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FILTERING HIGH QUALITY TEXT FOR DISPLAY 
ON RASTER SCAN DEVICES 

by d. Kajiya and M. Ullner 
Computer Science Department 

Ca l i fo rn ia  I n s t i t u t e  of Technology 

Ahst ract .  Recently several invest igators have 
studied the problem of displaying tex t  characters on 
grey level  raster  scan displays. Despite arguments 
suggesting that  g r e y  l e v e l  displays are equivalent 
to very high resolut ion bitmaps, the performance of 
grey level  displays has been disappointing. This 
paper w i l l  show that  much of the problem can be 
traced to inappropriate ant ia l ias ing procedures. 
Instead of the c lassical  (sin x ) / x  f i l t e r ,  the 
s i t u a t i o n  ca l l s  For a f i l t e r  with character is t ics 
matched hath to the nature of display on CRTs and to 
the human v isual  system. We give examl)les to 
i l l u s t r a t e  the problems of the ex is t ing melhods and 
the advantages of the new methods. Although the 
techniques are described in terms of t ex t ,  the 
resu l t s  have appl icat ion to the general an t ia l ias ing 
problem--at least in theory i f  not in pract ice.  

I .  INTRODUCTION 

lhe computer age nearly destroyed qua l i t y  
p r in ted  and displayed t ex t .  Many of us remember our 
F i r s t  s ight  of the ugly, uneven impression of a high 
speed c h a i n  p r i n t e r .  At the time, i t  seemed 
i n e v i t a b l e  that  high technology would sweep more 
beau t i f u l - - and  less u t i l i ta r ian- -methods of tex t  
d i sp lay  aside for a l l  but the most premium of uses. 
Recently th is  prospect has changed. With the 
growing a v a i l a b i l i t y  of raster scan displays we have 
witnessed a technology with the capab i l i t y  of 
generat ing alphanumeric tex t  that is more than jus t  
readable but pleasant to view as wel l .  

I t  is an exc i t ing  dream of men l ike Donald 
Knuth to be able to compose loca l l y  and transmit for 
pub l i ca t ion  high qua l i t y  tex t  containing mult ip le 
fonts  and mathematical equations. This dream would 
be made more a t t r a c t i v e  i f  an author would be able 
to see the resu l t  immediately, rather than having to 
wa i t  several days for  the output of a $100,000 
machine. The ideal would be to close the loop: to 
make ava i lab le  to the author an inexpensive real 
time device able to display high performance images. 
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F u r t h e r m o r e ,  the  e f f e c t  o f  h igh  q u a l i t y  r e a l  
time displays on the a c t i v i t i e s  of computer science 
itsel.F has yet  to he accurately assessed. 
But- -as ide from the creation of the word processing 
i ndus t r y - - t he  introduct ion of expanded codes to 
include r e l a t i v e l y  mundane Features such as lower 
case characters has tremendously changed the f lavor  
i f  not the substance of programmin(t: surely none of 
us would wish i:o return to the 5-h i t  Baudot code! 
More important ly,  the astonishing power and economy 
of  computer languages and mathematical notations 
which incorporate special symbols (such as APL and 
symbolic log ic)  ce r ta in l y  has hidden lessons for the 
computer science community. 

Many researchers soon discovered that the 
problem of  d isplaying syn the t i ca l l y  generated images 
on ras te r  scan devices was a non t r i v ia l  task [Crow 
1976, a l ine  1979]. lhe so called al iasing prohlem 
was encountered due to the high frequency content of 
a r t i f i c i a l l y  synthesized images, lhese researchers 
developed methods to overcome th is  problem which can 
he viewed a l t e r n a t i v e l y  as in terpo lat ion of 
brightnesses between pixels or f i l t e r i n g  with a 
t r i a n g u l a r  convolution kernel. We shal l ,  for 
de f in i teness ,  re fer  to th is  popular scheme as 
t r i a n g u l a r  F i l t e r i n g .  

lhe F i r s t  attempts to display tex t  on raster 
scan devices used these i n t u i t i v e  f i l t e r i n g  schemes 
tha t  worked surp r i s ing ly  well in practice [Warnock 
Ig80, S e i t z ] .  I t  is the aim of th is  paper to 
analyze the performance of these schemes For the 
general image case as well as the tex t  case. We 
also propose a new method for choosing the pixel  
values which make up a synthet ic image, show some 
p re l im inary  resu l ts ,  and f i n a l l y  discuss the future 
d i r ec t i ons  tha t  th is  research may take. 

