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Abhstract. Recently several investigators have
studied the problem of displaying text characters on
grey level raster scan displays. Despite arguments
suagesting that grey level displays are equivalent
to very high resolution bitmaps, the performance of
grey level displays has been disappointing. This
paper will show that much of the problem can be
traced to inappropriate antialiasing procedures.
Instead of the classical (sin x)/x filler, the
situation calls for a filter with characteristics
matched both to the nature of display on CRTs and to
the human visual system. We give examples to
illustrate the problems of the existing methods and
the advantages of the new methods. Although the
techniques are described in terms of text, the
results have application to the general antialiasing
problem--at least in theory if not in practice.

1. INTRODUCTION

The computer age nearly destroyed quality
printed and displayed text. Many of us remember our
first sight of the ugly, uneven -impression of a high
speed chain printer. At the time, it seemed
incvitable that high technology would sweep more
beautiful--and less utilitarian--methods of text
display aside for all but the most premium of uses.
Recently this prospect has changed. With the
growing availability of raster scan displays we have
witnessed a technology with the capability of
generating alphanumeric text that is more than Jjust
readable but pleasant to view as well.

It is an exciting dream of men like Donald
Knuth to be able to compose locally and transmit for
publication high quality text containing multiple
fonts and mathematical equations. This dream would
be made more attractive if an author would be able
to see the result immediately, rather than having to
wait several days for the output of a $100,000
machine. The ideal would be to close the loop: to
make available to the author an inexpensive real
time device able to display high performance images.
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Furthermore, the effect of high quality real
time displays on the activities of computer science
itself has yet to be accurately assessed.
But--aside from the creation of the word processing
industry-~the introduction of expanded codes to
include relatively mundane features such as lower
casce characters has tremendously changed the flavor

if not the substance of programming: surely none of
us would wish to return to the 5-bit Baudot code!
More importantly, the astonishing power and economy

of computer languages and mathematical notations
which incorporate special symbols (such as APL and
symbolic logic) certainly has hidden lessons for the
computer science comaunity.

Many researchers soon discovered that the
probliem of displaying synthetically generated images
on raster scan devices was a nontrivial task [Crow
1976, B8linn 1979]. The so called aliasing problem
was encountered due Lo the high frequency content of
artificially synthesized images. These researchers
developed methods to overcome this problem which can
be viewed alternatively as interpolation of
brightnesses between pixels or filtering with a
triangular convolution kernel. We shall, for
definiteness, refer to this popular scheme as
triangular filtering.

The first attempts to display text on raster
scan devices used these intuitive filtering schemes
that worked surprisingly well in practice [Warnock
1980, Seitz]. It is the aim of this paper to
analyze the performance of these schemes for the
general image case as well as the text case. We
also propose a new method for choosing the pixel
values which make up a synthetic image, show some
preliminary results, and finally discuss the future
directions that this research may take.

By now, the aliasing problem for computer
generated 1images is well known to all in the field,
as are the frequency domain interpretation of the
phenomenon and the first order approximation to its
solution. We wish to examine in detail the
performance of this first order approximation. It
is well known that the triangular filtering
algorithm is cheap, fast, easy to implement, and
produces an adequate antialjased image for very many
applications. There arc other applications,
however, that require higher performance. Text is
Just such an application. Characters consist almost
entirely of sharp edges and contain small subpixel
features, such as serifs. Also, the processing of
text can be done offline and the result stored in
permancnt memory. The method we present here is
expensive, slow, and relatively hard to implement,
but it produces higher quality images than the usual
triangular filtering scheme. It is not now suitable

for real time, or near real time, raster display
applications. :
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Tt should be emphasized that these methods and
analyses are applicable--at least in theory--to the
general problem of antialiasing arbitrary images.
We have chosen to focus on the display of text
rather than arbitrary graphic objects because
certain computational advantages accrue due te the
small size of characters. If the computational
implementations of these methods currently were not
economically impracticable we would be reporting on
the general synthetic image display problem as well.

