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Dynamic and Robust Local Clearance Triangulations
Marcelo Kallmann
University of California, Merced

The Local Clearance Triangulation (LCT) of polygonal obstacles is a
cell decomposition designed for the efficient computation of locally shortest
paths with clearance. This paper presents a revised definition of LCTs, new
theoretical results and optimizations, and new algorithms introducing dy-
namic updates and robustness. Given an input obstacle set with n vertices,
a theoretical analysis is proposed showing that LCTs generate a triangular
decomposition of O(n) cells, guaranteeing that discrete search algorithms
can compute paths in optimal times. In addition, several examples are pre-
sented indicating that the number of triangles is low in practice, close to
2n, and a new technique is described for reducing the number of triangles
when the maximum query clearance is known in advance. Algorithms for
repairing the local clearance property dynamically are also introduced, lead-
ing to efficient LCT updates for addressing dynamic changes in the obsta-
cle set. Dynamic updates automatically handle intersecting and overlapping
segments with guaranteed robustness, using techniques that combine one
exact geometric predicate with adjustment of illegal floating point coordi-
nates. The presented results demonstrate that LCTs are efficient and highly
flexible for representing dynamic polygonal environments with clearance
information.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling—Geometric algorithms, lan-
guages, and systems; I.3.6 [Computer Graphics]: Methodology and Tech-
niques—Graphics data structures and data types; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Animation

General Terms: Algorithms

Additional Key Words and Phrases: Path Planning, Navigation Meshes,
Character Navigation

1. INTRODUCTION

Efficient path planning and navigation in virtual environments re-
mains a central problem in many areas of computer animation. One
important class of applications is related to computer games and
simulation of autonomous agents [Shao and Terzopoulos 2005],
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Fig. 1. The LCT of this environment enables the efficient computation of
paths with arbitrary clearance.

where efficiency and flexibility of use are important requirements.
The design of a powerful solution starts with the underlying envi-
ronment representation, which plays a significant role in the types
of paths that can be computed, in the performance of maintenance
operations, and in the additional navigation queries that can be sup-
ported.

Local Clearance Triangulations (LCTs) achieve unique capabil-
ities as a navigation mesh structure. They are computed by refine-
ment operations on a Constrained Delaunay Triangulation of the
input obstacle set. The refinements are designed to ensure that two
local clearance values stored per edge are sufficient to precisely
determine if a disc of arbitrary size can pass through any narrow
passages of the mesh. This property is essential for the correct and
efficient extraction of paths with clearance directly from the trian-
gulation, without the need to represent the medial axis.

LCTs exactly conform to any given set of polygonal obstacles
and common degeneracies such as polygon overlaps and intersec-
tions can be robustly handled. LCTs are well suited for supporting
generic navigation and environment-related computations, such as
for computing free corridors, visibility, accessibility and proximity
queries. LCTs were proposed in previous work [Kallmann 2010]
and this paper presents 1) a necessary revision of basic definitions,
2) new theoretical proofs demonstrating the key properties of the
structure and related algorithms, and 3) new algorithms for address-
ing dynamic updates, robustness, and reduced refinements in cases
where the maximum query clearance is known in advance.

2. RELATED WORK

Character navigation in complex environments may involve mul-
tiple aspects, from perception and behavioral modeling to colli-
sion avoidance and group interactions [Shao and Terzopoulos 2005;
Kuffner and Latombe 1999; Metoyer and Hodgins 2003; Noser
and Thalmann 1995]. For instance, interesting structures such as
elastic roadmaps [Gayle et al. 2009] and multi agent navigation
graphs [Sud et al. 2008] have been proposed for maintaining agent
relationships during navigation. While these and other similar types
of work address important topics related to character navigation,
the focus is often on the behaviors to be achieved and not on the
efficient environment representation and path computation. The
related work analysis that follows focuses on these aspects and
specifically reviews prior work on path planning with clearance.
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2.1 Traditional Approaches to Path Planning

Grids are classical representations for path planning and they have
been extensively used for computing paths for virtual charac-
ters [Shao and Terzopoulos 2005]. Grids are robust and simple to
implement, and can be easily integrated with discrete search meth-
ods such as A* [Hart et al. 2007], D*-Lite [Koenig and Likhachev
2002], ARA* [Likhachev et al. 2003], etc. Unfortunately, grids do
not represent polygonal obstacles precisely, and the computation
time and solution quality greatly depend on the chosen grid reso-
lution. Fine resolutions can produce high quality paths but quickly
become prohibitive for large environments.

Polygonal representations are in general more efficient because
they can generate a reduced and resolution-free set of cells de-
composing the environment, therefore greatly improving the per-
formance of discrete search methods. Path planning on polygonal
representations is a classical topic studied in computational geom-
etry and the problem of computing globally shortest paths from
polygonal obstacles, or Euclidean shortest paths, has received sig-
nificant attention due its importance in many applications.

Euclidean Shortest Paths Probably the most well-known ap-
proach for computing Euclidean shortest paths among polygonal
obstacles is to build and search the visibility graph [Nilsson 1969;
Lozano-Pérez and Wesley 1979; De Berg et al. 2008] of the ob-
stacles. This can be achieved in O(n2) time [Overmars and Welzl
1988; Storer and Reif 1994], where n is the total number of vertices
in the obstacles. The Euclidean shortest path problem can how-
ever be solved in sub-quadratic time [Mitchell 1993] and an algo-
rithm running inO(n logn) time is available [Hershberger and Suri
1997]. The approach is based on the continuous Dijkstra paradigm,
which simulates the propagation of a wavefront maintaining equal
length to the source point, until the goal point is reached. After the
environment is processed in O(n logn) for a given source point,
paths to any destination can be computed in O(logn).

In practice, algorithms suitable for implementation remain re-
lated to visibility graphs, and extensions for computing globally
shortest paths with arbitrary clearance have been proposed [Chew
1985; Liu and Arimoto 1995; Wein et al. 2007]. However, the
computation and query times of existing methods remain at least
O(n2). The LCT representation does not address the computation
of globally shortest paths and instead focuses on computing locally
shortest paths efficiently.

Medial Axis If the desired path does not need to be the global
optimal, one popular approach for computing paths with clearance
is to search the medial axis graph of the environment [Bhattacharya
and Gavrilova 2008; Geraerts 2010]. The medial axis can be com-
puted from the Voronoi diagram of the environment, and methods
based on hardware acceleration have been developed to improve
computation times [Hoff et al. 2000].

One benefit of explicitly representing the medial axis is that lo-
cally shortest paths can be easily interpolated towards the medial
axis in order to reach maximum clearance when needed. In con-
trast, LCTs offer a triangular mesh decomposition that carries just
enough clearance information to be able to compute paths of ar-
bitrary clearance, without the need to represent the intricate shapes
the medial axis can have. As a result, the LCT decomposition graph
uses less nodes to represent a given environment. An example com-
parison (shown in Figure 16) is discussed in Section 8.

2.2 Triangulations

Triangulations offer a natural approach for cell decomposition and
they have been employed for path planning in varied ways. Kapoor

et al. [1997] have explored the reduction of a triangulated envi-
ronment in corridors and junctions in order to compute the rele-
vant subgraph of the visibility graph for a given path query. The
method computes globally optimal paths inO(n+h2 logn), where
h is the number of holes in the environment. Without the goal of
computing globally shortest solutions, several methods have em-
ployed the Constrained Delaunay Triangulation (CDT) as a cell
decomposition for discrete search. Whenever a CDT is kept with
O(n) cells, discrete search algorithms can compute channels (or
corridors) containing a solution path in optimal times. The funnel
algorithm [Chazelle 1982; Lee and Preparata 1984; Hershberger
and Snoeyink 1994] has emerged as an efficient way to extract the
shortest path inside a triangulated channel [Kallmann et al. 2003;
Demyen 2007; Geraerts 2010].

Techniques for handling clearance have also been explored. One
approach to capture the width of a corridor is to refine constrained
edges that have orthogonal projections of vertices on the opposite
side of a corridor, adding new free CDT edges with length equal
to the width of the corridor [Lamarche and Donikian 2004]. How-
ever, such a refinement can only address simple corridors and the
total number of vertices added to the CDT can be significant. A
more generic approach is to compute a measure of clearance per
traversed triangle, for example by computing the distance between
every triangle corner and the closest constraint behind the edge op-
posite to the corner. This is the measure used in the LCT (see Fig-
ure 2), and an equivalent measure was used before in CDTs during
path search [Demyen and Buro 2006; Demyen 2007]. However, as
shown in Figure 6, this measure does not correctly handle all cases
in a CDT.

The LCT decomposition provides a solution for correctly deter-
mining clearance in a triangulation with straight edges. The ap-
proach is based on a novel type of refinement operation, and clear-
ance values can be pre-computed and stored in free edges so that
on-line clearance tests are reduced to a simple value comparison
per traversed edge.

Extensions based on the interconnection of floor plans in multi-
layer and non-planar environments have also been developed in or-
der to address 3D scenes [Lamarche 2009; Jorgensen and Lamarche
2011; Oliva and Pelechano 2013]. Such techniques can be directly
applied to the proposed LCT decomposition.

Triangulation Refinement The proposed approach of triangu-
lation refinement is inspired by solutions developed in the area of
mesh generation for finite element analysis, where triangulations
are refined to adaptively represent polygonal regions with well-
shaped triangles [Shewchuk 1996]. Here, refinements are used to
subdivide triangles until a simple clearance test per triangle can be
safely performed. Maintenance of refinements for supporting dy-
namic changes in the constraints is a topic that has not been ad-
dressed before. The proposed algorithms solve dynamic insertions
and removals of constraints with local operations, first updating the
underlying CDT, and then removing or adding LCT refinements as
needed. Different strategies are presented for customizing the oper-
ations according to the relative number of path queries and dynamic
updates in a given scenario.