By now,  th~ a l ias ing problem for computer 
generated images is well known to a l l  in the f i e l d ,  
as arc the frequency domain in terpreta t ion of the 
phenomenon and the f i r s t  order approximation to i t s  
so lu t i on .  We wish to examine i~ deta i l  the 
performance of  th is  f i r s t  order approximation, I t  
is wel l  known that  the t r iangular  f i l t e r i n g  
a lgor i thm is cheap, fas t ,  easy to implement, and 
produces an adequate ant ia l iased image for very many 
app l i ca t ions .  There are other appl icat ions, 
however, that  require higher performance. Text is 
just such an application. Characters consist almost 
entirely of sharp edges and contain small subl)ixel 
fea tures ,  such as se r i f s .  Also, the processing of  
t e x t  can be done o r f l i ne  and the resu l t  stored in 
permanent memory. The method we present here is 
expensive, slow, and r e l a t i v e l y  hard to implement, 
but i t  produces higher qua l i t y  images than the usual 
t r i a n g u l a r  f i l t e r i n g  scheme. I t  is not now suitable 
fo r  real  time, or near real time, raster display 
app l i ca t ions .  
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I t  should be emphasized that these methods and 
analyses are appl icable--at  least in theory-- to the 
general problem of ant ia l ias ing a rb i t ra ry  images. 
We have chosen to focus on the display of text 
rather  than a rb i t r a r y  graphic objects because 
cer ta in  computational advantages accrue due to the 
small size of characters. I f  the computational 
implementations of these methods current ly were not 
economically impracticable we would be reporting on 
the general synthetic image display problem as wel l .  

2. AN ANALYSIS OF POPULAR ANTIAI_IASING SCIIEHES 
LINEAR FILTERING WITH A TRIANGULAR PSF. 

This section w i l l  analyze how well the 
t r i angu la r  f i l t e r i n g  algorithm does in removing 
a l i as i ng  whi le not otherwise d is tor t ing the picture. 
The de ta i l s  of the development are necessarily 
mathematical, but we present the key ideas here for  
those who want an overview of the section. There 
are two primary sources of error in the t r iangular 
f i l t e r i n g  scheme. ( I )  The t r iangle interpolat ion 
kernel is not an ideal low pass f i l t e r  and passes 
frequencies that are beyond the Nyquist l im i t .  
Thus, i t  is subject to al iasing. (2) The 
i n te rpo la t i on  kernel does not take into account the 
reconstruct ion kernel. That is, i t  ignores the fact  
that  p ixe ls  on the CRT display are Gaussian spots. 
The Gaussian spots are not ideal Iowpass f i l t e r s  
e i t he r  and given the usual focus sett ing the the 
frequency response of the reconstruction is far  from 
f l a t .  flow wel l  does  the usual scheme work? The 
answer depends, of course, on the nature of the 
images displayed, and the mathematics t e l l s  you how 
to ca lcu late the answer for  your image. The gist  of 
the answer, though, is that for  certain images l ike  
t.ext, there is plenty of room for  improvement. 

lhe most popular scheme for  ant ia l ias ing is to 
l i n e a r l y  f i l t e r  the input signal with some sort of  
i n t e rpo la t i on  kernel [Schafer and Rabiner 1973, 
Oetken, et .  a l .  |975]. We focus on the case of 
a r t i f i c i a l  images such as text  and computer 
generated ca l l ig raph ic  and halftone images for  
d isp lay  on raster  scan frame buffers. There is some 
controversy about the character is t ics of the optimum 
in te rpo la t i on  kernel with respect to the amount of 
r ing ing ,  and whether negative lobes are desirable 
[Gabr ie l  1977]. Many workers have sett led on a 
t r i angu la r  in terpo la t ion kernel as a simple 
compromise that gives good results in practice and 
is easy to compute [Crow 1976, Warnock 1980]. 

