ 1) x 2B matrix containing the sampled Wigner d-functions:

dyy 0 (cosbo) diyyy(cosOr) ... di,(cosbrp_i)
i d”‘,(coseo) ditl(cosb) ... ditl(cosbrp_1) 1)
dB 1(cos@o) dB ,(cosby) ... d,ﬁ,/_wl,(cos@zg_l)

Then the product d *x w x dTisthe (B=J+ 1) x(B=J+1) identity matrix.

BIRKHAUSER

158 J Fourier Anal Appl (2008) 14: 145-179

-13

10
< Avg Error
—e— Max Error
107" 1
S
[
107% 1
~16
10 ‘ ‘
10° 10’ 10° 10°

Bandwidth

Fig. 1 The largest values of AveErr(M, M’) and MaxErr(M, M), as defined in (4.13)—(4.14), at differ-
ent bandwidths.

So, how close to the identity matrix do we get in floating point arithmetic? In
Matlab, at a given bandwidth B, and orders M, M’, we calculated two quantities:

AveErr(M, M') = 1/B*) " |dxwxd" — | 4.13)
MaxErr(M, M') =max}d*w*dT —I} , (4.14)

where [is the identity matrix, and the sum is done over the matrix elements. The first
quantity, (4.13), may be thought of as the average “per-element” error, and (4.14) the
maximum “per-element” error.

In Figure 1, at bandwidth B, we plot the largest AveErr(M,M') and
MaxErr(M, M') values obtained as the order M ranged from 0 through B — 1, and M’
ranged from M through B — 1. As can be seen, the errors are quite small: Agreement
with the identity matrix is good.

5 Numerical Results

In this section, we present numerical evidence which indicates that the proposed
algorithm can accurately compute the Fourier transform of band-limited functions
f € L*>(SO(3)) at realistic (to be explained later) problem sizes. We will also present
some timing results, and discuss issues of computational efficiency.

All code was written in C, with some of the more basic routines borrowed from
SpharmonicKit [31]. It is freely available on the web as “The SOFT Package” [32].
In certain instances, which will be made clear, we availed ourselves of the Fourier

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 159

Fig.2 Outline of our Generate random coefficients
experiment.

llnverse transform

Compute sample values

lForward transform

Compute new coefficients

transform routines provided by FFTW [10]. Experiments were performed on four
platforms. Three were GNU/Linux platforms running a variety of processors: An In-
tel 800 MHz Pentium-III, an Intel 2.4 GHz Xeon, and an AMD 1.66 GHz Athlon
MP 2000+. The flavour of GNU/Linux on these machines was either RedHat or De-
bian. The fourth platform was an HP/Compaq AlphaServer with a 833 MHz Alpha
processor running OSF1 V5.1. While some of the hardware was multi-processor, the
code was always run on a single processor. No parallelizing was done. The code was
compiled with available optimizations. In the case of the HP/Compaq machine, the
native compiler, and not gcc, was used.

Figure 2 provides a coarse description of a typical experiment.

The process illustrated in the figure would be iterated some number of times, at
the end of which the average absolute and relative errors would be calculated.

5.1 The Discrete Wigner Transform

Before attempting to compute SO FFT (f), for our first series of experiments we
investigated the stability of the discrete Wigner d-function transform, with the sums
being evaluated naively. We wanted to ensure that an actual implementation of this
critical component of the Fourier transform over the full group was in fact stable for
a large range of problem sizes. To flesh out the outline given in Figure 2, a precise
description of this experiment now follows.

(1) Choose a bandwidth B, and orders M, M’.

(2) Generate random Wigner d-coefficients { fﬁlj[) where max(|M|, IM')) <k <
B — 1, uniformly distributed between —1 and 1.

(3) Take the inverse DWT of the above coefficients, resulting in 2 B-many function

27+ 1
samples {f(B;) | 0<j <2B — 1} where 8; = M
(4) Take the forward DWT of the above sample values, resulting in a new set of

: ok
d-coefficients, gy, -
(5) Compute the error

rk Ak
max | /3t = 8haar
(6) Repeat Steps (2) through (5) one hundred thousand times.

(7) Compute the average absolute and relative errors over all trials.

The above experiment was run for various bandwidths B, and combinations M and
M’. The results obtained on the 2.4 Xeon are given in Table 2. Runs on other plat-
forms displayed similar behavior.

BIRKHAUSER

160 J Fourier Anal Appl (2008) 14: 145-179

Table2 Discrete Wigner Transform average absolute (first row) and relative
(second row) errors, as obtained on the Intel 2.4 GHz Xeon. The errors for
the case B = 1024 are the average of 1,000, and not 100,000, iterations.
As might be indicated by the symmetry of the d-functions, errors for the
case M =0, M" = B/2 were, for all practical purposes, similar to the case
M=B/2,M'=0.

BandwidthB M=M'=0 M=B/2, M'=0 M=M =B/2

16 2.0990e-12 2.1644e-12 1.9806e-12
9.8256e-11 3.7374e-11 2.6711e-11

32 2.3308e-12 3.3753e-12 2.3639%-12
3.4070e-10 2.5885e-10 3.0303e-10

64 1.1389%-11 9.1509e-12 1.1076e-11
3.7872e-09 1.5096e-09 1.6904e-09

128 3.5974e-11 2.8620e-11 3.6464e-11
3.2129e-08 8.0481e-09 4.5913e-08

256 1.2473e-10 9.2109e-11 1.0939e-10
2.0330e-07 4.1057e-08 8.3698e-08

512 5.5025e-10 2.9709e-10 4.6540e-10
1.6429¢-06 1.6119e-07 7.4623e-07

1024 2.1756e-08 9.3919e-10 1.5819e-08
3.1479e-04 5.6260e-07 8.0374e-05

At the smaller bandwidths, the errors are all acceptably and gratifyingly small.
However, a careful examination of Table 2 reveals that as the bandwidth increases,
the relative error eventually approaches anxiety-inducing levels. By the time we reach
bandwidth B = 1024, we are seeing relative errors roughly on the order of 1073,
However, as will be detailed in Section 5.2, when results of the full transform are
presented and discussed, other practical considerations render any causes of concern
at these larger bandwidths unnecessary.