Robustness One point that is important to be addressed is the
robustness of the involved geometric algorithms. Simple imple-
mentations based on floating point representation are not suffi-
cient for achieving robustness. A common approach is to rely on
arbitrary precision representation and on exact geometric predi-
cates [Shewchuk 1997; Devillers and Pion 2003], however impos-
ing a significant performance penalty on the final system. Similarly
to Held [2001], the presented approach provides a solution favor-
ing speed of computation over accuracy. The presented solution is
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based on floating point arithmetic and relies on a carefully designed
combination of robustness tests and one exact geometric predicate.
Robustness is guaranteed for any set of input polygons, which are
handled on-line in any configuration. The presented solution is the
first to robustly address intersecting constraints in a triangulation, it
always converges when multiple consecutive intersections happen,
and it does so in a watertight manner.

Conclusion In summary, LCTs introduce a new approach for
modeling and computing navigation queries with clearance, and
are able to well address key requirements: fast computations, clear-
ance, robustness, and dynamic updates.

3. BACKGROUND AND OVERVIEW

Let S = {s1, s2, ..., sm} be a set of m input segments describing
polygonal obstacles. Segments in S may be isolated or may share
endpoints forming closed or open polygons. The number of dis-
tinct endpoints is n and the set of all endpoints is denoted as P .
When inserted in a triangulation, the input segments are also called
constraints.

The proposed method starts from a Constrained Delaunay Tri-
angulation (CDT) of the input segments. Let T be a triangulation
of P , and consider two arbitrary vertices of T to be visible to each
other if the segment connecting them does not intercept the interior
of any constraint. Triangulation T will be a CDT of S if: 1) it en-
forces the constraints, i.e., all segments of S are also edges in T ,
and 2) it respects the Delaunay criterion as much as possible, i.e.,
the circumcircle of every triangle t of T contains no vertex in its
interior which is visible from all three vertices of t.

Although CDT (S) is already able to well represent a given en-
vironment, an additional property, the local clearance property, is
needed in order to achieve correct and efficient clearance determi-
nation per triangle during path search. Whenever the local clear-
ance property fails in CDT (S), refinement operations on the input
segments are performed for enforcing it. The result is called a Local
Clearance Triangulation (LCT ) of the input segments. Given the
possible refinement operations, the edges in S may be subdivided
into smaller segments forming a new set of constrained edges Sref .
The refinement process results with LCT (S) = CDT (Sref ).

Two methods are presented for computing LCTs with refine-
ments: global refinement operations (Section 4.1) are most suit-
able for computing the LCT of input segments from scratch, and
local refinements (Section 5) achieve efficient dynamic updates of
constraints in order to reflect dynamic changes in the obstacle set.
Robustness in the involved geometric computations is addressed in
Section 6.

Once T = LCT (S) is computed, T becomes an efficient repre-
sentation for computing free paths of arbitrary clearance. Let p and
q be two points in R2. A path between p and q is considered free if
it does not cross any constrained edge of T . A free path may cross
several triangles sharing unconstrained edges and the union of all
traversed triangles is called a channel.

A path of r clearance is called locally optimal if 1) it has clear-
ance r from all constrained edges in T and 2) it cannot be reduced
to a shorter path of clearance r on the same channel. Such a path is
denoted πr , and its channel Cr . Path πr may or not be the globally
shortest path. If no shorter path of clearance r can be found in all
possible channels connecting the two endpoints, the path is then a
globally optimal one, it is denoted as π∗r and its channel is denoted
as C∗r .

Given T = LCT (S), two arbitrary points p, q ∈ R2, and r ∈
R+, two main steps are needed in order to compute πr(p, q). First,
a channel search over the adjacency graph of T is employed for

finding Cr(p, q), or determining that a channel of clearance r does
not exist. Then, if a channel exists, πr(p, q) is computed in linear
time with respect to the number of triangles in the channel. The
overall search procedure is discussed in Section 7.

The next section presents a revision of the original LCT defi-
nitions [Kallmann 2010] in order to address possible cases where
disturbances would not be properly detected. The revised distur-
bance definition now considers all possible configurations of edges
between the disturbance and the traversal exit (Figure 3). This leads
to an updated determination of refinements (Figure 5), and a new
characterization of when disturbances can occur is also presented
(Figure 4). These revisions are necessary for the correctness of the
proposed methods and proofs.

4. LOCAL CLEARANCE TRIANGULATION

Let S = {s1, s2, ..., sm} be the set of input segments and T =
CDT (S). Let π be a free path in T , and let t be a triangle in its
channel such that t is not the first or the last triangle in the channel.
In this case π will always traverse t by crossing two edges of t.
Let a, b, c be the vertices of t and consider that π crosses t by first
crossing edge ab and then bc. This particular traversal of t is de-
noted by τabc, where ab is the entrance edge and bc is the exit edge.
The shared vertex b is called the traversal corner, and the traversal
sector is defined as the circle sector between the entrance and exit
edges, and of radius min{dist(a, b), dist(b, c)}, where dist de-
notes the Euclidean distance. Edge ac is called the interior edge of
the traversal. The local clearance of a traversal is now defined.

DEFINITION 1. (TRAVERSAL CLEARANCE.) Given a traver-
sal τabc, its clearance cl(a, b, c) is the distance between the traver-
sal corner b and the closest vertex or constrained edge intersecting
its traversal sector.

Because of the Delaunay criterion, a and c are the only vertices
in the sector, and thus cl(a, b, c) ≤ min{dist(a, b), dist(b, c)}.
In case cl(a, b, c) is determined by a constrained edge s crossing
the traversal sector, as illustrated in Figure 2, then cl(a, b, c) =
dist(b, s) and s is the closest constraint to the traversal. If edge ac
is constrained, then ac is the closest constraint and cl(a, b, c) =
dist(b, ac). If the traversal sector is not crossed by a constrained
edge then cl(a, b, c) = min{dist(a, b), dist(b, c)}.

a

b

c

s b’

sector.pdf
margins: 2.15, 4.55, 2.5, 5.4

Fig. 2. The triangle traversal with entrance edge ab and exit edge bc is
denoted as τabc. Segment s is the closest constraint crossing the sector of
τabc, thus cl(a, b, c) = dist(b, s) = dist(b, b′), where b′ is the orthogonal
projection of b on s.

The closest constraint to a traversal is now formalized in order to
take into account relevant constraints that may not cross the traver-
sal sector of τabc.

DEFINITION 2. (CLOSEST CONSTRAINT.) Given a traversal
τabc, its closest constraint is the constrained edge s that is closest
to the traversal corner b, such that s is either ac or s lies on the
opposite side of ac with respect to b.
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In certain situations, the closest constraint of a traversal may gen-
erate narrow passages that are not captured by the clearance value
of the traversal. The clearance value only accounts for the space
occupied by the traversal sector. If a triangle happens to be too thin
and long, other vertices not connected to the traversal may generate
narrow passages that are not captured by any clearance value of the
involved traversals.

The essence of the problem is that when a triangle is traversed
it is not possible to know how the next traversals will take place:
if the path will continue in the direction of a possibly long edge
(and possibly encounter a narrower space ahead) or if the path will
rotate around the traversal corner. Each case would require a dif-
ferent clearance value to be considered. For example, Figures 6a
and 6c show examples of long CDT triangles where their clearance
values are not enough to capture the clearance along the direction
of their longest edges. The LCT refinements will fix this problem
by detecting these undesired narrow passages and by breaking them
down into sub-traversals until a single clearance value per traver-
sal can handle all possible narrow passages. The vertices that cause
undesired narrow passages are called disturbances, and they are de-
fined below.

DEFINITION 3. (DISTURBANCE.) Let τabc be a traversal in T
such that its adjacent traversal τbcd is possible, i.e., edge cd is not
constrained. Let s be the closest constraint to τabc and let v be
a vertex on the opposite side of bc with respect to a. Among the
vertices connected to v, let d and e be the ones forming4dve ∈ T
crossed by segment vv′, where v′ is the orthogonal projection of v
on s. In this situation, vertex v is a disturbance to traversal τabc if:

1. v is not shared by two collinear constraints,
2. v can be orthogonally projected on ac,
3. segment vv′ crosses ac and bc,
4. dist(v, s) < cl(a, b, c), and
5. dist(v, s) < dist(v, e).

Figure 3 illustrates the definition. A disturbance will always be
paired with a constraint disturbing the traversal. A disturbed traver-
sal may contain an arbitrary number of edges between bc and v,
however, disturbed traversals will in most cases appear in simpler
forms.

Disturbances can occur on any side of a triangle but only need to
be defined with respect to the exit edge of a traversal. For example,
disturbances on the left side of 4abc in Figure 3 can occur with
respect to τcba, but not τabc.

In certain configurations traversals cannot be disturbed. If vertex
b does not have orthogonal projection in ac, traversals τabc and
τcba cannot be disturbed. In addition, τabc can only be disturbed
if its closest constraint s intersects its traversal sector S1 or the
symmetrical sector S2, as defined in Figure 4-left. If S1 and S2 are
not crossed by a constraint, τabc cannot have a disturbance because
no vertex satisfying the conditions of Definition 3 will be closer to
s than b and at the same time outside the empty circumcircle that
protects the traversal from external vertices.