2. AN ANALYSIS OF POPULAR ANTIALTIASING SCHEMES
LINEAR FILTERING WITH A TRIANGULAR PSF.

This section will analyze how well the
triangular filtering algorithm does in removing
aliasing while not otherwise distorting the picture.
The details of the development are necessarily
mathematical, but we present the key ideas here for
those who want an overview of the section. There
are two primary sources of error in the triangular
filtering scheme. (1) The triangle interpolation
kernel is not an ideal low pass filter and passes
frequencies that are beyond the HNyquist 1limit.
Thus, it is subject to aliasing. {(2) The
interpolation kernel docs not take into account the
reconstruction kernel. That is, it ignores the fact
that pixels on the CRT display are Gaussian spots.
The Gaussian spots are not ideal lowpass filters
either and given the usual focus setting the the
frequency response of the reconstruction is far from
flat. How well does the usual scheme work? The
answer depends, of course, on the nature of the
images displayed, and the mathematics tells you how
to calculate the answer for your image. The gist of
the answer, though, is that for certain images 1like
text, there is plenty of room for improvement.

The most popular scheme for antialiasing is to
Yinearly filter the input signal with some sort of
interpolation kernel [Schafer and Rabiner 1973,
Oetken, et. al. 1975]. We focus on the case of
artificial images such as text and computer
generated caliigraphic and halftone images for
display on raster scan frame buffers. There is some
controversy about the characteristics of the optimum
interpolation kernel with respect to the amount of
ringing, and whether negative lobes are desirable
[Gabriel 1977]. Many workers have scttled on a
triangular interpolation kernel as a simple
compromise that gives good results in practice and
is easy to compute [Crow 1976, Warnock 1980].

In the idnterest of concreteness we shall
restrict the ensuing analysis to the triangular
interpolation case; however, the reader can readily
discern that the arguments 1involved are quite
general., Parts of this analysis are similar to
those found in [Pratt 1978].

The triangular PSF is shown in Figure 1 and is

given by the equation: E
1- 1—7‘-“ -—T.é%é_f

0 othenaise.

To perform the sampling and reconstruction we
convolve the ideal 1image with the interpolation
kernel, sample with raster pitch T, and reconstruct
by convolving the sampled signal with the
reconstruction kernel. As is well known, these
steps are best visualized in the frequency domain.

kg) =

The Fourier transform of k(g), the triangular
kernel, is K{w) as shown 1in Figure 2. This is
compared with the ideal Nyquist kernel of sin(&/7)/5/T).

The analytic expression for K(w) is
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This figure clearly shows a possible source of
aliasing error allowed by this kernel. Namely for

an input image f(E) with Fourier transform F{w) the
root mean square aliasing energy is given by
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Now if F has most of its energy concentrated in
the 1low frequencies then the aliasing error energy
is quite small since the two terms in Equation (2.1)
are roughly the same. Unfortunately, most
artificial 1images, and especially text, have a
Fourier spectrum that resides aimost exclusively in
the high frequency portions of signal space. To get
some idea of the energy error involved, let us take
a "line source", viz. a line of delta functions.
This situation is to be met, for example, in the
very thin strokes of classic Roman capitals, and in
the diagonal strokes of a capital A for the Bodoni

typeface.

In this case f(g) approaches a Dirac delta
function whose Fourier transform, in turn,
approaches a flat spectrum, Equation (2.1) then
gives
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the relative aliasing energy is EBughly

E alies (in d8).
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To perform the sampling step in the frequency domain
we merely replicate the signal at the sampling
frequency. Assume we have already folded in all the
aliasing energy so that our modified signal appears
as in Figure 3. Sampling now replicates this
modified signal to something shown in Figure 4. Now
we can reconstruct the signal by passing it through
a reconstruction filter. If the reconstruction
kernel is the Nyquist kernel,

sin ( '@7’)
()

then the signal is a low pass filtered version of
the originatl. However, in this matter we are not
free to exercise a choice for our reconstruction
kernel, except for a very 1limited range. The
reconstruction kernels available to us are fixed by
the physics of the output devices at our disposal,
whether they be electrostatic printer, COM devices,
or CRT based displays. To take the most common
example, it is well known that the spot luminance
distribution for a CRT is Gaussian, the variance of
which is set by the focusing. At the proper focus
point, a flat-field raster just becomes smooth, this
is given roughly at the point

0’2’:‘. (,ééT)z

where ¢ is the standard deviation of the Gaussian,
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Now, the Fourier transform of this reconstruction
kernel is

4,2
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Thus the final output signal looks more like Figure
5 instead of appearing as in the normal case. 1In
this picture we can see two sources of error arising
from the mismatch of trianguiar and Gaussian kernel:
Imaging errors and equalization errors.