In Figure 3, we show the average CPU runtime of the forward DWT on four differ-
ent platforms, at a number of different bandwidths B. The Wigner functions neces-
sary for the transform were precomputed in advance. Runtimes for the inverse trans-
form were comparable to those of the forward transform. Some numbers indicating
this are shown in Table 3.

Precomputing itself does not take long. On the Xeon, for B = 1024, it takes
roughly 0.04 seconds to compute the Wigners necessary for a forward transform.
However, in our particular implementation, precomputing for the inverse transform
takes about 4 times as long. The reason? To obtain the sampled Wigners necessary
for the inverse transform, we are simply transposing the matrix of sampled Wign-
ers needed for the forward transform. This takes time. We will see later how matrix
transposition becomes a real issue in doing a Fourier transform over the full group.

We find it interesting, from a cultural standpoint, that even on the older ‘slow’
800 MHz machine, the DWT is still quite fast. E.g., while the 800 MHz is more than
twice as slow as the Xeon, at bandwidth = 64, it still takes the 800 Mhz only about

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 161

1 -1

10 10
—e— Alpha
o —— Athlon
10°F | —— P-lll
—=— Xeon
(72} 12} 3
2 2107
8 3
& &
> o, 4
o o 10 |
o o
10
10° - - 10°° . .
2 10° 10° 10°
Bandwidth Bandwidth
(a) Order M =0, M’ =0 DWT (b) Order M = B/2, M’ = B/2 DWT

Fig. 3 Average CPU runtime for a Wigner Transform on four different platforms: The 833 MHz Alpha,
the 1.66 GHz Athlon, the 800 MHz P-III, and the 2.4 GHz Xeon.

Table 3 Average CPU runtimes (in seconds) of the forward and inverse
M =0, M’ =0 DWT on the Xeon.

Bandwidth 16 32 64 128

Forward DWT 2.3000e-06 4.8000e-06 2.0900e-05 9.6200e-05
Inverse DWT 1.1000e-06 ~ 5.2000e-06 2.2500e-05 9.1200e-05

Bandwidth 256 512 1024
Forward DWT 4.3070e-04 1.7334e-03 6.7300e-03
Inverse DWT 4.2550e-04 1.6697e-03 6.7200e-03

107> seconds to do a DWT. Of course, this is just for a single DWT. Speed becomes
a more pertinent issue when considering the full transform.

Now, the astute reader may ask the reasonable question, “When doing a bandwidth
B DWT, why sample at the Chebyshev points, at twice the bandwidth? Why not
sample at the B Gaussian points?” We looked into that question with Matlab, and
our results are shown in Tables 4 and 5. In Matlab, we implemented our standard
experiment (described at the beginning of this section), but this time iterated only
100 times. The tables show that the errors are comparable (and small) for both sets
of points.

So why not stick with Gaussian quadrature for the DWT? Well, since the
Wigner-d functions satisfy a three-term recurrence, we want the option of apply-
ing the techniques of Driscoll-Healy [6] and Driscoll-Healy-Rockmore [7] to yield
a O(Blog?> B) DWT. Their techniques require sampling at twice the bandwidth —
at the Chebyshev points. However, as noted previously [18], the “classic” Driscoll-
Healy algorithm, in certain circumstances, exhibits numerical instabilities.

To investigate the stability of the discrete Wigner transform, as computed by ap-
plication of the Driscoll-Healy method, we implemented in Matlab the following
procedure outlined in Figure 4. When applying the “divide-and-conquer” DH algo-

BIRKHAUSER

162 J Fourier Anal Appl (2008) 14: 145-179

Table 4 Average (first row) and relative (second row) errors of the discrete Wigner transform, as
implemented in Matlab, at various bandwidths B and orders m, my over 100 iterations. For each
problem size B, a B-point Gaussian quadrature was used.

Orders B =064 B =128 B =256 B =512 B =1024

my;=0,mp=0 3.0792e-13 8.7333e-13 1.3840e-12 5.7836e-12 2.5360e-11
2.3122e-11 9.8438e-11 4.4669e-10 3.1174e-09 3.9491e-08
my=B/2,my=0 3.8430e-14 9.2385e-14 1.8135e-13 4.7824e-13 1.1782e-12
4.2521e-12 5.8872e-12 8.0913e-11 7.9856e-11 4.6796e-10
my=my=RB8/2 1.3247e-13 5.9881e-13 7.6512e-13 3.5332e-12 5.5265e-10
9.6054e-12 8.3802e-11 1.5318e-10 2.3103e-09 2.5862e-08

Table 5 Average (first row) and relative (second row) errors of the discrete Wigner transform, as
implemented in Matlab, at various bandwidths B and orders m 1, my over 100 iterations. For each
problem size B, the functions were sampled at the 2B-many Chebyshev points (i.e., the “usual”
grid).

Orders B =64 B =128 B =256 B =512 B =1024

my;=0,mp=0 4.7564e-14 4.4736e-14 2.3443e-13 3.9389%e-13 1.4254e-12
3.6413e-12 7.4549e-12 1.0121e-10 2.6971e-10 1.5577e-09
my=B/2,my=0 9.690le-15 2.1207e-14 4.0782e-14 9.5098e-14 1.9725e-13
5.1438e-13 1.1691e-12 1.3858e-11 2.307le-11 7.4163e-11
my=my=0B8/2 9.5791e-15 3.9630e-14 1.0923e-13 2.0820e-13 4.1624e-10
3.4753e-13 4.3671e-12 2.8238e-11 1.0873e-10 7.2033e-09

rithm, we “divided” the problem size twice. That is to say, we reduced a problem of
size N to four problems each of size N /4. Our results are in Table 6.

The behavior reflected in the results in Table 6 is similar to that reported in [18].
In that work, shifted Legendre polynomials (generated by repeated application of
the three-term recurrence) were seen to be the culprit. In the present case, we have
“shifted Wigner polynomials” to blame for the instability.! One cannot shift “too far”
with them, at least from certain locations. In Figure 5 we show a log-plot of the av-
erage error from a “per coefficient” perspective. For a DH-based DWT, at bandwidth
B = 64 and orders m| = my = 32, there are 32 coefficients to compute. After 100
iterations (i.e., the procedure outlined above), what was the average error, over those
100 iterations, of each coefficient? That is what Figure 5 shows.