In the in terest  of concreteness we shall 
r e s t r i c t  the ensuing analysis to the t r iangular 
i n te rpo la t i on  case; however, the reader can readi ly  
discern that the arguments involved are quite 
general. Parts of th is  analysis are simi lar to 
those found in [P ra t t  1978]. 

The t r iangu lar  PSF is shown in Figure 1 and is 
given by the equation: 

To perform the sampling and reconstruction we 
convolve the ideal image with the interpolat ion 
kernel ,  sample with raster pitch T, and reconstruct 
by convoIving the sampled signal with the 
reconstruct ion kernel. As is well known, these 
steps are best v isual ized in the frequency domain. 

The Fourier transform of k(~), the tr iangular  
kernel ,  is K(~) as shown in Figure 2. This is 
compared wi th  the ideal Nyquist kernel of sin(F-jv"F)/{~/f~. 

The ana ly t ic  expression for  K(cO) is 

l h i s  f ig t i re  c l ea r l y  shows a possible source of 
a l i as ing  er ror  allowed by this kernel. Namely for  
an input image f (~ )  with Fourier transform F(ua) the 
roo t  mean square a l ias ing energy is given by 

D 
Now i f  F has most of i t s  energy concentrated in 

the low frequencies then the al iasing error energy 
is qui te Small since the two terms in Equation (2.1) 
are roughly the s a m e .  Unfortunately, most 
a r t i f i c i a l  images, and especial ly text ,  have a 
Four ier  spectrum that resides almost exclusively in 
the high frequency portions of signal space. To get 
some idea of the energy error involved, le t  us take 
a " l i n e  source", v iz .  a l ine of delta functions. 
This s i tua t ion  is to be met, for  example, in the 
very th in strokes of classic Roman capi ta ls ,  and in 
the diagonal strokes of a capital A for  the Bodoni 
typeface. 

In th is  case f (~ )  approaches a Dirac delta 
funct ion whose  Fourier transform, in turn, 
approaches a f l a t  spectrum. Equation (2.1) then 
gives 

f° F 
or ~-~ J-~ 

the r e l a t i v e  a l ias ing energy is roughly 

E (lJ+l'~ ( i"i'l. J 6 ) .  

To perform the sampling step in the frequency domain 
we merely rep l ica te  the signal at the sampling 
frequency. Assume we have already folded in a l l  the 
a l i as i ng  energy so that our modified signal appears 
as in Figure 3. Sampling now repl icates th is  
modif ied signal to something shown in Figure 4. Now 
we can reconstruct the signal by passing i t  through 
a reconstruct ion f i l t e r .  I f  the reconstruction 
kernel is  the Nyquist kernel, 

then the signal is a low pass f i l t e r e d  version of 
the o r i g i n a l .  However, in th is matter we are not 
f ree  to exercise a choice for  our reconstruction 
kernel ,  except fo r  a very l imited range. The 
reconstruct ion kernels avai lable to us are f ixed by 
the physics of the output devices at our disposal, 
whether they be e lec t ros ta t i c  pr in ter ,  COM devices, 
or CRT based displays. To take the most common 
example, i t  is wel l  known that the spot luminance 
d i s t r i b u t i o n  fo r  a CRT is Gaussian, the variance of 
which is set by the focusing. At the proper focus 
po in t ,  a f l a t - f i e l d  raster  just  becomes smooth, th is  
is given roughly at the point 

w h e r e  ~ i s  t h e  s t a n d a r d  d e v i a t i o n  o f  t h e  G a u s s i a n ,  
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Now, the Fourier transform of th is reconstruction 
kernel is 

Thus the Final output signal looks more l ike Figure 
5 instead of appearing as in the normal case. In 
th i s  p ic ture we can see two sources of error ar is ing 
from the mismatch of t r iangular and Gaussian kernel: 
Imaging errors and equalization errors. 