Imaging errors are produced by the Jleakage of
spurious copies of the original signal. This is
given by

T o
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When the Gausstfan spot 1s focused properly this
error is quite small. (Otherwise a flat field
wouldn't have appeared flat.)

By fTar the more serious error is caused by the
mismatch between the triangle and Gaussian frequency
responses. Let us for the moment ignore the effects
of aliasing and imaging, say by attempting to
display an already perfectly bandlimited signal on a
properly focused display (g =7/.66). In this case
the overall modulation transfer function, 1is given
by

-2/ Tw 4.2
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This curve 1is plotted on a dB scale in
Figure 6. Note that for the higher frequencies the
MTF is down by almost 10 dB! Clearty, this amount
of attenuation is causing a significant amount of

sharpness loss, particularly in the fine features of
high quality fonts.

Thus, if one 1is constrained to use to the
linear filtering approach, a high frequency
preemphasis is clearly called for--at the expense of
an increased aliasing error tradeoff.

OTHER KERNELS

Many ad hoc schemes besides linear filtering
have been proposed. Many are equivalent to linear
filtering with trianguiar or other kernels. These
include proportional weighting of the area of a
given pixel covered, trapezoidal decomposition,
contour smoothing, and nearest neighbor schemes.

One may wonder if the above remarks apply to
all interpolation kernels as well as the triangle.
Furthermore, there are a wealth of possible
nonlinear schemes that come to mind. One can
imagine an Edison-type programme involving a massive
amount of experiment in order to converge on the
correct solution. There is, however, a non ad hoc
approach that is closely related to the roots of the
Whittaker-Shannon sampling theorem, from which the
original frequency domain analysis is derived.

3. OPTIMUM LINEAR SAMPLING AND RECONSTRUCTION

Instead of choosing an arbitrary kernel and
calculating 1its performance, in this section we
present an approach that calculates the optimum
linear antialiasing filter for a given output
restoration kernel. It turns out that this method
has a flaw which is corrected in the next section.
The flaw is that images with negative outputs will
be generated.

In a way, we may think of the image sampling
and reconstruction procedure as an function
approximation probiem. We are given as basis
functions the Gaussian spots on a CRT. The question
we may pose then is: "What are the optimum weights
to tinearly combine the basis vectors for
approximation of the ideal signal?"

In other words, we are free to vary the
brightness of each pixel spot (which is a Gaussian
distribution) in order to make the reconstructed
signal as "close" +{o the original ideal image as
possible. In a CRT, the reconstructed image is
given by a weighted sum of Gaussian bumps:

00
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In this equation, x; represents the pixel

value, and gi(E) represents a Gaussian distribution
centered at the i pixel. See Figure 7.

Each Gaussian is a shifted version of a
canonical bump:

(2.2) 9i(8)= 4, (§-iT).

Now the question is, how do we measure the closeness
of two images? Namely, given two images how do we
assign a non-negative real number which corresponds
to the distance between them? The choice of such a
distance metric is a nontrivial task--a choice on
which the wultimate visual quality of the images is
strongly influenced. We will discuss the choice of
other image metrics based on the human visual system
below, but for now we choose a particular metric
which has many pleasing analytic (if not visual)
properties, the mean square metric. The distance
between two images f1, E_ is given by

dist = |-, 1L = L(,gm-)cz(g)|2ag _

The sampling problem may now be stated thus:

Given an input image f(£), what are
the optimum pixel values Xi
minimizing the error between the
original 1image and the reconstructed
image? That is, find the values
""'de X xl,... minimizing

j—(...)'x,b 'yo)yl)‘,,) = j_ I)C(E) -i;oxiji(g)|°c{£.