It is possible that, as in [18], a hybrid-DH algorithm could be applied to stably
compute a DWT at all orders. However, given the memory constraints on the rela-
tively straightforward algorithm we present, the problem size where such a hybrid-

1Actually, we are not being entirely fair to the shifted Wigner polynomials. The problems are not with the
polynomials themselves. Rather, things go awry when one takes their discrete cosine transform. When we
instead tried the DH-strategy of “dividing” without “conquering” in the procedure we outlined above, we
did not see any instabilities. Errors were on the order of 10~ and smaller. This is the good news. The
bad news is that one has an algorithm with the same complexity as the direct approach.

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179

163

Fix bandwidth B, and orders m; and mo

Let m = max(|m4|, |ma2|)
for i =1 to 100 do

k=m,...,B—1
2. Synthesize the function

k=m

where [=0,...,2B — 1, and §; =

4. Compute the error as

end

Finally compute the average and relative errors over all trials.

Fig. 4 Outline of stability experiment for the DWT.

Table 6 Average (first row) and relative (second row) errors of a DH-
based discrete Wigner transform, as implemented in Matlab, at various
bandwidths B and orders my, my. Two recursive “splits” in the DH-
implementation were done in all cases.

m(2041)
1B
3. Apply the DH-based DWT algorithm to the synthesized function,

obtaining coefficients Wigner d-coefficients g, LM

£k ~k
mkaXHfml,mg - gml,m2||

1. Generate set of random Wigner d-coeflicients f,’fjh,mz, normally
distributed with mean 0 and standard deviation 1, for

B—-1
FlcosB) =Y fh iyl my(cos B1)

Orders B =64 B =128 B =256
mp=0,mp=0 7.2866e-14 1.1693e-13 2.8986e-13
1.9497e-11 1.0186e-11 9.5298e-11
my=B/2,my=0 2.5139-05 2.4748e+08 6.0021e+34
2.2400e-04 5.7008e+09 1.7985e+36
my=my=B/2 6.3073e+06 1.0381e+33 3.8828e+85
3.6475e+07 4.9463e+33 3.3584e+86

DH algorithm would start to “win” over our algorithm is considerably beyond our

current resources to investigate.

Finally, that same astute reader may ask, “Since the Wigner-d functions are
trigonometric polynomials, couldn’t the method of Dilts [5] (called the “semi-naive”
algorithm in [18]) be used? Couldn’t the sum (3.5) be evaluated in the cosine do-
main?” Yes, it could, but why we chose not to go that route will be given in the next
section. In brief, at the point at which we can begin to achieve real-time gains in per-
formance by working in the cosine domain, the problem becomes intractable due to

hardware limitations.

BIRKHAUSER

164

J Fourier Anal Appl (2008) 14: 145-179

Mean error of coefficients over 100 trials
10 T T T T T T

-5+

Iogm(lMean error|)

30 35 40 45 50 55 60 65
Degree of coefficient

Fig. 5 DH-based DWT: Mean error of coefficients over 100 trials at bandwidth B = 64 and orders =
my =my =32.

52

Nice 'n SOFFT

The basic structure of the experiment described in Figure 2 was preserved when doing
a Fourier transform over the entire group.

D
2

3)
“4)
®)

(6)
)

Choose a bandwidth B.
Generate random Fourier coefficients, { f 1{,1 v} over the appropriate ranges of /,

B
M and M’. There are 3 (4 B? — 1) many coefficients. Real and imaginary parts

of the coefficients are values uniformly distributed between —1 and 1.

Compute the inverse SO F FT of the above coefficients, resulting in values of the
function f(«, B, y) sampled on the equiangular 2B x 2B x 2B grid.

Compute the forward SO F FT of the above sample values, resulting in a new set
of Fourier coefficients, {glM il

Compute the error

Al Al
}fMM’ —8mm

max
1,M,M’
Repeat Steps (2) through (5) ten times.
Compute the average absolute and relative errors, and their standard deviations,
over the ten trials.

Note that by going from spectral to spatial to spectral representations, we ensure
that we really are dealing with bandlimited functions f € L?(SO(3)). Furthermore,
the Fourier coefficients in Step (2) are randomly generated without the constraint

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 165

Table 7 Average absolute and relative errors, over ten iterations, of Sym, when run on the
Xeon.

Band-limit 8 16 32 64 128

Average Error 1.6147e-12 5.7296e-12 1.5481e-11 1.1007e-10 7.0047e-09

Std Dev 1.4289%-13 7.4973e-13 1.4024e-12 1.4696e-10 1.8530e-08
Relative Error ~ 1.4330e-11 1.0247e-10 8.9718e-10 5.3790e-09 4.1743e-07
Std Dev 1.4069e-11 4.9962e-11 6.6493e-10 4.5457e-09 8.7350e-07

of ensuring that the resulting sample values should be strictly real, e.g., as is done
in [20].

We implemented four fundamentally different versions of SO FFT (f), the full
SO (3) Fourier transform, with a variant or two thrown in. The full transform may be
treated as two components: The “regular” FFT portion [Equations (3.2)—(3.3)], and
the DWT portion [Equation (3.4)]. With this in mind, here are the four versions:

e Plain: The FFT portion is computed via the home-grown FFT available as part of
SpharmonicKit [31]. The DWT is evaluated for all legal M and M’, computing the
Wigner-d function values on the fly as needed.

e Sym: As in Plain, the FFT portion is computed via the home-grown FFT. However,
we take advantage of the symmetries enjoyed by the Wigner-d functions and get as
much mileage out of each set as possible, e.g., the Wigner-d functions needed for
orders M =4, M’ = 14 may also be used for orders M = 14, M’ =4, and M =4,
M’ = —14, and so on.

e FFTW: The DWT is evaluated as in Sym, but the FFT portion is computed via the
routines in FFTW.

o FFTW-PC: Just like FFTW, except that all the Wigner-d functions are precom-
puted in advance.

These different implementations all exhibit the same stability behavior. Their real
differences become apparent when the question of CPU time is addressed.

Stability. The results of the above experiment, when running Sym on the Xeon, are
given in Table 7. Results on the other platforms are comparable. Quite clearly, at the
bandwidths tested, the implementation is quite stable.