If a constraint s is found crossing S1 or S2, a disturbance is pos-
sible and a procedure to search for disturbances is needed. The pro-
cedure will traverse all edges crossing the disturbance region R of
the traversal, and check if a vertex is found insideR. Figure 4-right
illustrates the disturbance region R, which is delimited by segment
bc, the line parallel to s and passing by b, and the orthogonal lines
to s and ac passing by c. Region R encloses all points closer to s
than b and with valid orthogonal projection on s. If a vertex v is
found inside R and v satisfies conditions 1 and 5 of Definition 3,

a

b

s b’

d

v’
c

disturbance.pdf 
margins: 1.35, 2.6, 1.3, 4.8

d’

e

v r

r’

C(dce)

C(dve)

C(bdc)
Fig. 3. The shown traversal τabc is disturbed by vertex v because
dist(v, v′) < dist(b, b′) = cl(a, b, c) and dist(v, v′) < dist(v, e).
The dashed lines show the orthogonal projections of several vertices on
s. Vertices d, e and r are not disturbances since dist(d, d′) > cl(a, b, c),
dist(e, s) > dist(e, c), and r is shared by two collinear constraints.

then v will be a disturbance. If no vertices are found inside R the
traversal is clear.

ca

b p

d’b’

disturbreg.pdf
margins: 1.6, 3.4, 1.6, 2.3

s

ca

b

s

R
S1 S2

Fig. 4. A disturbance can only occur when a constraint s crosses the
traversal sector S1 or the symmetric sector S2 (left diagram). If a distur-
bance is possible, it will be inside the disturbance regionR, which encloses
all points closer to s than b and with valid orthogonal projection on s (right
diagram).

The local clearance triangulation (LCT) can be now defined with
the following definitions.

DEFINITION 4. (LOCAL CLEARANCE.) A traversal τabc in T
has local clearance if it does not have disturbances.

DEFINITION 5. (LCT.) A Local Clearance Triangulation is a
CDT with all traversals having local clearance.

4.1 Computing LCTs by Global Refinements

The first approach for computing LCT (S) is based on iterative
refinements of disturbed traversals. The algorithm starts with the
computation of triangulation T0 = CDT (S). A linear pass over all
traversals of T0 is then performed, and traversals detected to have
a disturbance are refined with one subdivision point pref added to
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the constraint associated with the disturbance. Each refinement op-
eration is equivalent to one vertex insertion in the current CDT and
can be implemented using the recursive Delaunay flips of the incre-
mental CDT algorithm. Every time a constraint s ∈ S is refined,
s is replaced by two new sub-segments. After all disturbed traver-
sals are processed, a new (refined) set of constraints S1 is obtained.
Triangulation T1 = CDT (S1) is the result of the first global re-
finement pass.
T1 however may not be free of disturbances and the process has

to be repeated k times, until Tk = CDT (Sk) is free of distur-
bances, in which case Sref = Sk and Tk is the desired LCT (S).
Since refinements are performed one at a time, the number of iter-
ations k mainly depends on the existence of multiple disturbances
with respect to a same constraint.

Let v′ be the orthogonal projection of disturbance v on constraint
s. A suitable refinement point pref for solving disturbance v with
respect to τabc and s can be obtained with the mid-point of the
intersections of s with the circle passing by vertices d, v and e,
where dve is the CDT triangle crossed by segment vv′, as shown
in Figure 5-left. Most often v will be directly connected to b and c,
and in such cases the circle passing by b, v and c is taken. In case of
multiple disturbances, v is selected such that no other disturbance
on the left side of vv′ is closer to s. In such cases v is said to be the
first disturbance.

b b

x1

a

s pref

d
v

c

refpoint.pdf
margins: 1.55, 3.85, 2.5, 1.3

x2
a

s pref

v

e
c
e

d

Fig. 5. Vertex v is a disturbance to traversal τabc and therefore constraint
s is subdivided. Points x1 and x2 are the intersection points of s and the
circle passing by d, v and e. The subdivision point pref is defined as the
midpoint between x1 and x2. After refinement, all vertices between b and
v will connect to pref .

The point of subdivision pref is carefully chosen in order to gen-
erate new traversals free from the original disturbance, and to en-
sure that the global refinement procedure converges. By making
pref to be inside the circle passing by d, v and e, the refinement
operation will cause pref to be connected to v, thus creating new
traversals that will not be anymore disturbed by v. This is shown
by Theorem 2 (in Appendix A).

The achieved local clearance property guarantees that a simple
local clearance test per triangle traversal is enough for determining
if a path πr can traverse a channel without any intersections with
constraints.

Given the desired clearance radius r, πr will not have any inter-
sections with constraints if 2r < cl(a, b, c) for all traversals τabc of
its channel. Figure 6 presents examples where local clearance tests
are not enough to produce correct results in CDTs, while correct
results are always obtained in LCTs.

Local clearance tests per triangle are enough for determining if
paths can traverse triangles, however clearance near end points re-
quire specific departure and arrival tests in order to ensure that a

given path can depart or arrive at specific locations. These tests are
explained in previous work [Kallmann 2010].

lctcase1d.pdf – not used
margins: 1.4, 2, 1.3, 2.5

lctcase1e.pdf – not used
margins: 1.4, 2, 1.3, 2.5

(a) (b)lctcase2d.pdf – not used
margins: 1.5, 3.15, 1.1, 2.55

lctcase2e.pdf – not used
margins: 1.5, 3.15, 1.1, 2.55

(c) (d)

Fig. 6. Triangulations (a) and (c) are CDTs showing illegal paths that how-
ever satisfy their local clearance tests per traversed triangle. The traversal
sectors are highlighted and they all have enough clearance. These examples
show that local clearance tests per traversal are not enough in CDTs. How-
ever, once the existing disturbances are solved and the corresponding LCTs
(b) and (d) are computed, local clearance tests become sufficient. In the top
LCT example (b) a valid path passing by an alternate channel can still be
found, however in the bottom LCT example (d) no solution with the given
clearance exists.

4.2 Lazy Clearance Precomputation

Ensuring that local tests are enough is critical for achieving effi-
cient search algorithms. By being local, the clearance test does not
depend on adjacent traversals and therefore each traversal clearance
value can be pre-computed and stored per edge of the triangulation.
This reduces the local clearance test to a simple value comparison
per traversal.

Given a traversal τabc, the computation of cl(a, b, c) re-
quires checking if there is a constrained edge s in the op-
posite side of ac with respect to b, such that dist(b, s) <
min{dist(a, b), dist(b, c)}. Clearance values are precomputed
and stored in the edges of the LCT. There are a total of 8 pos-
sible traversals passing by each edge, among them four pairs are
symmetrical and only 4 traversals may have distinct values. Each
traversal passes by two edges (the entrance and exit edges) and thus
only 2 of the 4 values have to be stored per edge. Let bc be an edge
of the LCT and a and d the remaining vertices of the two triangles
sharing bc. The two values chosen to be stored at edge bc are the
clearances of the traversals having bc as exit edge: cl(a, b, c) and
cl(d, c, b).

Clearance values can be computed and stored during the LCT
construction, however, each traversal refinement would require the
update of all values associated with the affected edges. In addition,
since a given edge may be refined (or affected) several times, un-
necessary computation of intermediate values would happen.

An alternative approach is to initialize all precomputed values
with a flag (or a negative value) indicating that the clearance val-
ues have not yet been computed. Then, clearance values are com-
puted and stored as needed during path search queries. Every time
a path search is launched, each clearance value that is not yet avail-
able will be computed and stored in its corresponding edge in order
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Fig. 7. This world map dataset has n=60374 and m=60379. Its LCT requires 1784 refinements (left). The optimized LCT for queries up 20 km clearance
requires 1088 refinements (right), eliminating the need for the many refinements on the long horizontal edges. This environment involves large distances and
with maximum clearance query values of 10 km and 1 km the number of refinements is reduced to 680 and 4 respectively.

to become readily available for subsequent queries. With this ap-
proach, clearance values are only computed in regions reachable
by the path queries, avoiding computations in parts of the environ-
ment that are not used.

Lazy precomputation of clearance values is also a good strategy
when there are dynamic LCT updates (Section 5). Clearance val-
ues associated with modified traversals can be simply marked as
invalid, and later recomputed when needed by path queries. Dy-
namic LCT updates are local and will therefore also lead to a local
invalidation of the affected clearance values.

It is tempting to develop a similar lazy strategy for the LCT re-
finement of traversals. However the problem is that, during a search
query, already expanded triangles may have their shape and con-
nectivity modified in a refinement, what could require an entire path
search to be re-started to accommodate the changes. Of course, if
parts of the environment are known to be never traversed (like in
the interior of obstacles), refinements and clearance values do not
have to be computed for them.

4.3 Bounded Clearance

One important optimization is to consider the local clearance prop-
erty only up to a given maximum value M representing the maxi-
mum clearance allowed to be used in path queries. In most cases,
M will be the clearance required by the largest agent that needs a
path. The triangulation can be then optimized accordingly.

Let traversal τabc be disturbed with respect to disturbance v
and constraint s. In order to perform the bounded clearance op-
timization, refinement operations are adapted to only refine τabc
if dist(v, s) < min{cl(a, b, c),M}, instead of the original
dist(v, s) < cl(a, b, c) condition in Definition 3.

This optimization can greatly reduce the number of required re-
finements. The smaller is M , the smaller will be the number of
refinements, leading to a faster computation of the corresponding
LCTM and to less cells processed during path search. See Figure 7
for an example.

4.4 Analysis

Four theorems are proposed in Appendix A in order to estab-
lish the size and correctness of LCTs. The total number of re-
finements is limited by the upper bound of 3n, showing that the
global refinement algorithm terminates and produces a LCT (S)
with O(n) vertices. The bound of 3n translates to a cell decompo-
sition of no more than 6n triangles since, using the Euler formula,

t = 2n − 2 − k ⇒ t < 2n, where t is the number of triangles
in a triangulation and k is the number of edges in the outer border
(k = 4 in all presented environments). Examples are presented in
Section 8 indicating that in practice the number of added vertices is
much lower than the bound of 3n and that the number of triangles
remains close to 2n. It is also possible that a bound lower than 3n
exists. While a vertex can disturb three traversals at the same time
(see Appendix C) it is unlikely that all vertices can.