Now, in practice, there are only a finite number of
sample points to be determined, say X,, Xq,..-,Xyq¢ -
In order to minimize this functional we take 1its
gradient and set it to zero.

_ ji;[) =0.
Vj(xo)...,ﬁn—l) = <37Cl<, k=0,...,n-1
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This give rise to a system of equations

933; ai,b WE) Z% 3¢(E)lzd§=o (k=0,-n:2)
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Doing a 1little algebra we obtain:

or

n-1
) nf 3E)gds) dk = [ FE)gu(5)45.
Now wz %se the identity (2.2) to get
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The quant1t1es on both sides of this equation have
names,

4a(E-T)3.(6-KT)dE = Rg((-)T)

where Rg((i—k)T) is the autocorrelation function of
the Gallssian spot evaluated at the point (i-k)T.
The quantity on the left is simply R; (kT) the cross
correlation of f and g at kT. b

Setting R ((i-k)T)=ay, and Rig(kT)=bk the above
normal equations take the familiaf~ form

Ax=b.

Where A is an n n matrix called the Gram matrix and
b is an n-dimensional column vector, where n is the
number of pixels in the output. The optimum pixel
values are then given by the solution of this system
of equations.

It is well known that the autocorrelation
matrix A 1is of the so called symmetric Toeplitz
form, viz. it 1is constant along the major
diagonals. There exist fast methods to invert such
matrices [Levinson 1947, Trench 1964]. These stem
from the fact that there are not really nZ
independent elements but rather n. Inversion with

the glnson Trench scheme is O(nL) instead of the
usual n

Note that in the 2-dimensional case the matrix
is no longer Toeplitz but rather Block Toeplitz,
with Toeplitz sub-blocks, thus enabling significant
economies 1in the storage and computation of the
sojution vectors [Kajiya 1981]. These savings can
be quite significant since for a picture n pixels
square, the full Gram matrix requires n elements
and take time O(n } time to solve, for n=512 the
straightforward inversion scheme is well beyond the
capabilities of even the largest of computers, while
the Levinson-Trench recursion is quite practical.

It may seem that for text character fonts, much
of this discussion is moot since characters are
quite small, say 10x13 pixels. However, even for
this size, the matrices have 16900 elements, and for
a 30x30 pixel font the full autocorrelation matrix
requires almost a million entries!

An important point concerns the reconstruction
kernels. If they were not Gaussians as in a CRT but
rather Nyquist kernels as in the ideal case, then
the Sampling theorem obtains. The Gram
autocorrelation matrix reduces to the identity due
to the orthonormality of the Nyquist kernels, and
the cross correlation step corresponds to a perfect
lowpass filtering and sampling operation.

Thus, the operation may be very
interpreted as follows:

roughly

To reconstruct with a given waveform,
first filter hy that waveform (take
the inner product) then solve the
matrix problem with the Gram matrix
of autocorrelations. If the matrix
is large we may be able to ignore
edge effects and consider the matrix
simply as a convolution with the
"Green's function” of the Gram
operator, which serves as an
equalizing Ffilter to flatten the
responsc of the initial filter.

Thus, the above process is a linear process
and, we might add, one that is quite familiar in
certain circles. It is, however, inadequate from
several standpoints.

The two ma jor inadequacies are, first,
positivity constraints stemming from the physics of
light and the physics of the display devices and,
second, the inadequacy of the least square image
metric as a suitable model for vision. In the next
section we discuss the first of these shortcomings,
while in a later section we treat the second.

4. THE POSITIVITY CONSTRAINT

In this section we analyze the cause of the
necgative lobes output by the optimum linear filter.
We also explore methods for correcting the negative
lobe output. It turns out that the obvious method
of truncating the negative lobes at zero may or may
not work, depending upon the form of the restoration
kernel. We analyze the criteria under which
truncation works. Unfortunately, for the case of
interest, viz. Gaussian reconstruction kernels, the
criteria are not met.