Now, the reader will note that the full transform is run only through bandwidth
B = 128. The reason for this is quite simple: We ran out of memory! Or, to be more
precise, the computer ran out of memory. For each doubling of the bandwidth, mem-
ory requirements increase eight-fold. Suppose the C code uses the data type double,
which is 8 bytes long. If we make the reasonable assumption that there should be
sufficient RAM to contain both the input data, all (2B)? sample values (which we
assume are complex), and the Fourier coefficients (also complex), all % (4 B? — 1)
of them, then for problem size B = 128, we would need nearly 300 megabytes of
RAM. For B = 256, requirements would blossom to nearly 2.4 gigabytes! And we
are not even considering the memory necessary for temporary storage, e.g., matrix
transposing. So this is the downside. The upside is that we cannot even attempt to

BIRKHAUSER

166 J Fourier Anal Appl (2008) 14: 145-179

Table 8 Average CPU runtime (in seconds) for the forward (first row) and inverse (second
row) SO (3) transform on the Xeon.

Band-limit 8 16 32 64 128
Plain 2.8800e-03 3.2120e-02 3.2610e-01 3.1180e+00 3.5070e+01
2.9100e-03 3.1650e-02 2.9960e-01 3.1240e+00 3.5771e+01
Sym 1.3200e-03 1.5390e-02 1.6850e-01 1.4890e+00 1.6631e+01
1.5300e-03 1.3230e-02 1.2510e-01 1.1970e+00 1.3544e+01
FFTW 5.2000e-04 6.7900e-03 7.2200e-02 7.2900e-01 ~ 8.2510e+00

5.6000e-04 7.0700e-03 7.6300e-02 7.9700e-01 8.8970e+00
FFTW-PC 2.9000e-04 4.9600e-03 5.3900e-02 5.2200e-01
3.2000e-04 5.4400e-03 5.8500e-02 5.6000e-01

compute a Fourier transform on the full group at a bandwidth where the numerical
stability of the DWT we know (by the results of Section 5.1) to be suspect.

Running Times. The four variants of implementations were run on all four plat-
forms. At the smaller bandwidths, B = 8, 16 and 32, in order to obtain as accurate
a timing result as possible, the experiment described at the beginning of this sec-
tion was slightly modified. First a random set of coefficients was generated. Then the
stopwatch would be turned on, and the inverse transform would be performed (on
that one set of coefficients) X-many times, then the stopwatch would be turned off.
This would be repeated for the forward transform, using the random sample points
just obtained. For B = 8, 16, X = 1000, and for B = 32, X = 100. The remaining
bandwidths used X = 10.

Furthermore, the different machines had different amounts of RAM. We ran the
tests for as large as possible on the particular machine. And it is always possible
the amount of RAM affected performance. Still, we believe our results are fairly
indicative of what might be expected on other platforms.

Finally, using FFTW involves first generating a “plan” before carrying out the ac-
tually Fourier transforms. In a plan, the user specifies parameters such as the size of
the (multi-dimensional) transform, whether or not the transform should be in-place
or not, and if the transform is multi-dimensional, how the algorithm should “skip”
through the data. Prior to executing “for real,” FFTW determines how to most ef-
ficiently perform the specified plan on that specific platform. The responsibility of
determining how hard FFTW should try to find the optimal transform is up to the
user. In our tests, the FFTW level we used was FFTW_MEASURE. In addition to this,
we freely admit the possibility that more efficient plans than ours is possible.

In Figure 6 we plot the average CPU runtime (in seconds) of the forward SO (3)
transform. In order to provide a little more quantitative “meat,” in Table 8 we give the
average runtimes of the SO (3) transform on the Xeon, both forward and inverse.

As is no surprise, FFTW-PC performed fastest on all four platforms, and Plain
the slowest, although by how much might not be apparent in Figure 6. Therefore, in
Figure 7 we plot the ratios of the runtimes for Sym, FFTW, and FFTW-PC versus
Plain.

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 167

B Alpha 5 Athlon
10 T 10
)l
Pl ’ -o-- Plain 4
1 -o- i 1
10" | 10' L | = Sym
—v— Sym
o FFTW . FFtw-pc
@ 0 —— FFTW-PC o .0
€ 10° | S 10
3 g
b 8.
3107t 24307}
S 5
[[< Y
Z 107 Z107%
107} 10°%
10 - - 107
10° 10’ 10° 10° 10° 10' 10° 10°
Bandwidth Bandwidth
(a) Alpha (b) Athlon
: P-Ill) Xeon
10 10
G
-o-- Plain b
10} |- glyarlr? o' ng
F -
o FFTW —— FFTW-PC
3 —— FFTW-PC 38 10°
& 107 &
o 10 o
(7] [
0 @ 1
5 107t
o o
[SRT" 9]
2 2107*
< z b
3|
10 107
- 4
10 . 10 . .
10°) 10° 10° 10’ 10° 10°
Bandwidth Bandwidth
(c) P-III (d) Xeon

Fig. 6 Average CPU runtime for the different forward SO (3) transforms.

Figure 7 appears to confirm the following rules of thumb: Taking advantage of the
symmetries of the Wigner-ds speeds up the runtime by roughly a factor of 2 over
Plain, and FFTW plus symmetries buys a factor of 4 speed-up. However, precom-
puting the Wigner-ds plus FFTW plus symmetries yields a noticeable, though not
particularly dramatic, gain in performance only on the Xeon. A similar less-than-
spectacular gain was observed when we assumed that the function was strictly real-
valued. This assumption introduces an additional symmetry in the coefficients which
can be used for computational advantage.

These results were somewhat disappointing, and they very much relate to why
the semi-naive algorithm was not employed in performing the DWT. This algorithm
depends in part on precomputed data, to wit the DCT (discrete cosine transform)
coefficients of the Wigner-d functions. In fact, a semi-naive version of the DWT was
coded up and tested in a full SO (3) transform, but the runtimes were basically no
different from those obtained with FFTW-PC, which themselves are not significantly
different from FFTW. Indeed, this behavior made us skeptical that a Driscoll-Healy
based algorithm, which also depends on precomputed data, would offer much more
efficiency.