5. DYNAMIC UPDATES

Local refinement operations are important in order to achieve quick
repairs in response to dynamic changes in the environment. See
Figure 10 for an example.

Two dynamic operations are needed: insertion and removal of
constraints. The approach described by Kallmann et al. [2003] is
followed where a same id is associated to all the constraints form-
ing one polygonal obstacle. The insertion routine will process all
constraints of an obstacle at once, and then return the id that is as-
signed to the obstacle. Later, the removal routine can remove all
constraints associated to a given obstacle id.

5.1 Local Insertion

Let S be the set of constraints being represented in LCT (S) and
O be a set of k segments describing a new polygonal obstacle. The
local insertion of O in LCT (S) is performed in three steps:

1. First, the k segments inO are inserted using regular incremen-
tal CDT operations and all modified vertices and constraints
are stored in two lists: list V contains all adjacent vertices to
modified edges (including edges modified due CDT swaps),
and list C contains all edges that were constrained during the
insertion.

2. Then, for each constrained edge s in C, a local search is per-
formed to determine if s leads to disturbances. The search is
performed by procedure SearchDisturbances(s,V ), which is
detailed in Algorithm 2 and illustrated in Figure 9. The search
will recursively visit and test all traversals that may have a
disturbance caused by s, and all disturbances encountered are
added to V (if not already in V ).

3. Finally, all traversals influenced by the vertices in V will be
tested with respect to the local clearance property and refined
when needed, a process performed by procedure LocalRef(V ),
as described below.
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Procedure LocalRef is detailed in Algorithm 1. It identifies and
tests all traversals that may need to be refined when a change occurs
nearby the vertices in V . For each v ∈ V , all triangles around v are
visited. Let t be the current triangle around v being processed. Two
tests are performed (line 4 in Algorithm 1): TriDisturbed(t) exam-
ines if any of the six possible traversals of t needs to be refined, and
TravsDisturbed(v, t) examines if the traversals with disturbance re-
gion intersecting t are disturbed by v. Procedures TriDisturbed and
TravsDisturbed are illustrated in Figure 8. When a disturbed traver-
sal is found by these procedures, the traversal is refined and both the
new refinement vertex vref and v are inserted in V (if not already
in V ). Then, the algorithm continues testing all vertices in V . The
overall algorithm is based on evaluating disturbed traversals nearby
vertices since vertices remain unchanged during refinement opera-
tions, while the edge connectivity can be considerably re-arranged.

Algorithm 1 Local Refinement
LocalRef ( V )

1. while ( V not empty ) do
2. v ← remove one element of V ;
3. for all ( triangles t adjacent to v ) do
4. if ( TriDisturbed(t) or TravsDisturbed(v, t) ) then
5. vref ← refine disturbed traversal;
6. insert v in V ; // continue around v
7. insert vref in V ; // propagate around vref
8. break; // break inner loop
9. end if

10. end for
11. end while

b’

a’

locdist.pdf
margins: 2.10, 4.6, 3.23, 2.98
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Fig. 8. Left: region R delimits all triangles tested by TriDisturbed after
insertion of O in the underlying CDT. Traversals outside of R are tested by
TravsDisturbed, which will select triangles t1, t2, t3, and t4 to be refined.
Right: TravsDisturbed(v,4vab) will test all traversals behind ab for which
v may be a disturbance.

Consider the example given in Figure 8. In Figure 8-left obsta-
cle O has been inserted in the underlying CDT, and region R de-
limits all triangles tested by TriDisturbed. Traversals outside of R
may also be disturbed and they are tested by routine TravsDisturbed
(Figure 8-right). In the example, triangles t1, t2, t3 and t4 will be
detected for refinement since they have traversals disturbed by v1,
v2, v3 and v4 respectively. Given vertex v and an adjacent triangle
4vab, TravsDisturbed(v,4vab) will test traversals around a in a
clockwise fashion and then traversals around b in a counterclock-
wise fashion. Traversals are sequentially tested around vertices a
and b only while v can be orthogonally projected on the interior
edge of the traversal being tested. When v cannot be anymore or-
thogonally projected on the interior edge, a and b are switched to
their last visited neighbor vertices (a′ and b′ in Figure 8-right), and

the process repeats until a switch cannot lead to a traversal that can
have v orthogonally projected on its interior edge, or until a traver-
sal that needs to be refined is found.

Algorithm 2 Search Disturbances Caused by a Constraint
SearchDisturbances ( s, V )

1. {t1, t2} ← triangles sharing edge s;
2. Propagate ( s, V , t1, vertex of t1 that is not in s );
3. Propagate ( s, V , t2, vertex of t2 that is not in s );

Propagate ( s, V , t, v )
1. T ← traversals of t that have v as corner (there are two);
2. for all ( traversals τabc in T ) do
3. {S1, S2} ← sectors of τabc according to Figure 4-left;
4. if ( s intersects sectors S1 or S2 ) then
5. if ( τabc is disturbed ) then
6. insert disturbance vertex in V (if not already in V );
7. else
8. t′ ← the other triangle sharing edge bc with t;
9. Propagate ( s, V , t′, vertex of t′ that is not in t );

10. end if
11. end if
12. end forcdtbtrav.pdf

margins: 1.55, 5.1, 3.3, 4.8

1. Test for every new formed constraint s and s->sym()
2. If dtb v is found, s is refined and v goes to V
3. Once in V, v will be again checked for new dtbs, and 
Then all travs around v will be checked so possible additional
Refinements of s will be detected

• Local Refinements after Insertion of P:
1) insert P with regular incremental CDT operations:

V = adjacent vertices to all modified edges
C = all edges that were constrained during insertion

2) For each s in C:
if constraint_disturbs ( s )
add disturbance to V

3) refine_local ( V )

• Local Refinements after Removal of P:
1) remove P with regular incremental CDT operations:

V1 = adjacent vertices to removed vertices of P
V2 = refinements neighbors to vertices in V

2) remove adjacent refinements to avoid accumulation:
remove from LCT all refinements in V1

3) refine_local ( V )

P

s

Fig. 9. Procedure SearchDisturbances(s,V ) searches on both sides of s
for possible disturbances caused by s. For each disturbed traversal found,
the associated disturbance vertex v is added to list V for later processing.

5.2 Local Removal

In addition to identifying affected traversals that need to be refined,
the removal operation has to take into account refinements that are
no longer necessary after the removal. The overall procedure con-
sists of four steps:

1. First, O is removed from the underlying CDT and all vertices
adjacent to modified edges are stored in list V1.

2. Then, all vertices that are not in V1 but are neighbors to the
refinement vertices in list V1 are detected and stored in another
list V2.

3. All refinement vertices in V1 are now removed from the under-
lying CDT since they may not be needed anymore.

4. Finally, all needed refinements are determined and performed
by calling LocalRef(V1 ∪ V2).

Depending on specific situations, removal operations may be
performed with only a subset of the steps above. Three modes of
operation can be identified:
• Simple: only the CDT removal is performed. In this case the

local clearance property is not restored and refinements that are
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Fig. 10. Dynamic updates are handled with local operations and are robust when obstacles intersect. The diagrams show the path on the top-left environment
being adapted as obstacles move. The first three diagrams, in left-right, top-down order, show the left-most obstacle being translated to the right. The fourth
diagram has several obstacles displaced to random locations. Despite the several intersections, the resulting decompositions are always valid LCTs.

no longer needed are not removed (steps 2, 3 and 4 above are not
performed). This is the fastest option but will require global LCT
refinements in a later stage and refinement vertices may accumulate
in case several sequential insertions and removals are performed.
• Adjacent: refinement vertices are evaluated for removal but

new LCT refinements are not evaluated (step 4 not performed). This
option prevents accumulation of refinements, but does not maintain
the local clearance property.
• Full: in this mode the complete removal operation is per-

formed.

5.3 Customization and Analysis

In addition to removal modes, the overall behavior of LCT updates
can also be customized. Three useful modes can be defined:
• Global: only CDT operations are performed during both dy-

namic insertions and removals, and the global LCT refinement al-
gorithm is automatically executed when the first path query with
clearance is requested. This mode will be most suited for cases
where few paths are computed but many dynamic changes occur
everywhere.
• Local: in this mode, complete local refinements are performed

at every polygon insertion and removal. This mode will be most
suited for environments with relatively few dynamic updates but
many path queries.
• Auto: this mode starts behaving as the global mode, and

switches to local mode after the first global refinement is per-
formed. This mode considers the typical case in most applications:
first, all obstacles are inserted with CDT operations only, and a
global refinement pass will be performed only when needed for the
first path query. After this point the LCT is left in local mode.

The above selection of modes illustrates several possibilities for
customization. The best mode will depend on how large is the LCT
and how often dynamic updates are made. Mode auto-full will be

the best option when only a few dynamic LCT updates are made. If
more LCT updates than path queries are made, mode global-simple
or global-adjacent may be more efficient, with only the latter pre-
venting over accumulation of refinements. Another alternative to
be considered is to perform a global removal of unnecessary refine-
ments after a number of updates.

The described algorithms can also be optimized by reducing
some of the redundancies in the performed tests; however, not all
optimizations will lead to noticeable improvements. For example,
although several of the tests performed by SearchDisturbances will
be later repeated in LocalRef , minimizing this redundancy will
not lead to noticeable speed gains because in practice SearchDis-
turbances only adds disturbances to V in very few situations in-
volving long constraints.