Figure 8 shows the minimum mean square error
reconstruction of an impulse using Gaussian
reconstruction kernels.

The relative extrema represent the strongest
contributions of each individual Gaussian spot.
This recsponse can be couched in almost teleclogical
terms as follows:

To make an impulise with a scries of
Gaussian bumps, take an initial bump
and shave off the sides to narrow the
bump by subtracting a small Gaussian
from either side. Now to compensate
for these negative 1lobes we add in
some positive Gaussians of smailer
proportions a 1little farther away,
Now to compensate for these postive
lobes,....etc.

This procedure cannot be followed if we have, say, a
series of potentiometers controlling the brightness
of a number of Gaussian spots. This is because the
pots cannot be turned negative. There is no way to
make negative Tight--much to the frustration of many
workers concerned with these kind of display
problems. Thus the display of a reconstructed image
is constrained to the positive cone x,>0, xi)o.
xz?O,...meO.

This puts an additional constraint on the
samptling problem. A succinct statement of the
problem is now:
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Sampling problem (with positivity):

Minimize ‘_f,(g\ _2‘ % ﬁ'(g)[‘?‘ c{g

with x restricted to the positive cone
2,20 i=0bL.,nt

How do we approach this problem? Well, one
method has been to ignore it completely: simply
solve for the unconstrained optimum reconstruction
and set any negative values to zero. This method
may work in certain cases. For example, if the
picture is sufficiently bright everywhere, the
negative lobe may ncver dip beclow zero. Whencver we
need to truncate negative values, however, possibly
severe inaccuracies result. Characters, lines, and
many other graphic objects are binary pictures with
the lesser value being zero. Thus in graphics the
need to truncate arises often.

popular

The typical case is illustrated by the previous

example, viz. sampling an impulse. Simply
truncating the negative 1lobes 1leaves a curious
"ringing" pattern around the impulse (Figure 9).
The ringing pattern in no way contributes to the
minimization of the mean square metric, since their
principal function was to compensate for the
negative lobes. Setting the positive sidelobes to

zero also happens to be very close to
mean square error picture:

the minimum
a single Gaussian bump.

Geometrically, the situation may be visualized
as in Fiqure 10. We have suppressed all dimensions
except two and drawn contour lines for error. The
actual optimum can be seen to be at point A in which

x4>0 but x2§0. Setting x,=0 projects the point A
onto B, a point which satisfies the constraints but
which isn't very close to the true constrained

minimum given by point C.

How badly do we do by setting co-ordinates to

zero? That depends on the eccentricity of the
ellipse and the angles that the major axis of the
ellipse forms with the co-ordinate axes. With a

nearly round ellipse, one whose major and minor axes

are very nearly equal in length, one comes very
close indeed to the to the optimum, when one sets
the offending co-ordinates to zero (Figure 11). In
the case of reconstructing say a 10x13 pixel
character we are confronted with a 130 dimensional
ellipsoid. The ellipsoid is formed from the level

surfaces of the mean square error functional. To

find its eccentricity we merely find the ratio of
the largest to the smallest of the eigenvalues of
the Hessian of the (qguadratic) error functional,
i.e. the matrix of second order partial derivatives
( >J
a%iaﬁj
This is none other than our old friend the Gram
autocorrelation matrix. Thus we find that the set

of eigenvalues, and hence the eccentricity of the
ellipsoid, depends on the reconstruction kernel.

Now, for an orthonormal reconstruction kernel,
such as the Nyquist kernel, the Hessian is the
identity matrix. Hence, the eigenvalues are all
unity and the ellipsoid 1is perfectly round.
Therefore, simply setting the offending co-ordinates
to zero gives the constrained optimum exactly.