BIRKHAUSER

168 J Fourier Anal Appl (2008) 14: 145-179

Alpha Athlon
10 . = 8 — Sym
- ym
ot o FFTW 7 o FFTW |
—— FFTW-PC —— FFTW-PC
il | 6
s T £
g 6} ° n_u_,S' °
2 ° :
2 5f £ 4r
©
o oc
4 ey 3t
al A
2 ~— .
ot A N
1 0 1 2 3 1 0 . 1 . 2 3
10 10 10 10 10 10 10
Bandwidth Bandwidth
(a) Alpha (b) Athlon
Pl eon
9 T 10, -
—v— Sym —— sym
8 ° FFTW of o FFTW
—— FFTW-PC —— FFTW-PC
7 8t 1
g6 sl
o o et
(g 5 o g o
2 o 5f
g4 g . R
. L
3 ° °
3»
2 v/\/v ol — —v—%
1 0 1 2 1 0 1 2 3
10 10 10 10 10 10 10
Bandwidth Bandwidth
(c) P-1II (d) Xeon

Fig. 7 Ratios of average CPU runtime for the different forward SO (3) transforms.

We are not certain why we are failing to see much improvement in the runtimes.
However, we do believe we can identify some of the causes. One is memory, or lack
thereof. The problem sizes we are able to run at may be too small to see the gains the
asymptotic analyses predict. And this relates to the hidden constant in these analyses
— the overhead. An integral part of the algorithm, as far as an actual implementation
is concerned, is the matrix transpose. After all, not only are the arrays large, but they
must be transposed. This is a significant portion of the runtime. On the Xeon, more
than 40% of the time spent doing a bandwidth B = 64 forward SO (3) transform is
spent transposing matrices. For B = 32, this figure approaches 75%! This encourages
us to believe that B would have to be pretty large before an algorithm like semi-
naive would present a big win over, say, FFTW-PC. Indeed, it could be argued that
precomputing does not yield such significant improvement, either.

We tried many variations of the code, to reduce the number of matrix transposi-
tions, e.g., having a different ordering the data prior to transforming; letting FFTW do
the matrix transposing by means of a cleverly chosen plan. For us, the performance
gained in doing these things was barely perceptible.

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 169

Now, we do not mean to imply that this precludes the possibility of an optimal
semi-naive or Driscoll-Healy like SO (3) transform at bandwidths within our realm.
Rather, given how our code is structured, we do not think it is possible. However, the
reader should keep in mind that the “slow” algorithms we have tested are, in terms of
absolute CPU time, still pretty fast, and hence may be of real use.

6 An Application: Correlation

Given two functions on the sphere, f and h, and the knowledge that & is a rotated
version of f,i.e., f = A(g)h for some g € SO(3), how does one find that g? Phrased
another way, we have a pattern f, and we wish to identify its latitude, longitude, and
orientation, on the sphere. This can be accomplished by correlating the two functions:

Cle)= /52 f(w) A@)h(w) de (6.1)

and finding the g that maximizes the above integral. This has a number of useful
applications, in such diverse areas as molecular biology [4, 21], and 3-D shape-
matching [19].

Before we show how one may efficiently correlate two functions defined on the
sphere, we will take a momentary and minor detour to discuss one way spherical har-
monics are used in 3-D shape-matching. The particular application is in developing
rotation invariant descriptors [19].

First of all, one of the well known properties of the (Euclidean) Fourier transform
is that the magnitudes of the Fourier coefficients are invariant under translation, since
a translation in the signal manifests itself as a phase shift in the coefficients. For
Fourier transforms on the sphere, where the action is now rotation, we have the next
best thing. Let f; denote the the /' frequency component of f € L?(S?):

@)=Y am¥" (o).

lm| <l

The quantity | f;(w)| is invariant under rotation. Let P(f) (for “power”) denote the
set

Py =A{lfol.1A1l1f2l, -}

Alright, then. How is this applied to 3-D shape-matching? We begin with the assump-
tion that we have a 3-D model of an object. Consider concentric spheres, of increasing
radius, centered at the object’s center of mass. The intersection of a sphere of radius
r with the object defines a function f(r, w) on the sphere. For each object, then, we
form the set

{P(f(ro,w)), P(f(r1,w)), P(f(rz2, w)),...}

where rg < r1 < ry < This provides a rotation-invariant representation of the 3-D
object. These representations can be searched over, and there you have 3-D shape
matching. The Princeton Shape Retrieval and Analysis Group [30] is carrying out
exciting work in this area.

BIRKHAUSER

170 J Fourier Anal Appl (2008) 14: 145-179

And now, back to our story. How do we maximize (6.1)? How do we identify that
rotation g which aligns i to f,i.e., f = A(g)h ?

Instead of undertaking the time-consuming task of evaluating C (g) for all possible
rotations, we may efficiently determine the maximum g by means of the FFT on
SO(3). We develop this as follows. First of all, since it is the case that f, h € L2(8?),
we have their Fourier expansions:

f@ =YY" am¥" ()

[Im|<l
h@)=Y" > bn¥" ().
I m|<l

We wish to find the g € SO (3) which maximizes

C(g)= /52 f(w) A(g)h(w) do .

Let us write things out in gory detail. We begin with

C(g) =/Szf(w) A(@)h(w) dow

/ I:Z Z aimY" (a)):| I:A(g)z Z b[/m/Yl’fl/(a))i| dw

I |m|<l U im'|<U

“Y XY Y anbi [@@ @do. (62

I m|<l U |m|<U

At this point, we can achieve some simplification. The integral in (6.2) equals O,
unless | =1'. Therefore, we can remove a summation:

C@=>">"">" ambwm /S (@) A@Y" (@) do. (6.3)
I |m|<l |m’|<l

Recall that under rotation, a spherical harmonic of degree / is transformed into a
linear combination of spherical harmonics of the same degree. In terms of the Wigner-
Ds, we can express this as:

AQ)Yim(@) =Y _ Y}(w) D}, () - (6.4)
[k|<l

Therefore, we may write (6.3) as:

cw="%"3 ambw / V' @) S Vf(@) DL, (g) do

I m|<l |m'|<l k| <l

=3 > > aim biw D, (2) / Y/ (@) Yf() do . (6.5)

I |m|<l |m'|<l k|<I

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 171

We are nearly there. Note that the integral in (6.5) is equal to 0 unless k = m.
This being the case, and using two of the many symmetries the Wigner-D functions
satisfy, we can zap one of the summations:

c@=>"3">" ambw D\, (&)

I |m|<l |m'|<I

ZZ Z Z aim blm’(l)m le—m m(g)

I |m|<l |m'|<l

—Z Z Z A bl (=1)" ™™ DL (g). (6.6)

I |m|<l |m'|<l

That’s it. That’s the recipe.