It is important to observe that local updates are only beneficial if
a relatively small portion of the environment is affected. When an
obstacle is inserted or removed the dominant procedure is LocalRef,
which will take O(n2

vnr) time to process an operation that affects
nv vertices, and where nr is the maximum number of triangles pro-
cessed when a new refinement is inserted (line 5 of the algorithm).
Procedure SearchDisturbances will take O(ntnc), where nt is the
total number of traversals visited, and nc is the average number of
edges visited when checking if a traversal is disturbed (line 6 of
Propagate). Section 8 presents experiments quantifying the cost of
local updates in several scenarios.

6. ROBUSTNESS

Robustness of geometric algorithms is a well studied problem in
computational geometry. CDTs can be robustly computed with the
use of two exact geometric predicates: the ccw test, for testing if
three points are in counter-clockwise order, and the in-circle test,
for testing if a point is inside the circle passing by three other given
points [Shewchuk 1996; Devillers and Pion 2003].
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However, exact geometric predicates only guarantee robustness
in the combinatorial logic of algorithms and are not enough for
achieving robust refinements and intersections of constraints. The
problem is that points lying along a segment may not have exact
representation in floating point coordinates, even when the segment
endpoints have. Intersection or subdivision points computed with
floating point arithmetic will be approximations with no guarantees
of always being at acceptable locations.

The exact solution for this robustness problem would be to rely
on arbitrary precision number representation, however requiring ar-
bitrary amounts of space to represent numbers and slowing down
computations significantly. Since the applications targeted by this
work favor speed over accuracy, a solution based only on floating
point representation has been developed.

In order to robustly determine the location of inserted points
it is essential to rely on an exact ccw primitive. This work re-
lies on a portable algorithm that progressively decomposes the ccw
test into sums of double precision terms until the exact answer is
found [Gavrilova et al. 2000]. Filtering techniques are also inte-
grated [Devillers and Pion 2003] for improved efficiency. The exact
in-circle test is not included since the approximation obtained with
its floating point version can be used without posing robustness is-
sues.

6.1 Robust Intersections and Refinements

Let pex be an exact intersection or refinement point on constraint s
and let p be its approximation represented in floating point coordi-
nates. In most cases p 6= pex and p will not exactly lie on s, but p
will still be an acceptable approximation for subdividing s in two
sub-segments that are almost collinear. If p is exactly determined
(using primitive ccw) to be on s or exactly inside one of the trian-
gles adjacent to s, then p can be safely used as a subdivision point.
However if not, then another edge exists between s and p and the
refinement routine cannot subdivide s at p.

The first step to reduce the number of such robustness problems
is to include a mechanism for merging points that are too close
to each other. This is also useful for cleaning overly sampled ob-
stacle contours, for removing gaps that should not exist between
constraints, etc. Given a user-defined ε, two points are ε-close if the
distance between them is less than or equal to ε. The incremental
LCT triangulator will not insert a new vertex that is ε-close to an
existing vertex in the LCT, it will instead re-use the existing ver-
tex. Parameter ε controls the resolution to clean the input on-line,
automatically merging points that are too close to each other.

If an unfeasible refinement of a constraint s at p is still detected,
a legal refinement point pref is searched by evaluating new points
along s. A good strategy is to evaluate new points following a bi-
nary partition pattern of s. The goal is to subdivide s in order to
eliminate the need for the current infeasible refinement. Usually
only a few iterations are needed until a feasible pref is found and
in most of the cases the first iteration (using the midpoint of s) will
already be successful and at the same time re-arrange the disturbed
traversal. This strategy has showed to be more efficient than fo-
cusing the search nearby the location of the problematic original
refinement. In the event that no refinement is found after a few iter-
ations, then the LCT refinement is considered unfeasible and is not
tried again. Such a case is usually not encountered in practice but
may happen if s is overly short or the refinement region is overly
dense. A non-performed refinement in such cases would only lead
to insignificant variations in the clearance values computed for the
affected area of the LCT.

Now consider the case of an unfeasible subdivision of constraint
s at point p, where p is the intersection point between s and a new
constraint s′ being inserted on-line in the LCT. If p cannot subdi-
vide s, then a search for a feasible point pref is also needed. Here
the search focuses on points nearby p, searching from p towards the
endpoints of s by increments. A good strategy for the increment is
to start with ε/2 and gradually increase it as the iterations progress.
Usually only a few iterations are needed until pref is found nearby
p. A feasible point has to be determined, and in the limit one of the
endpoints of s will be used as pref . To minimize the “deformation”
of s′, two new points along s′ are also inserted, one before s (pbef )
and another after it (paft). Points pbef and paft are also robustly
inserted with incremental search if needed. Figure 11 shows several
examples of inserted points.

In Figure 11, the new constraint s′ being inserted is shown as
a dashed horizontal segment in the left-most diagrams. Each in-
tersection point p between s′ and the existing constraints is only
inserted at feasible locations that respect the ε separation between
vertices. If p lies in an invalid location, the search for a new loca-
tion is performed. Such perturbations lead to small deformations in
s′, however these deformations are small scale and only at highly
dense regions. The second row in Figure 11 illustrates the example
where several constraints emanate from a single vertex v and s′ in-
tersects all of them. If s′ gets arbitrarily close to v, at some point v
will be used as intersection point, eliminating the need to compute
intersections that can be arbitrarily close to each other.

6.2 Convergence of Multiple Intersections

Let s′ be a constraint being inserted with end points at vertices
a and b, and consider a situation similar to the one illustrated in
the second row of Figure 11. The multiple intersections are se-

Fig. 11. Example situations with an exaggerated ε value. Left column: the
dashed line is the new constraint s′ to be inserted. Center column: result of
the insertion. Right column: all vertices preserve ε distance from each other.
Parameter ε controls the resolution to automatically merge points, cleaning
the input data and reducing the number of cases requiring adjustment of
coordinates in order to guarantee robustness.
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quentially processed, starting from a and until b is reached. Al-
though such an insertion procedure seems straightforward, inter-
section points may have arbitrary locations around their exact co-
ordinates, possibly leading to cases where they are not directly con-
nected by an edge to each other, and cases where they are not con-
verging towards b. Such problems happen in practice and have to
be handled robustly.

Let si be one constraint intersecting s′ at pi, and let pi−1 be the
previous intersection point inserted. If pi is the first intersection
(i = 1), let pi−1 be a. If pi is exactly determined to be on si or ex-
actly inside one of the triangles adjacent to si, then pi can be safely
used. If not, then a search for a suitable robust insertion point prefi

along si is performed. However, the result may lead to a point prefi

that is not connected to pi−1 by an edge, and prefi may also hap-
pen to not get closer to b than pi−1. The strategy of inserting pbefi

and pafti along s′ is also employed here and will ensure that the
inserted points will converge towards b. Convergence can be guar-
anteed because if the insertion of pafti also requires a robustness
search, than the search along s′ will only be in the direction of b.
Therefore pafti will always be closer to b than pi. Point pbefi can be
similarly guaranteed to always be closer to a than pi, so that pbefi

and pafti are always consistent.
Still, pbefi , prefi and pafti may not have direct edge connections

after they are inserted, and a connected sequence of edges joining
the three vertices has to be discovered and marked as constrained.
Every time a search for finding point prefi is performed, the shortest
path in the edge graph of the LCT between pbefi and pafti is taken
as the current portion of s′ being inserted, and then the insertion of
s′ continues from pafti towards b.

This overall process ensures that the multiple imprecise inter-
sections will converge to b for all possible configurations. It also
ensures a successful watertight insertion of constraints.

6.3 Overlapping Constraints

Every time a constraint is added, it will store the id of the obstacle
that is using it. Since constraints can be shared by several obsta-
cles, each constraint maintains a list of ids. When a new constraint
is added between two vertices that are already connected by an-
other constraint, no connectivity update is necessary and the id of
the respective new obstacle is simply added to the list of ids stored
in the constraint. In this way, obstacle edges that overlap are rep-
resented as a single constraint storing the ids of all the obstacles
sharing it. If a polygonal obstacle is inserted multiple times at a
same location, multiple ids will be generated and stored but only
one set of vertices and constraints will exist to represent the obsta-
cle in the triangulation. As an example, the environment in Figure 7
was built from a dataset of country boundaries and the boundaries
between adjacent countries overlap.

When an obstacle is removed, the first step is to remove its id
from all the constrained edges representing the obstacle. Then, only
the constraints whose id lists have become empty are removed.

6.4 Importance and Analysis

The need for handling intersections robustly and dynamically is
important in many cases. For example, when nearby static agents
are represented as simplified polygons around them and inserted
as obstacles in a LCT, the generated constraints will often inter-
sect each other. Another situation is to simplify the design process
of users and designers, allowing them to design spaces with long
intersecting edges. Ensuring that inserted closed obstacles remain

watertight is important for flood fill algorithms that may associate
traversal costs to regions delimiting different terrains (grass, side-
walks, etc). All such cases are robustly handled on-line with the
described procedures.

Figure 10 illustrates the typical case of removing and inserting
obstacles to new positions. Figure 14 shows many intersections
handled in a game floor plan design and test. Edges of obstacles
can overlap or intersect with other obstacles and all cases are ro-
bustly handled.

The described search procedures for inserting refinements and
intersections are only triggered in special circumstances that do not
occur often; but when they are needed, they achieve a robust re-
sult. Section 8 discusses experiments indicating that the proposed
solutions are very efficient in practice. In addition, the approach
accommodates new constraints to an already existing LCT without
changing vertices previously inserted, guaranteeing that static por-
tions of an environment are not disturbed and remain static after
several intersecting dynamic operations.

7. CHANNEL SEARCH

Once a LCT of the environment is available, a graph search can be
performed over the adjacency graph of the triangulation in order to
obtain a channel Cr connecting two input points p and q.