We do not have Nyquist kernels at our disposal,
however, but rather Gaussians--which are decidedly
not orthonormal. It turns out that finding the
eijgenvalues and eigenvectors of the Gram
autocorrelation matrix 1is a well-known procedure
called the Karhunen-Loeve transformation. Speaking
very loosely, the eigenvalues correspond to the
values of the Power spectral density, viz. the
square of the Fourier transform magnitude of the
autocorrelation function. But the autocorrelation
of a Gaussian distribution is again a Gaussian with
double the standard deviation, and it's well known
that the Fourier transform of a Gaussian is also a
Gaussian. Thus, there is a tremendous range in the
magnitude of the eigenvalues encountered, the values

being governed by an exponential of a term
proportional to the square of the abcissa. In other
words for a Gaussian distribution the ellipsoid is

very eccentric. Furthermore, the angle of
inclination of the ec¢llipsoid with respect to the
co-ordinate hyperplanes (x;=0) is given by direction
cosines that correspond to the inner product of a
Gaussian with the Karhunen-Loeve eigenvectors.
These eigenvectors are very roughly sinusoids.
These direction cosines, at least for the Jlargest
eigenvalues, are roughly equal, so the ellipsoid is
pitched at an angle of about 45°--the worst case.

To sum up the discussion so far: While setting

the negative coordinates to zero for orthonormal
basis functions is a very good procedure, for the
Gaussian restoration kernels it is very bad.
THE KUHN-TUCKER CONDITIONS

Since simply truncating the negative Tlobes of
the output signal will not provide an optimum
solution subject to the positivity constraint, we
must search for methods that will provide us with

the optimum constrained solution to the antialiasing
problem. Note that we now are talking about some
non-linear filtering procedure that will provide wus
with the optimum sample values for some input image.
Fortunately, the structure of the aliasing problem
is such that certain key conditions are met. This
simplifies the optimization problem immensely and
gives us a relatively straightforward way to solve
the problem. These conditions are the Kuhn-Tucker
conditions and the method of solution is known as
the method of feasable directions.

To optimize a nonlinear functional
inequality constraints is, in general, a very
difficult task. If the functional and its
constraints satisfy the following assumptions then
we may apply the Kuhn-Tucker theorems for inequality
constrained mathematical programming problems. The
Kuhn-Tucker conditions are:

(i)

subject to

The functional is convex. That is if
x; and x{ (i=0,1,...,n-1) are two
points in the solution space, then

TFlotre + (-0 € o T(xg) + (1-) J (%) 0t

the functional 1les
line joining any two of its
See Figure 12.

In other words,

below a

values.
(ii) The feasible set, i.e. the set of
points satisfying the constraints, is
convex and has a nonempty interior.

Fortunately, both these
case at hand:

assumptions hold for the
reconstruction with Gaussian kernels

and positive weights. Its evident that the square
error metric is convex (for other visual metrics
this condition may no 1longer hold). The second

assumption 1s also satisfied. The positive cone is
obviously convex and has a generous interior.
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We now state a Kuhn-Tucker theorem.
Kuhn-Tucker Theorem, Under the conditions
mentioned above, the nonlinear programming problem

(Equation 4.1) has a minimal solution x*>0 iff there
exists A*>0 such that the Lagrangian

n-1
T(X,M = j-('xo,'-') x‘"-l) —k; 2‘(96‘(

has a saddle point at (x*,\%).

A useful interpretation of this theorem
[Collatz and Wetterling 1975]) is that at the optimum
point x*, the gradient of the functional is
perpendicular to the active constraining
hyperplanes, viz. the coordinate hyperptanes in
which x* has a zero component. If there is no

constraining active hyperpiane then the gradient
must be zero.

The Kuhn-Tucker theorem provides the basis
a humber of different optimization algorithms. One
of the simplest (and slowest) is the one we have
chosen in this work: the method of feasible
directions. In this iterative method, a point x is
updated by a vector proportional to the gradient of
the functional projected upon a subspace which
maintains the new iterate in the positive cone:

for

Namely, i+ 4
%tl::. xt—éi PV\]—
where V0 is the gradient of the functional.
P is the projection operator which
Timits
VJ to a feasible subspace, and
€i>0 is a sequence of numbers chosen to

make

the Jacobian decrease at each
iteration

(Steepest descent).

There arc several salient points about this

method
which should be mentioned.

First,

~
pd

In particular,

negative,

this method is nonlinear, e.g.

~
does not imply that C'{*"’C'F

if ¢ is chosen to make the bulk of cf
then the output will be zero.