Imaging errors are produced by the leakage of 
spurious copies of the or ig ina l  signal. This is 
given by 

When the Gausslan spot Is focused properly th is 
e r ro r  is quite small. (Otherwise a f l a t  f i e l d  
wouldn' t  have appeared f l a t . )  

By fa r  the more serious error is caused by the 
mismatch between the t r iang le  and Gaussian frequency 
responses. Let us for  the-moment ignore the ef fects 
o f  a l ias ing  and imaging, say by attempting to 
d isp lay an already per fec t ly  bandlimited signal on a 
proper ly  focused display (0-=T/.66). In this case 
the overa l l  modulation transfer function, is given 
by 

l h i s  curve is plotted on a dB scale in 
Figure 6. N o t e  that for  the higher Frequencies the 
MTF is down by almost 10 (IB! Clearly, th is amount 
o f  attenuation is causing a s ign i f i cant  amount of 
sharpness loss, pa r t i cu la r l y  in the Fine features of 
high qua l i t y  fonts. 

Thtls, i f  one is constrained to use to the 
l i nea r  F i l t e r i n g  approach, a high frequency 
preemphasis is c lea r l y  called f o r - - a t  the expense of 
an increased a l ias ing error t radeof f .  

OTHER KERNELS 

Many ad hoc schemes besides l inear f i l t e r i n g  
have been proposed. Many are equivalent to l inear 
f i l t e r i n g  with t r iangular  or other kernels. These 
include proport ional weighting of the area of a 
given p ixe l  covered, trapezoidal decomposition, 
contour smoothing, and nearest neighbor schemes. 

One may wonder i f  the above remarks apply to 
a l l  in te rpo la t ion  kernels as well as the t r iang le .  
Furthermore, there are a wealth of possible 
nonl inear schemes that come to mind. One can 
imagine an Edison-type programme involving a massive 
amount of  experiment in order to converge on the 
cor rec t  so lut ion.  There is, however, a non ad hoe 
approach that is c losely related to the roots of the 
Whittaker-Shannon sampling theorem, from which the 
o r i g i n a l  frequency domain analysis is derived. 

3. OPTIMLIM LINEAR SAMPLING AND RECONSTRUCTION 

Instead of choosing an a rb i t ra ry  kernel and 
ca lc t i l a t ing  i t s  performance, in this section we 
present an approach that calculates the optimum 
l i near  an t ia l ias ing  f i l t e r  for a given output 
res to ra t i on  kernel. I t  turns out that th is method 
has a Flaw which is corrected in the next section. 
The f law is that images with negative outputs w i l l  
be generated. 

In a way, we mny think of the image sampling 
and reconstruction procedure as an function 
approximation pr'oi}lem. We are given as basis 
funct ions the Gaussian spots on a CRT. The question 
we may pose then is:  "What are the optimum weights 
to l i n e a r l y  combine the basis vectors fo r  
approximation of  the ideal signal?" 

In other words, we are free to vary the 
brightness of  each pixel spot (which is a Gaussian 
d i s t r i b u t i o n )  in order to make the reconstructed 
signal as "close" to the or ig inal  ideal image as 
possible.  In a CRT, the reconstructed image is 
given by a weighted sum of Gaus.sian bumps: 

go 

In th is  equation, x~ represents the pixel 
value, and g i (~)  represents a Gaussian d is t r ibu t ion  
centered at the i ~k p ixe l .  See Figure 7. 