So, if f and h are band-limited, combining the Fourier coefficients of f and h
thusly, as prescribed in (6.6), and then taking the inverse S O (3)-Fourier transform of
the result, we can efficiently evaluate the correlation C(g) of f and A, at a whole slew
of g’s. Then we can easily find which rotation g maximizes C(g). In other words, if
we knew in advance that 7 was some rotated copy of f, we would know which g
satisfies f = A(g)h.

In the next section, we will show some examples of correlating via the technique
just described.

7 An Example: Pattern Matching on S>

In order to investigate the viability of pattern-matching on the sphere via FFTs on
SO (3), we applied the technique described in the previous section on a variety of
images. Those results, which are presented in this section, are quite promising.

In Figure 8, we show the signal, pattern, and the difference between the signal and
aligned pattern. The difference image is shown on the “unrolled” sphere, with the
north pole being the top horizontal line, and the south pole the bottom. The bandwidth
is B = 128. The total CPU running time, from computing the spherical coefficients of
both signals through finding the optimal rotation, on the Xeon, was about 10 seconds.
We used FFTW for the inverse S O (3) Fourier transform, for this and all the examples
which follow.

The original data was a 256 x 256 square image, i.e., sampled in the plane. We
simply interpreted the samples as instead living on the equiangular 256 x 256 grid
on the sphere. We then took the forward and inverse S Fourier transform, resulting
in samples of a truly bandlimited signal. To rotate, we “massaged” the S Fourier
coefficients with the Wigner- D functions, as prescribed by (2.5).

In Figure 8, we also plot the values of the parameters «, 8, and y which yield
the maximum value of C(g), as a function of the maximum degree of ¥;"s used
in the correlation. The plot is only through degree I = 9, because by that point, we
know the three angles as well as we are going to. Indeed, in this particular example,
correlating using only up to the degree 2 spherical harmonics is sufficient to yield the
final answer. Higher degree harmonics do not improve the results. (Later examples

BIRKHAUSER

172 J Fourier Anal Appl (2008) 14: 145-179

0.5 05
0 0
-0.5 -0.5
'1 b N - '1 £
1 1
1 1
@ 0 @ (]
-1 4 -1 -
(a) Signal (b) Pattern
7
- o
6 — B
v
5
4
3
2
1
% 2 4 6 8 10
(c) Difference (d) Angles

Fig. 8 Rotating the pattern to match the signal. The bandwidth is B = 128. In the lower left we show the
difference between the signal and aligned pattern on the unrolled sphere (the South Pole is at the bottom,
the North Pole at the top). The lower right panel shows the rotation parameters «, 8, and y which yield
the maximum value of C(g), as a function of the maximum degree of Y, lm s used in the correlation.

will show this is not always the case. Higher degree harmonics are at times necessary.)
Qualitatively, we can view this as indicating the resolution in the angular features
needed to accurately find the pattern in the signal.

Before going further, we should clarify what we mean by “maximum degree of
Y/"s”” A band-limited function f € L?(S?) has the following expansion:

B—1
f@=> > f"V'w).
1=0 |m|<l

If we say that the maximum degree of ¥;" used was, say, 5, then we are setting equal
to 0 all those coefficients fl’” where [> 6. In the correlation routine, this zeroing is
done prior to using the S2 coefficients to construct, via (6.6), the Fourier expansion

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 173

of C(g), and hence prior to taking its inverse SO (3) Fourier transform. Note that it
is still a bandwidth B inverse transform being performed. Doing this can be viewed
in one of two ways, as either correlating smoothed versions of the two spherical
functions, or taking the inverse SO (3) transform of a smoothed version of C(g), e.g.,

5
C@O=>"3"Y @b (=1)"D (g)

[=0 |m|<I |m'|<l

which amounts to the same thing.

Before going on to the next example, there is one more point we wish to make.
The average relative error between the signal and aligned pattern is 0.0212. This may
seem unacceptably large to some, but bear in mind what we are doing. We wish to
find the rotation g € SO(3) which maximizes C(g). However, the gs we are trying
are points on a particular 2B x 2B x 2B grid. The “true” g, the rotation which satisfies
f(w) = A(g)h(w), may not lie on this grid. In this case, the g we find is, in some
sense, the “next best g.”

In another experiment we performed, using the same bandlimited image as in the
first example, the true angles were very close to sample locations on the 2B x 2B x
2B:

o = 1.006291
B = 3.000466
y =2.012582 .

The angles the correlation routine found, which lie on the grid, were

o = 1.006291396852981
B =3.000466421104314
y = 2.012582793705961 .

The average relative error in this case, between the aligned pattern and signal, was
2.5259 x 107°. So the error decreases, the closer the true g lies on the grid point.

We therefore have the following completely natural situation. Correlating a signal
with itself, i.e., f(w) = A(e)h(w), where e is the identity element of SO (3), will not
yield « = 8 =y =0, but rather 8 = 7 /(4B), where B is the bandwidth, and « and
y such that o + y = 2m. (At least, this is what our code gives us!) The behavior of
o and y might seem reasonable, but what about 87 Recall where we are sampling:
Bj=n(2j+1)/(4B). When j =0, we have 8 = /(4B). Bingo.

In our second example, we stereographically projected MR images onto the
sphere, sampling on the B = 128 equiangular grid. Interpolation to the grid was done
using Matlab. Results are shown in Figure 9. The reader should compare these re-
sults with Figure 8, noting the minimum degree Y;" required in order to achieve the
optimal correlation. If nothing else, this example shows that sometimes one has to go
higher than degree 2 spherical harmonics in order to accurately align the pattern to
the signal.

BIRKHAUSER

174 J Fourier Anal Appl (2008) 14: 145-179

05
0

-0.5
-1
1

: _ 1
0 | 5
1 05 0 05 1 A -1
(a) Signal (b) Pattern

0.5;

L 05 0 0.5 % 5 10 15 20
(c) Difference (d) Angles

Fig. 9 Rotating the pattern to match the signal. The signal is shown from beneath the sphere, i.e., from
our vantage point, the South Pole is at the center of the image. The bandwidth is B = 128. The pattern
lives primarily in the Northern hemisphere. The difference image is rendered on the sphere where, as with
signal, the South Pole at the center. The lower right panel shows the rotation parameters «, 8, and y which
yield the maximum value of C(g), as a function of the maximum degree of Ylms used in the correlation.