The process first locates the triangle tinit containing p using the
oriented walk search method [Devillers et al. 2001]. The method
extensively relies on ccw tests and to be most efficient the imple-
mented solution starts with floating point ccw tests until a first tri-
angle containing p is determined. Then the tests are switched to
the exact ccw primitive and the oriented walk continues if needed.
This hybrid approach significantly improves the time spent on point
location and at the same time ensures correct and robust results.
Another possible optimization is to include a hashing mechanism
based on a grid overlaid on the environment for quickly determin-
ing a seed triangle already very close to the triangle containing p.
However, such a global hashing would need to be updated when-
ever dynamic updates occur in the LCT.

During channel search, a search expansion is only accepted if the
clearance of the traversal being expanded (which is precomputed
in the free LCT edges) is greater or equal to 2r. Theorem 5 (in
Appendix A) shows that LCTs can be safely searched assuming
that every cell will be traversed by a given path only once, allowing
the search to mark visited triangles and to correctly terminate after
visiting each triangle no more than once. Figure 12 shows that this
is not always the case for all types of cell decompositions.

The channel search will return a valid channel Cr if one exists
but there are no guarantees that C∗r will be found. In this work an
A* search is employed on an adjacency graph that has its edges
oriented towards the goal when the goal is visible [Kallmann 2010].
A typical search tree that is generated is illustrated in

Figure 13. The segments in black represent the expanded edges,
and the segments in blue represent the expansion front at the mo-
ment of reaching the goal. Extended searches that can find a global
optimum are possible [Demyen and Buro 2006; Kallmann 2010]
but will take exponential time in the worst case.

Once a channel containing the solution path is found, the short-
est path in the channel can be efficiently computed with the funnel
algorithm [Hershberger and Snoeyink 1994] by extending it to han-
dle clearances [Demyen 2007; Kallmann 2010].
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Table I. Global versus local refinements in removal operations.
Environment v tglob t

v/4
full t

v/4
adj t

v/4
sim t

v/4
sim+g t

v/4
adj+g t

v/2
full t

v/2
adj t

v/2
sim t

v/2
sim+g t

v/2
adj+g

hybrid 1705 0.013 0.009 0.005 0.005 0.008 0.012 0.021 0.011 0.010 0.011 0.016
wmap 62158 1.314 0.223 0.179 0.168 0.314 0.557 0.490 0.400 0.373 0.811 0.848
obs1k 1229 0.009 0.010 0.003 0.002 0.003 0.009 0.017 0.006 0.004 0.006 0.008
obs5k 5599 0.055 0.043 0.011 0.008 0.025 0.046 0.079 0.027 0.020 0.039 0.046
obs15k 15044 0.192 0.120 0.028 0.022 0.070 0.091 0.219 0.070 0.056 0.108 0.122
obs23k 23504 0.213 0.411 0.050 0.036 0.104 0.148 0.603 0.120 0.092 0.108 0.180
obs30k 29287 0.297 0.253 0.059 0.045 0.108 0.249 0.451 0.146 0.117 0.159 0.314
obs40k 41506 0.423 0.365 0.087 0.065 0.201 0.357 0.654 0.204 0.174 0.235 0.385
obs54k 55090 0.516 0.529 0.117 0.084 0.249 0.558 0.940 0.277 0.219 0.294 0.572
obs135k 135267 1.361 1.355 0.271 0.217 0.511 1.442 2.300 0.673 0.599 0.798 1.460

Notation: Time tglob is the time taken by the global refinement algorithm on the CDT of the input obstacles in order to compute a LCT with v vertices. Times
tkmode are the times taken to remove a set of obstacles with approximately k vertices from the corresponding LCT, using different strategies according to mode:
full for local-full removals, adj for local-adjacent removals, sim for local-simple removals, sim+g for local-simple removals followed by a global refinement pass,
adj+g for local-adjacent removals followed by a global refinement pass. All times are in seconds.
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For every path p, each triangle in Ch(p) will 
only be traversed once.
Suppose by contradiction:
If tr(acb) and tr(cba) passable, and both can 
make part of a same channel C => tr(cab) 
passable.
Proof:
r<cl(acb)=>r<d(a,c),r<d(b,c) (1)
r<cl(cba)=>r<d(a,b),r<d(b,c) (2)
Sec(cab) is free by CDT (3)

If a channel passes by tr(acb) => a disc of 
radius r can fit behind bc => no constraint s can 
exist behind bc and since by CDT, no vertex is 
in sector(cab) => cl(cab)>r => passable.

b

q

p

Fig. 12. The shown path π∗r(p, q) is the only solution with clearance r and
in the given cell decomposition it traverses4abc and4bcv twice. Clearly,
the given triangulation is not a LCT and not a CDT since the circumcircle
of4abc has vertices in its interior.

Fig. 13. Expansion tree of the used search metric.

8. RESULTS AND DISCUSSION

The proposed algorithms were implemented and several evalua-
tions are presented in Tables I, II and III. The experiments were
based on: environment hybrid shown in Figure 1, environment
wmap shown in Figure 7, and environments obsNk, which are simi-
lar to the one shown in Figure 13 but with the corresponding set
of obstacles totaling approximately NK input vertices. All tests
were performed without the bounded clearance optimization and
the time taken by the robust point location procedure is included
in the reported path computation times. The results were obtained
in an Intel Core i7-2600K 3.4GHz. No parallelization or GPU pro-
cessing was used.

Table I presents computation times of removal operations in dif-
ferent combinations of modes and applied to sets of obstacles of
different sizes. By comparing the tkfull columns against the tkadj+g

columns, it is possible to evaluate how far local maintenance of re-

finements is preferable to global passes. By comparing these two
columns with respect to removals of k = v/4 size, half of the ex-
periments were favorable to the local-full operations. With respect
to removals of k = v/2 size, only one experiment was favorable.
The exception was the wmap environment, which is the environ-
ment with the highest number of refinements overall (see column
n of Table III). This shows that performances greatly depend on
the environment type. More in general the overall times indicate
that if more than 25% of the vertices are affected in a local re-
moval, it may be beneficial to employ global refinement passes in
order to maintain the LCT. Global passes will be even more attrac-
tive if they can be employed after simple removals (instead of after
adjacent removals). Simple removals can be enough in several sit-
uations, however, they will not check for refinements that are no
longer needed, and if applied to successively displace objects by
small increments, accumulation of refinements may occur.

Table II. Global versus local refinements in insertion operations.
Environ. t

v/4
loc t

v/4
cdt t

v/4
cdt+g t

v/2
loc t

v/2
cdt t

v/2
cdt+g

hybrid 0.007 0.002 0.007 0.017 0.004 0.014
wmap 0.233 0.076 1.216 0.507 0.154 1.523
obs1k 0.006 0.001 0.006 0.012 0.003 0.008
obs5k 0.029 0.006 0.037 0.058 0.013 0.037
obs15k 0.088 0.019 0.173 0.171 0.043 0.172
obs23k 0.146 0.029 0.221 0.264 0.072 0.259
obs30k 0.174 0.042 0.215 0.359 0.098 0.398
obs40k 0.253 0.064 0.431 0.542 0.155 0.445
obs54k 0.341 0.092 0.536 0.763 0.223 0.726
obs135k 0.943 0.294 1.280 2.293 0.762 2.631

Notation: Times tkmode are the times taken to insert a set of obstacles with approx-
imately k vertices in the LCT, using different strategies according to mode: loc for
local insertions with local refinements, cdt for local CDT insertions without refine-
ments, and cdt+g for local CDT insertions followed by a global refinement pass.
All times are in seconds.

Table II presents performance times obtained with insertion op-
erations. Local refinements can be evaluated by comparing the tkloc
columns against the tkcdt+g columns. For insertions of k = v/4
size, eight experiments (out of ten) were favorable to local oper-
ations. With respect to insertions of k = v/2 size, four experi-
ments were favorable. These times show that refinements are more
efficiently maintained during insertions than removals, what can
be explained by the simpler steps of the local insertion algorithm.
Overall the numbers indicate that global refinement passes may be
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Table III. LCT size, path computation time, and path optimality.
Environment n Refinements kref 4 4ref k4 t̄ l̄loc l̄glob l̄diff σdiff
hybrid 1655 50 0.0302 3405 100 2.0574 0.4948 198.8689 197.4160 0.5999 1.4200
wmap 60374 1784 0.0295 124311 3568 2.0590 2.6130 200.1519 198.9831 0.6036 1.5805
obs1k 1211 18 0.0149 2453 36 2.0256 0.2434 153.3504 153.0448 0.1784 0.4067
obs5k 5554 45 0.0081 11193 90 2.0153 0.4516 156.2630 155.9103 0.2188 0.3430
obs15k 14967 77 0.0051 30083 154 2.0100 0.7343 162.2595 161.9046 0.2019 0.2117
obs23k 23438 66 0.0028 47003 132 2.0054 1.0561 150.5734 150.3085 0.1866 0.3447
obs30k 29202 85 0.0029 58569 170 2.0057 1.1885 151.6780 151.3579 0.2107 0.2223
obs40k 41399 107 0.0026 83007 214 2.0050 1.6493 147.0370 146.7173 0.2230 0.2162
obs54k 54878 212 0.0039 110175 424 2.0076 1.7855 136.0318 135.8508 0.1299 0.1408
obs135k 135054 213 0.0016 270529 426 2.0031 5.9430 134.7292 134.4717 0.2160 0.2297

Notation: n is the number of vertices in the input environment, kref is the number of refinements with respect to n (refinements/n), 4 is the num-
ber of triangles in the obtained LCT, 4ref is the number of triangles added to the input CDT due refinements, k4 is the number of LCT triangles
with respect to n (4/n), t̄ is the average time taken (in miliseconds) to compute locally shortest paths, l̄loc is the average length of locally short-
est paths, l̄glob is the average length of globally shortest paths, l̄diff is the average of how worse (in percentage) local solutions were from their re-
spective optima (average of lidiff = 100(liloc − liglob)/liglob, where i represents the index of each individual query), and σdiff is the stan-
dard deviation of the lidiff values. The average times and lengths were computed over 1000 successful path queries among random query points.

beneficial if more than 50% of the vertices are affected in a lo-
cal insertion. However, environment wmap again shows that per-
formances greatly depend on the type of the environment. Local re-
finements for insertions of v/2 size in wmap were three times faster
than when employing global refinements. This can be explained by
the high number of disturbances in this environment, which make
the global refinement algorithm to require multiple passes to termi-
nate. In contrast, the local algorithm performs incremental refine-
ments after each individual obstacle is inserted.