Each Gaussian is a shifted version of a 
canonical bump: 

Now the question is. how do we measure the closeness 
o f  two images? Namely, given two images how do we 
assign a non-negative real number which corresponds 
to the distance between them? The choice of such a 
distance metric is a non t r i v ia l  task--a choice on 
which the ult imate visual qual i ty  of the images is 
s t rong ly  influenced. We w i l l  discuss the choice of 
other image metrics based on the human visual system 
below, but fo r  now we choose a par t icu lar  metric 
which has many pleasing analyt ic ( i f  not v isua l )  
p roper t ies ,  the mean square metric. The distance 
between two images f~, ~ is given by 

The sampling problem may now be stated thus: 

Given an input image f (~ ) ,  what are 
the op t imum pixel values x i 
minimizing the error between th~ 
o r ig ina l  image and the reconstructed 
image? That is, f ind the values 
. . . . .  x~, xo, x i . . . .  minimizing 

_ i=-~o 
Now, in pract ice,  there are only a f i n i t e  number of 
sample points to be determined, say xa, xc, . . . ,x~_ I . 
In order to minimize this functional we take i ts  
gradient and set i t  to zero. 
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This give r i se  to a system of equations 

pm ~- t  
: 

o r  

Doing a l i t t l e  algebra we obtain: 
,do gO 

i=O -re 
Now we use the iden t i t y  (2.2) to get 

~'=o 
The quant i t ies  on both sides of th is equation have 
names, 

where R~( ( i -k )T)  is the autocorrelation Function of 
the Ga(~ssian spot evaluated at the point ( i - k )T .  
The quant i ty  on the l e f t  is simply Rfa(kT) the cross 
co r re l a t i on  of f and g at kT. 7J 

Sett ing R_q((i-k)T)=alk" and R fzl(kT)=bj~ the above 
normal equations take the f am i l i a l ' f o rm 

Ax=b. 

Where A is an n n matrix called the Gram matrix and 
b is an n-dimensional column vector, where n is the 
number of  p ixe ls  in the output. The optimum pixel 
values are then given by the solution of th is system 
of  equations. 

I t  is wel l  known that the autocorrelation 
matr ix  A is of the so called symmetric Toepli tz 
form, v i z .  i t  is constant along the major 
diagonals. There ex is t  fast  methods to invert  such 
matrices [Levinson 1947, Trench 1964].  These stem 
from the fac t  that there are not rea l l y  n ~ 
independent elements but rather n. Inversion with 
the Le~inson-Trench scheme is O(n 2-) instead of the 
U s u a l  n - ~  . 

Note that in the 2-dimensional case the matrix 
is  no longer Toepli tz but rather Block Toepl i tz,  
wi th Toepl i tz  sub-blocks, thus enabling s ign i f i can t  
economies in the storage and computation of the 
so lu t ion vectors [Kaj iya 1981]. These savings can 
be qui te s ign i f i can t  since For a picture n pixels 
square, the f o l l  Gram matrix requires n ~r elements 
and take time O(n (e) time to solve, for  n=512 the 
s t ra igh t fo rward  inversion scheme is well beyond the 
c a p a b i l i t i e s  of  even the largest of computers, while 
the Levinson-Trench recursion is quite prac t ica l .  

I t  may seem that fo r  text  character fonts, much 
o f  th is  discussion is moot since characters are 
qui te small, say lOx13 pixels.  However, even  fo r  
t h i s  size, the matrices have 16900 elements, and for  
a 30~30 p ixe l  font  the f u l l  autocorrelation matrix 
requires almost a m i l l i on  entr ies! 

An important point concerns the reconstruction 
kernels.  I f  they were not Gaussians as in a CRT but 
ra ther  Nyquist kernels as in the ideal case, then 
the Sampling t h e o r e m  obtains. The Gram 
autocor re la t ion  matrix reduces to the ident i ty  due 
to the orthonormal i ty of the Nyquist kernels, and 
the cross correlation step corresponds to a perfect 
lowpass f i l t e r i n g  and sampling operation. 