The correlation examples we have so far seen are for problem sizes B = 128.
However, wanting to do a bandwidth B = 256 correlation, we quickly run into the
problem of insufficient memory (at least for the routines in our test suite). For B =
256, approximately 4.5 GB of RAM would be required, whereas a bandwidth B =
128 correlation requires “only” about 560 MB of RAM. This motivated us to do
the next best thing. While the spherical functions we want to correlate may have
bandwidth B = 256, there is no reason why the inverse SO (3) Fourier transform
needs to be run at that same bandwidth.

Figure 10 shows the results of our efforts. As with the previous experiment, the
data was sterographically projected onto the sphere. The original spherical functions
were of bandwidth B = 256, but the correlation function C(g) was treated as having

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 175

Y 05 0 0.5 1 y 05 0 0.5 1
(a) Signal (b) Pattern

-0.5| - ¢
6 Bl
Y
5»
4H
3L
0.5] 2
1h
1! : : o
-1 05 0 0.5 1 0 20 40 60 80 100 120
(c) Difference (d) Angles

Fig. 10 Rotating the pattern to match the signal. The signal and pattern are shown from beneath the
sphere, i.e., from our vantage point, the South Pole is at the center of the image. The difference image, the
absolute value of the signal — the rotated pattern, is shown from the same vantage point. The bandwidth of
the signal and pattern are both B = 256, but the bandwidth of the inverse SO (3) transform was B = 128.
The lower right panel shows the rotation parameters «, 8, and y which yield the maximum value of C(g),
as a function of the maximum degree of Y, l’" s used in the correlation.

bandwidth B = 128. Granted, we are effectively correlating smoothed versions of the
original functions, but visually, the alignment we achieve is quite satisfactory.

The results of Figure 10 show some minor “jiggling,” with regards to determin-
ing the rotation angles «, 8, and y, as functions of the maximum degree ¥;" used.
This is at least partially a result of the “true” rotation not being on the sample grid.
The sharp boundary (a highly nonbandlimited feature) in the pattern is probably also
contributing to the “jiggling.”

We also tried out correlating geophysical data. The data we obtained was from
the National Geophysical Data Center [25]. The particular dataset we used was the

BIRKHAUSER

176 J Fourier Anal Appl (2008) 14: 145-179

A

Fig. 11 The world: On 52 and unrolled.

50 100 150 200 250 50 100 150 200 250

Fig. 12 The left panel shows the world and the correct location of the coastline (our pattern) as indi-
cated by the highlighted portion of the coastline. The right panel shows the rotated world (our signal) and
indicates (by highlighting) where correlation places the coastline.

ETOPOS 5-minute gridded elevation dataset [9]. Our goal was to see how well we
could find a particular coastline.

To place the data on the sphere, we took the original, 5S-minute gridded elevation
data and, using Matlab, interpolated that data onto the B = 128 grid. Figure 11 shows
the data both on the sphere and “unrolled.”

To obtain the coastline we performed, admittedly very crudely, edge-detection on
the “sent to the B = 128 grid” data, including manually adding and removing nonzero
pixels until we obtained a visually satisfying coastline. In Figure 12 the panel on
the left shows the world and where the coast belongs. The right panel shows the
rotated world (this is our signal) and where correlation places the coastline. There is
excellent agreement.

However, things do not work as well when we consider a smaller coastline. Con-
sider Figure 13, which shows correlation placing the Atlantic coast of North America
on the Pacific coast of South America. What might be happening? Any number of
things. First of all, there is the fact that we were sloppy in defining the coast. Sec-
ondly, the coast is not bandlimited. (Neither is the original, nonrotated world, for that
matter.) Indeed, given that the coast is basically a jagged line, we can even say that it

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 177

50 100 150 200 250 50 100 150 200 250

Fig. 13 The left panel shows the world and the correct location of a small (compare with Figure 12) piece
of the coastline (our pattern) as indicated by the highlighted portion of the coastline. The right panel shows
the rotated world (our signal) and indicates (by highlighting) where correlation places the coastline.

5]
4]
3]
2]
I

1H |

f
0 ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘

o 20 40 60 80 100 120 o 20 40 60 80 100 120

Fig. 14 The Euler angles as a function of the maximum degree of Ylm used in the correlation. The left
panel corresponds to the successful alignment shown in Figure 12, and the right panel to the incorrect
result shown in Figure 13.

is highly non-bandlimited. When taking its spherical Fourier transform, we are pro-
jecting the coast onto the space spanned by spherical harmonics of maximum degree
L = 127. This degree might not be large enough to capture all of the coast’s subtle
features. As a result, correlation misplaces the coast.

We believe the reason why the results were good in Figure 12 is that there the coast
is long enough that the subtleties being missed are not critical. The longer coast has
sufficient “mass,” if you will, to line up in only one spot, albeit, as seen in Figure 14,
we might need the entire bandwidth in order to rotate it to the proper position on the
globe.

On the bright side, the results of Figure 13 do establish the following corollary.

Corollary 1 A bandwidth B greater than 128 is required for there to be at least hope
of recovering Pangea. l.e.,

Span{Ylm |0<l <128, |m| 51} +# Pangea .

BIRKHAUSER

178 J Fourier Anal Appl (2008) 14: 145-179

8 Conclusions

We have developed and discussed an algorithm for the efficient computation of the
Fourier transform of functions defined on S O (3). Such efficient algorithms have uses
in a wide vaiety of fields, such as searchable 3-D databases [30] and molecular biol-

ogy [21].

This implementation differs from that of [28], as it allows easy use of efficient
implementations of DWT algorithms, including those based on Dilts [5], and the
more sophisticated orthogonal polynomial transform methods [7], which depend in
part on the three-term recurrence the Wigner-d functions satisfy.