Table III presents several statistics related to refinements, path
computation time and path length. The search for locally opti-
mal paths is highly efficient, with paths being computed in about
1.8 milliseconds in environments described by 54K segments. The
number of refinements needed per environment is also shown to be
relatively very small. As a consequence, the number of cells pro-
cessed by the channel search algorithm was close to 2n (see k4
column), which is much lower than the theoretical bound of 6n. It
is also possible to observe that the lengths of the locally shortest
paths were in average no worse than 0.61% of the globally opti-
mal solutions. These results demonstrate that locally optimal paths
are suitable for character navigation, and the small difference from
global optima can be used as a way to mimic the humanlike behav-
ior of not always using the same path, for example by varying the
heuristics used by the channel search procedure.

The solutions proposed in Section 6 for the robust on-line pro-
cessing of intersecting constraints have also shown to be efficient
in practice. Tests were performed with random obstacle removals
and insertions generating many intersections among polygons with
several long and parallel edges. The environment is shown in Ap-
pendix D. In 1 million intersections processed, only 18 required
searching for legal intersection points, and the maximum number
of points evaluated in a search was 6. Without the search for ro-
bust insertions these cases would have lead to fatal errors in the test
application.

Figure 14 shows one test environment for The Sims 4. The small
squares represent the position of static characters so that paths for
the active characters can account for them. Whenever characters
walk, their respective enclosing squares are dynamically removed.
The environment shows several intersections and the proposed ro-
bustness techniques were essential to always guarantee successful
triangulations.

Many extensions can be developed for customization of the pro-
posed solutions to specific needs. One effective technique to control

Fig. 14. Test environment used during development of The Sims 4. The
small squares represent static characters. Original data produced by Elec-
tronic Arts. Used with permission.

arrival orientation is to dynamically insert point-obstacles nearby
the target location in order to create a unique feasible path arrival
direction. The triangulation can also be used for visibility and prox-
imity queries in different ways. Figure 15 illustrates a dynamic
CDT being used for tracking agent-agent and agent-obstacle prox-
imity while multiple agents are following their LCT paths. These
and additional examples are presented in the movie accompanying
this paper. The movie demonstrates refinements being maintained
while obstacles move, paths adapting to dynamic changes, and sev-
eral agent navigation examples based on LCTs.

Figure 16 presents a comparison against the medial axis repre-
sentation. In this example, the edge chains of the full medial axis
graph in the main corridors of the environment have 12, 14, 12, 7,
40 and 11 nodes. The corresponding corridors in the LCT of the
same environment are represented with 9, 11, 8, 4, 30 and 10 adja-
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Fig. 15. Multi-agent path following simulation example. A LCT (top) is
employed for planning paths to be followed by each agent (middle snap-
shots), while a dynamic CDT is used to track proximity for fast collision
avoidance determination (bottom). The two snapshots in the middle show
different path visualizations and their paths were kept relatively short in
order to improve clarity.

cent triangles, what represents 75% of the number of nodes used by
the full medial axis. While the full medial axis needs a larger num-
ber of nodes to represent all pairs of closest features, both structures
areO(n) in size and have a practically equal number of nodes with
degree 3. Both structures will therefore achieve similar path query
times when only considering degree 3 nodes.

If speed, storage space, and dynamic updates are the main cri-
teria, LCTs provide unmatched efficiency and flexibility. It is pos-
sible to devise decompositions with larger cells or to add coarser
hierarchical layers in the adjacency graph in order to achieve faster
path searches, however in such cases it becomes difficult to ad-
dress efficient dynamic updates and arbitrary clearance at the same
time. The overall approach is also highly flexible given that the
underlying CDT operations are useful for solving a number of geo-
metric problems, as for example for tracking proximity (Figure 15-
bottom).

All provided examples were computed geometrically without the
use of any additional structures. The presented methods for ad-
dressing robustness are important because they let users safely edit
and design their own environments without restrictions, a desirable
feature in computer games. The independence of a GPU allows the
methods to be highly portable and broadly usable, as for example
in game servers without GPUs.

Although LCTs are well suited to multi-agent navigation, reac-
tive behaviors for avoiding bottlenecks and collisions with other
agents during path following are still needed. A number of ap-
proaches have been proposed in the crowd animation area [Shao
and Terzopoulos 2005; Singh et al. 2009; Berg et al. 2008]. The
examples given in Figure 15 only include the simple behavior of
stopping and computing a new random path every time an agent
collides with another agent during path following.

Fig. 16. The left image shows the full medial axis graph of an example
environment. The black segments connect to the closest features and deter-
mine the nodes of the graph. The right image shows the medial axis of main
corridors on top of the LCT of the same environment. The LCT adjacency
graph represents the corridors with 72 nodes, while the medial axis uses 96
nodes.

9. CONCLUSION

This paper demonstrates the theoretical properties of local clear-
ance triangulations and presents new algorithms for handling dy-
namic updates and robustness. The presented methods introduce
a new meshing-based methodology for representing environments
for navigation, and lead to a powerful representation with clearance
information. The presented solution represents a highly flexible and
efficient approach for extracting paths with clearance from polygo-
nal environments.
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APPENDIX

A. THEOREMS
The main properties discussed in the paper are addressed by the theorems below. The
term first disturbed is used to specify that v is the first disturbance in case of multiple
disturbances (see Section 4.1). The referenced lemmas are given in Appendix B.

THEOREM 1. (INTERNAL ANGLE.) Let traversal τabc ∈ T = LCT (S) be
first disturbed by vertex v with respect to constraint s, and let v′ be the orthogonal
projection of v on s. Let d and e be the vertices connected to v forming 4dve ∈ T
that is crossed by segment vv′ (see Figure 3). In this situation, the internal angle of
the disturbance ∠dve > π/2.

PROOF. First consider the simpler case where d = b and e = c. In this situation,
by Lemma 1, ∃o such that ∠boc = π/2 and v lies inside 4boc ⇒ ∠bvc > π/2.
The same reasoning is now applied to generic vertices d and e connected to v. Letu be
the line parallel to s passing by v and let R be the region of all possible disturbances
closer to s than v and on the same side of vv′ as b. Region R forms a right angle α
at vertex v, which is the angle between u and segment vv′ (see Figure 17-left). By
definition regionR is free of disturbances, and since by Lemma 3 any vertex insideR
would be a disturbance, it then follows that no vertices can appear insideR. Therefore
d has to be below u and e right of vv′ ⇒ ∠dve > α = π/2.

THEOREM 2. (REFINEMENT.) Let traversal τabc be first disturbed by vertex v
with respect to constraint s, and let v′ be the orthogonal projection of v on s. The new
CDT obtained with the refinement of s with pref (see Figure 5) will lead to a new
vertex vref connected by edges to v and to all the vertices of the triangles crossing
vv′.

PROOF. Let d and e be the vertices connected to v forming 4dve crossed by
segment vv′, and let u be the line parallel to s passing by v. Using Lemma 3 and
the same reasoning as in Theorem 1, d is below u, and e right of vv′ (see Figure 17-
left). Since v is a disturbance, then dist(v, e) > dist(v, v′) and thus e has to be
outside the circle centered at v and with radius vv′ (see Figure 17-right). Let C be
the circumcircle of 4dve. Since ∠dve > π/2, then the center of C has to lie on
the opposite side of de with respect to v. Figure 17-right illustrates that for any valid
positions of d and e, C will have to intersect s and entirely contain segment vv′. Since
C intersects s, then pref will be inside C. Therefore, in order to maintain the empty
circle criterion, when pref becomes a new CDT vertex vref , 4dve will no longer
exist and vref will be connected to v. The originally disturbed4abc becomes invalid
when v and vref are connected by an edge and thus b will also become connected to
vref . The same applies to all vertices that originally had an edge crossing vv′.
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Fig. 17. Illustrations used by theorems 1 and 2.

THEOREM 3. (LINEAR REFINEMENTS.) The number of refinements for obtain-
ing LCT (S) with the iterative refinement algorithm is at most 3n, where n is the
number of input points.

PROOF. Without loss of generality it can be assumed that if a traversal τabc has
multiple disturbances with respect to constraint s, the disturbance that is processed
first is the first disturbance vertex v. If other disturbances remain after the refinement
with respect to v is performed, they will be processed in subsequent passes.

For vertex v to disturb traversal τabc, by Theorem 1, the internal angle of the dis-
turbance has to be larger than π/2. Therefore, at most 3 incident triangles to v can
have internal angle at v greater than π/2, and so v can disturb a maximum of three
different traversals. As the starting triangulation T0 = CDT (S) has exactly n ver-
tices, then the maximum possible number of refinement vertices inserted in T0 is 3n
(see Figure 21 in the Appendix for an example). By Theorem 2 each disturbance v
with respect to τabc will lead to v and b connected to pref after s is refined. There-
fore vertices v and b will become corners of new traversals with entrance and exit
edges that are directly connected to s and that have clearance values dist(b, s) and
dist(v, s). Since s was the closest constraint to the original τabc disturbed by v,

after refinement, v may not disturb any other traversal between b and s. Therefore,
if originally v was disturbing k ≤ 3 traversals, after refinement, it will disturb only
up to k − 1 traversals. The total number of refinements after several passes therefore
remains limited to 3n.