Second, the method can in certain cases
collapse to the unconstrained case. For an input
image that lies deep in the feasible set, i.e. it

is posiltive everywhere, then one can afford the
luxury of negative lobes because the ultimate answer
will still have only positive coefficients. For an
input image on the boundary of the feasible set,
i.e. one that has many pixels set to zero, the
method will suppress negative lobes. The next
section will demonstrate how these constraints
control ringing.

5. RESULTS

The above
DECSYSTEM-20 for

algorithm was programmed on a
both the one and two dimensional
cases. For the input +images we hand digitized
characters on either a 1x100 or 100%100 grid. The
decimation ratio was set to 100:16 or 6.25. The
coefficients were then reconstructed with artificial
Gaussian distributions of known variances.

12

Results for the one dimensional case are as
follows: An impulse response centered on a sample
value gives the identical answer as the triangular
kernel interpolant, a single Gaussian spot. Also
shown is the unconstrained optimum for a box, which
appears in Figure 13 as a ringing sinc-1ike
function.

Figure 14 shows the effect of constraints
the negative 1lobes of a step response.
suppression occurs for not only the
sidelobes but also for the residual
sidelobes. We still have ringing on the

upon
Note that
negative
positive
positive

portions of the step, hewever. These can be removed
by a rangc constraint: if we know that the -images
have values DbLetween 0 and 1 (as do many graphic
objects) then constraining the x; to 0<x3;<1, gives

the reconstruction shown in Figure 15. Finally the
response of the algorithm to a chirp signal is shown
for comparison with the triangular case.

For the two dimensional case, we reconstructed
several characters with an artificial Gaussian spot.
Rather than reconstruct with the natural electron

beam spot on the CRT we chose to reconstruct with a
much larger simulated spot. Ve did this for several
reasons.

First, the pictures
analyze for artifacts.

were easier to

Second, at the time of writing we had
as yet not measured the variance of the
spot on the screen.

Third, the image display available to
us had only 4 bits per pixel both for the
memory and the colormap. Additionally,

the gamma of the display system was not
adequately compensated for (this was a
display intended for VLSI design aids).
It is well known that for anti-aliasing
experiments proper gamma correction is
crucial [Crow 1975]. Rather than 1lose

precious bits by trying to gamma correct
in the color map (remember we only have 16

levels in and out) we decided to
reconstruct with large spots, gamma
correct with high precision inside the
computer and dither down to four bits,

trading spatial resolution for gray scale
resolution.

Figures 16-18 show the results of the algorithm

compared with the original and the triangular filter
reconstruction.

6. FUTURE WORK

We see many ways to continue this work.

We have not

addressed at all the important
problem of overlapping images. At present the
expedient we use 1is to place each character in

framecs that does not overlap. If we were to allow
over lapping frames then we would be aliowing more
pixels per character to yield a higher effective
output resolution. There are dangers 1in allowing
overlapping images, however. Because characters
almost never occlude one another in the text case
there 1is usually no danger when one is performing
linear processing: one simply adds the resulting
images. In the case of our nonlinear processing the
situation is more delicate. A careful analysis has
yet to be done.
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The foremost
inclusion of
squares metric.
discussion that
is quite far
reconstruction
features of the

task yet to be done is the
a better visual metric than the least
It will be clear from the following
a minimum mean square reconstruction
from optimum compared with a
which takes into account certain key
human visual system.
THE SINGLE CHANNEL MODEL
The simplest model of the visual system is
so-called Lateral Inhibition
the single channel model).
the following equation

the
model (also known as
The model 1is given by

2

(61) Eorpr = mh(z)* (dog f£)-og f(é))lzdi

Where f(g) 1is
reconstrutted
lateral

the input 1image, ?(E) is the
image and h(E) is a PSF known as the
inhibition kernel (or Ratliff kernetl).
Thus, 1in  this model, each of the individual images
to be compared undergoes a Togarithmic point
transfTormation after which the difference 1is
filtered and then summed in a mean square procedure.

The frequency response corresponding to h(E) is
shown in Figure 19 where the peak of the response
curve is at about 3 cy/deg [Cornsweet 1971].