References

1. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Mechanics. Addison-Wesley, Read-
ing (1981)

2. Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Harmonic Analysis:
With Emphasis on the Rotation and Motion Groups. CRC Press, Boca Raton (2001)

3. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience Publishers, New York (1953)

4. Crowther, R.A.: The fast rotation function. In: Rossman, M.G. (ed.) The Molecular Replacement
Method, pp. 173-178. Gordon and Breach, New York (1972)

5. Dilts, G.A.: Computation of spherical harmonic expansion coefficients via FFTs. J. Comput. Phys.
57(3), 439453 (1985)

6. Driscoll, J.R., Healy, D.: Computing Fourier transforms and convolutions on the 2-sphere (extended
abstract). In: Proc. 34th IEEE FOCS (1989), pp. 344-349. Adyv. in Appl. Math., vol. 15, pp. 202-250
(1994)

7. Driscoll, J.R., Healy, D., Rockmore, D.: Fast discrete polynomial transforms with applications to data
analysis for distance transitive graphs. SIAM J. Comput. 26(4), 1066—-1099 (1997)

8. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton
(1957)

9. Data Announcement 88-MGG-02: Digital relief of the Surface of the Earth. NOAA, National Geo-
physical Data Center, Boulder, Colorado (1988)

10. FFTW is a free collection of fast C routines for computing the Discrete Fourier Transform in one
or more dimensions. It includes complex, real, symmetric, and parallel transforms, and can handle
arbitrary array sizes efficiently; FFTW is available at www.fftw.org

11. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search
engine for 3D models. ACM Trans. Graph. 83-105 (2003)

12. Garcia, J., Valles, J.J., Ferreira, C.: Detection of three-dimensional objects under arbitrary rotations
based on range images. Optic Express 11(25), 3352 (2003)

13. Gentleman, W.M., Sande, G.: Fast Fourier Transforms—for fun and profit. Proc. 1966 Fall Joint Com-
puter Conference AFIPS 29, 563-578

14. Hansen, J.E.: Spherical Near-Field Antenna Measurements. Peter Peregrinus, London (1988)

15. Healy, D., Kim, P.: An empirical Bayes approach to directional data and efficient computation on the
sphere. Ann. Stat. 24(1), 232-254 (1996)

16. Healy, D., Hendriks, H., Kim, P.: Spherical deconvolution with application to geometric quality as-
surance. Technical Report, Department of Mathematics and Computer Science, Dartmouth College
(1993)

17. Healy, D.M., Kostelec, P., Rockmore, D.: Towards safe and effective high-order Legendre transforms
with applications to FFTs for the 2-sphere. Adv. Comput. Math. 21(1-2), 59-105 (2004)

18. Healy, D., Rockmore, D., Kostelec, P., Moore, S.: FFTs for the 2-Sphere—Improvements and Varia-
tions. J. Fourier Anal. Appl. 9(4), 341-385 (2003)

19. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation
of 3D shape descriptors. In: Kobbelt, L., Schroder, P, Hoppe, H. (eds.) Eurographics Symposium in
Geometry Processing, pp. 167-175 (2003)

BIRKHAUSER

J Fourier Anal Appl (2008) 14: 145-179 179

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

Kostelec, P.J., Maslen, D.K., Healy, D.M., Rockmore, D.N.: Computational harmonic analysis for
tensor fields on the two-sphere. J. Comput. Phys. 162, 514-535 (2000)

Kovacs, J.A., Wriggers, W.: Fast rotational matching. Acta Crystallogr. D Biol. Crystallogr. 58(8),
1282-1286 (2002)

Maslen, D.: Efficient computation of Fourier transform on compact groups. J. Fourier Anal. Appl.
4(1), 19-52 (1998)

Maslen, D., Rockmore, D., Generalized FFTs. In: Finkelstein, L., Kantor, W. (eds.) Proceedings of
the DIMACS Workshop on Groups and Computation, June 7-10, 1995, pp. 183-237 (1997)

Maslen, D., Rockmore, D.: Separation of variables and the computation of Fourier transforms on finite
groups, I. J. Am. Math. Soc. 10(1), 169-214 (1997)

The National Geophysical Data Center (NGDC), located in Boulder, Colorado, is a part of the US
Department of Commerce (USDOC), National Oceanic & Atmospheric Administration (NOAA), Na-
tional Environmental Satellite, Data and Information Service (NESDIS). They are one of three NOAA
National Data Centers, www.ngdc.noaa.gov

Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable,
Springer Series in Computational Physics. Springer, Berlin (1991)

Oppenheim, A.V., Schafer, R.: Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)
Risbo, T.: Fourier transform summation of Legendre series and D-functions. J. Geod. 70, 383-396
(1996)

Rokhlin, V., Tygert, M.: Fast algorithms for spherical harmonic expansions. SIAM J. Comput. 27(6),
1903-1928 (2006)

The Princeton Shape Retrieval and Analysis Group, www.cs.princeton.edu/gfx/proj/shape/, whose
goal is to “... investigate issues in shape-based retrieval and analysis of 3D models,” has developed a
3D search engine as part of their work, shape.cs.princeton.edu

SpharmonicKit is a freely available collection of C programs for doing Legendre and scalar spherical
transforms. Developed at Dartmouth College by S. Moore, D. Healy, D. Rockmore, and P. Kostelec,
available at www.cs.dartmouth.edu/~geelong/sphere/

The SOFT Package is a freely available collection of C programs for doing Wigner-d transforms, as
well as forward and inverse Fourier transforms of functions defined on the Rotation Group, SO(3).
The package also includes example routines for correlating functions defined on 52, The package is
available at www.cs.dartmouth.edu/~geelong/soft/

Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum.
World Scientific Publishing, Singapore (1988)

Vilenkin, N.J.: Special Functions and the Theory of Group Representations, Translations of Mathe-
matical Monographs, vol. 22. Am. Math. Soc., Providence (1968)

Wandelt, B.D., Gérski, K.M.: Fast convolution on the sphere. Phys. Rev. D 63, 123002 (2001)
Wigner, E.P.: On matrices which reduce Kronecker products of representations of S.R. groups, un-
published (1951)

Wigner, E.P.: Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Aca-
demic Press, New York (1959)

Zelobenko, D.P.: Compact Lie groups and their representations, Transl. Math. Monogr., vol. 40. Am.
Math. Soc., Providence (1973)

BIRKHAUSER

	FFTs on the Rotation Group
	Abstract
	Introduction
	Related Work
	Organization

	Life in SO(3)
	Euler Angle Coordinates
	Fourier Analysis in SO(3)
	Convolution on L2(SO(3))
	Sampling Theorem

	Our Algorithm
	Separation of Variables
	Generalizations to higher order rotation groups.

	Alternative Approaches

	Explicit Wigners
	Numerical Results
	The Discrete Wigner Transform
	Nice 'n SOFFT
	Stability.
	Running Times.

	An Application: Correlation
	An Example: Pattern Matching on S2
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