The final aspect to be considered is that refinement vertices are always inserted sub-
dividing a constraint in two new collinear constraints and so they cannot become new
disturbances by definition. Refinement vertices may re-arrange triangles that can be-
come disturbed by original vertices, however, the original vertices are still limited to
3n disturbances. Therefore the refinements cannot indefinitely propagate and the max-
imum number of refinements remains bounded by 3n.

THEOREM 4. (LCT CORRECTNESS.) Let C be a channel of T = LCT (S)
containing a path π such that for each traversal τabc in C, cl(a, b, c) > 2r. Then,
πr exists in C.

PROOF. Let diam(p) denote the maximum diameter of the disc centered at a
point p such that no vertices or constraints of T lie in its interior. The disc is de-
noted Dp and only its boundary will intersect with vertices or constraints of T . The
intersections are called the contact points ofDp.

Let p be the point of the medial axis inside channelC such that diam(p) is minimum
and that p lies in a triangle fully traversed by π (cases related to the path endpoints
are treated with specific arrival and departure tests). Point p represents the location of
the narrowest passage in C. If there is enough clearance at the narrowest point of C,
then there is enough clearance everywhere in C and a continuous deformation from
the medial axis inC to πr exists. Therefore it is enough to show that diam(p) ≥ 2r.
Consider all pairs formed by two contact points ofDp that are on opposite sides of π.
For each pair, three cases may exist: 1) both points are vertices of T , 2) both points
lie on constraints of T , or 3) one point is a vertex and another lies on a constraint (see
Figure 18).

In the first case, let v1 and v2 be the two contact points. Since diam(p) is minimum,
dist(v1, v2) = diam(p) and no other vertices or constraints can be inside Dp.
Therefore an empty circle passes by v1 and v2 and by the Delaunay criterion the
two vertices have to be connected by an edge e of T . Edge e will be an exit and
entrance edge of two adjacent traversals with local clearance at most dist(v1, v2) =
diam(p). Since T has the local clearance property, then diam(p) ≥ 2r and πr

will safely pass by the narrow passage.

In the second case, the two contact points lie in two constraints s1 and s2. Since
diam(p) is minimum, s1 and s2 have to be parallel otherwise a lower value for
diam(p) would be obtained with respect to an endpoint of s1 or s2. Since the two
constraints are parallel, the same value of diam(p) will be obtained with respect to
an endpoint, reducing this case to case 1 or 3.

In the third case, let v be the contact vertex and s be the constraint containing the
second contact point v′. Since diam(p) is minimum, v′ has to be the orthogonal
projection of v on the interior of s since otherwise the second contact point would
be an endpoint of s and this would be a case 1. If segment vv′ is not crossed by any
edge of T then v will form a triangle with the endpoints of s, and the triangle will
be crossed by π with a traversal where v is the corner and the clearance is d(v, s).
Since all clearances are greater or equal to 2r, then πr will be a free path with respect
to v and s. If segment vv′ is crossed by edges of T , other traversals will be crossed
instead. For each crossed traversal τabc, dist(v, s) ≥ dist(b, s) since T is a LCT
free of disturbances (see Definition 3). Therefore since all clearances are greater than
2r, cl(a, b, c) > 2r and πr will be a free path with respect to v and s.
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Fig. 18. Cases considered by Theorem 4.

THEOREM 5. (SINGLE TRAVERSABILITY.) For every path πr found in a LCT,
each triangle in its channel Cr will only be traversed once.

PROOF. Suppose that t ∈ Cr is traversed twice and let the two passable traversals
of t be τabc and τbca (see Figure 12). Since τabc is passable, then: cl(a, b, c) ≥
2r ⇒ dist(b, a) ≥ 2r and dist(b, c) ≥ 2r. Analogously, since τbca is pass-
able, then: cl(b, c, a) ≥ 2r ⇒ dist(c, b) ≥ 2r and dist(c, a) ≥ 2r. Therefore
dist(a, b) ≥ r and dist(a, c) ≥ r, but since the channel search algorithm could
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not find the shorter solution passing by traversal τbac, then τbac cannot be passable.
The only possible situation is that a constrained edge s exists behind bc such that
dist(a, s) < 2r (because by the Delaunay property no vertex can cause the reduced
clearance). But if s exists, s would as well block the passable traversals τabc and
τbca.

B. LEMMAS
LEMMA 1. (ENCLOSING RIGHT TRIANGLE.) Given traversal τabc, there exists

a point o ∈ R2 with ∠boc = π/2 such that all possible disturbances to τabc will lie
in the interior of4boc.

PROOF. Let s be the closest constraint to τabc. If a disturbance v exists, it will be
with respect to s. Now let o be the intersection of the line orthogonal to s passing by c,
with the line parallel to s passing by b. Figure 19 illustrates the lines determining o for
three possible configurations of s. In all cases, ∠boc = π/2. There might be points
inside 4boc that are not disturbances, but according to Definition 3, if a disturbance
v exists, it will be inside4boc since bo delimits all points closer to s than b, and co
delimits all points with valid orthogonal projections on s.

enctri2.pdf
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Fig. 19. Cases for Lemma 1.

LEMMA 2. Let traversal τabc be disturbed by vertex v with respect to constraint
s. Let v′ be the orthogonal projection of v on s, and let d and e be the vertices
connected to v forming 4dve crossed by segment vv′. If vertex d lies on segment
vv′, then d is also a disturbance.

PROOF. The key to this proof is to show that property dist(d, s) < dist(d, e)
is true. This can be informally shown as follows: Since v is a disturbance ⇒
dist(v, v′) < dist(v, e) and thus e has to lie outside the circle centered at v
with radius dist(v, v′). In this situation, Figure 20-left illustrates that dist(d, v′) <
dist(d, e) ∀d ∈ vv′ ⇒ dist(d, s) < dist(d, e), since v′ is also the orthogonal
projection of d on s.

An analytical proof of dist(d, s) < dist(v, e) is now derived as follows. Let p be
the orthogonal projection of e on segment vv′, dividing vv′ in two parts of lengths
m and n1, and forming the right triangle of dimensions n1, k, and r1, as shown
in Figure 20-right. If d lies between p and v, d divides pv in two parts of lengths
n3 > 0 and n2 > 0. If d lies between v′ and p, let n3 = dist(d, v) > 0 and
n2 = −dist(d, p). Finally, let r2=dist(d, e). Starting from the fact that v is a
disturbance, it follows that: dist(v, v′) < dist(v, e)⇒m+ n1 < r1
⇒m+ n1 − n3 < r1 − n3

⇒m+ n2 < r1 − n3

⇒m+ n2 <
√
k2 + n2

1 − n3

⇒ (m+ n2)2 < (
√
k2 + n2

1 − n3)2

⇒ (m+ n2)2 < k2 + n2
1 − 2n3

√
k2 + n2

1 + n2
3

⇒ (m+ n2)2 < k2 + n2
1 − 2n3r1 + n2

3

⇒ (m+ n2)2 < k2 + (n2 + n3)2 − 2n3r1 + n2
3

⇒ (m+ n2)2 < k2 + n2
2 + 2n2n3 + n2

3 − 2n3r1 + n2
3

⇒ (m+ n2)2 < k2 + n2
2 + 2n2n3 + 2n2

3 − 2n3r1
⇒ (m+ n2)2 < k2 + n2

2 + 2n3(n2 + n3 − r1)

⇒ (m+ n2)2 < k2 + n2
2 + 2n3(n1 − r1),

and since n3 > 0 and n1 < r1 ⇒ 2n3(n1 − r1) < 0

⇒ (m+ n2)2 < k2 + n2
2 + 2n3(n1 − r1) < k2 + n2

2 = r22
⇒ (m+ n2)2 < r22
⇒m+ n2 < r2 ⇒ dist(d, s) < dist(d, e).
Since all other requirements of Definition 3 are trivially verified, it follows that d is a
disturbance.

LEMMA 3. Let traversal τabc be disturbed by vertex v with respect to constraint
s. Let v′ be the orthogonal projection of v on s. If a vertex z exists closer to s than v
and on the same side of vv′ as b, then z is also a disturbance.
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Fig. 20. Diagrams for Lemma 2.

PROOF. Let ~r be the unit vector parallel to s such that v + ~r is on the left side
of vv′. If v is a disturbance and is translated to another valid location with v + ~r,
then it will remain a disturbance. This can be easily observed in Figure 20-right: if
v is translated to the left, its distance to s remains the same while its distance to e
increases, assuming all other requirements of Definition 3 remain valid. Let now z0
be a point on segment vv′ and t ∈ R+, such that the position of vertex z can be
written as z = z0 + t~r. From Lemma 2, z0 is a disturbance ⇒ dist(z0, s) <
dist(z0, e) ⇒ dist(z, s) = dist(z0 + t~r, s) = dist(z0, s) < dist(z0, e) <
dist(z0 + t~r, e) = dist(z, e) ⇒ dist(z, s) < dist(z, e). Therefore the key
property dist(z, s) < dist(z, e) holds and since all other requirements of Defini-
tion 3 are trivially verified, it follows that z is a disturbance.

C. TRIPLE DISTURBANCE EXAMPLE
While it is unlikely that all vertices in a CDT can disturb three traversals, Figure 21
illustrates a case where one vertex v simultaneously disturbs three different traversals.
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Fig. 21. Example where v disturbs three traversals.

D. ROBUSTNESS TEST ENVIRONMENT

Fig. 22. Two random instances of the environment used for the reported
robustness tests.
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