Let us analyze this image metric a bit. Recall

that the Parseval theorem relates mean square error
in the spatial domain to that in the frequency
domain [Rudin 1966]:

[Tpe-gisnas = Irr-Geolde
- -0

Applying this formula to the expression for the

visual model response we obtain (via the convolution
theorem)

e = [T Loty @ [ ol

where H(®) is the Fourier transform of h(E), F,(w)
and Fz(w) are the Fourier transforms of log fy and
log 1h . Note that 1in this form the response is just
a classical weighted 1least square error metric
between the logs of the images. From the MTF of the
visual system (Figure 19) we see that this weighting
favors the high frequencies much more than the low
frequencies.

There are two essential features that cause the
optimum image reconstruction for the ordinary least
square metric and for the lateral inhibition model
metric to differ significantly. The first concerns
the relative importance given to errors at different

luminance levels and the second concerns the
relative importance given to errors at different
spatial frequencies.

The 1logarithmic point transformation, which
forms the

nonlinearity in the initial stage of the
model, implements Weber's law:

_ AL
=T

where AI 1is the just noticeable difference in
luminance and I is the average luminance. This law
holds over a range of intensities that easily
encompasses the range encountered in graphics and
text display. It has been found that ka.02. The
precise form for the function implementing Weber's
law is in dispute. However, all proposed functions
are reasonably close to the Jogarithm for a range of
intensities and share most of its important
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properties--such as concavity.
states that small Tuminance
Tuminance portions of an
objectionable than those for
portions.

In words,
errors for
image are
the high

this law
the low
far more
luminance

An optimal approximator using this image mectric
will thus be more fastidious about the low luminance

portions of an image, spending more of 1its error
budget to fit the data there. Since the human
visual system is more sensitive to errors in this
portion (hence the 1logarithm in the model) images
reconstructed in this manner should compare
favorably to those of the ordinary least squares
metric in which all the errors are treated as
equals.

A second difference 1is manifested by the
frequency weighting which appears in Equation 6.1.
Here the model correctly predicts that we are by far
more sensitive to high spatial freguency errors. It
is this increased sensitivity at high frequencies
that makes the artifacts of fuzzy edges produced by
the triangular kernel--and the persistent ringing
produced by the unconstrained linear least squares
approximant--so objectionable. Both artifacts are
high frequency effects whose effect is enhanced by
our visual system. Using the Jlateral inhibition
metric will result in improved image sharpness and
tower ringing at the expense of of higher errors at
the 1low frequency portions of the 1image, which
presumably we do not see.

The methods for calculation of an optimal
approximant for such an image metric have yet to be
resolved. Introduction of the logarithmic

nonlinearity (or any other nonlinearity popular in
visual modelling) causes a 1oss of convexity for the
functional. Thus, the Kuhn-Tucker theorems may not
be applied directly. We are currently investigating
implementations which will bypass this difficulty.

MULTICHANNEL MODELS

More realistic visual models can be
for use in the optimal
Currently popular in the psychophysical 1literature
are a class of models know as multichannel models
[Graham and Nachmias 1971, Mostafavi and Sakrison
1976, Kajiya 1979]. In these models the image,
after passing through a nonlinearity, is not
filtered by a single frequency shaping network but
rather by many bandpass channels of varying
sensitivities. There is a certain amount of
controversy over the characteristics of such
channels and the mode of summation of the outputs of
such channels, but it 1is a promising possibility

considered
approximant scheme.

that L metrics rather than L metrics may be closer
to the truth. If this is the case then the door is
open for nonlinear Chebyshev techniques to be

applied to the antialiasing problem.
CONCLUSIONS

There is far more to the
than simple linear filtering. We have analyzed the
performance of the 1linear filtering approach to
antialiasing, and introduced the use of more
powerful techniques for certain critical
applications such as the display of high guality
text. Perhaps someday computational techniques will
be discovered to perform these calculations for more
general synthetic images. For naw, though, the
practical wuse of our technique is limited to images
with relatively small pixel sizes--such as the
display of text characters.

antialiasing problem
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