Thus, the operation may be very roughly 
in terpreted as fo l lows:  

To reconstrtlct with a given waveForm, 
f i r s t  f i l t e r  by that waveform (take 
the inner product) t hen  solve the 
matrix problem with the Gram matrix 
of  autocorrelat ions. I f  the matrix 
is large we may be able to ignore 
edge e f fec ts  and consider the matrix 
simply as a convolution with the 
"Green's function" of the Gram 
operator, which serves as an 
equalizing f i l t e r  to f l a t ten  the 
response of the i n i t i a l  f i l t e r .  

Thus, the above process is a l inear process 
and, we might add ,  one that is quite fami l ia r  in 
ce r ta in  c i r c l e s .  I t  is, however, inadequate from 
several standpoints. 

The two major inadequacies are, f i r s t ,  
p o s i t i v i t y  constraints stemming from the physics of 
l i g h t  and the physics of the display devices and, 
second, the inadequacy of the least square image 
metr ic as a sui table model for  v is ion.  In the next 
section we discuss the f i r s t  of these shortcomings, 
whi le  in a la te r  section we t reat  the second. 

4. TilE POSITIVITY CONSTRAINT 

In th is  section we analyze the cause of the 
negative lobes output by the optimum l inear f i l t e r .  
We also explore methods For correcting the negative 
lobe output. I t  turns out that the obvious method 
of  t runcat ing the negative lobes at zero may or may 
not work, depending upon the form of the restorat ion 
kernel .  We analyze the c r i t e r i a  u n d e r  which 
t runcat ion works. Unfortunately, for  the case of 
i n t e r e s t ,  v i z .  Gaussian reconstruction kernels, the 
c r i t e r i a  are not met. 

Figure 8 shows the minimum mean square error 
reconstruct ion of an impulse using Gaussian 
reconstruct ion kernels. 

The r e l a t i v e  extrema represent the strongest 
con t r ibu t ions  of each individual Gaussian spot. 
This response can be couched in almost te leo log ica l  
terms as fo l lows:  

To make an impulse with a series of 
Gaussian bumps, take an i n i t i a l  bump 
and shave o f f  the sides to narrow the 
bump by subtracting a small Gaussian 
from ei ther  side. Now to compensate 
fo r  these negative lobes we add'in 
some pos i t ive  Gaussians of smaller 
proportions a l i t t l e  far ther  away, 
Now to compensate for  these postive 
lobes, . . . .  etc. 

This procedure cannot be followed i f  we have, say, a 
ser ies of potentiometers cont ro l l ing the brightness 
of  a number of Gaussian spots. This is b ecauae the 
pots cannot be turned negative. There is no way to 
make negative light--much to the Frustration of many 
workers concerned with these kind of display 
problems. Thus the display of a reconstructed image 
is  constrained to the posi t ive cone xo>O, x~>O, 
x~>O . . . .  ~.l>O. 

This puts on addit ional constraint on the 
sampling problem. A succinct statement of the 
problem is now: 

lO 
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Sampling problem (with p o s i t i v i t y ) :  

w i th  x r es t r i c t ed  to the pos i t ive cone 

How do we approach th is  problem? Well, one popular 
method has been to ignore i t  completely: simply 
solve For the unconstrained optimum reconstruction 
and set any negative values to zero. This method 
may work in certa in cases. For example, i f  the 
p i c tu re  is s u f f i c i e n t l y  br ight  everywhere, the 
negat ive lobe may never dip below zero. Whenever we 
need to truncate negative values, however, possibly 
severe inaccuracies resu l t .  Characters, l ines, and 
many other graphic objects are binary pictures with 
the lesser value being zero. Thus in graphics the 
need to truncate arises of ten. 

lhe t yp i ca l  case is i l l u s t r a ted  by the previous 
e x a m p l e ,  v i z .  samp l ing  an impu lse .  S imp ly  
t r u n c a t i n g  the  n e g a t i v e  lobes leaves  a c u r i o u s  
" r i n g i n g "  p a t t e r n  around the  impulse ( F i g u r e  9 ) .  
The r i n g i n g  p a t t e r n  in no way c o n t r i b u t e s  to  the  
m i n i m i z a t i o n  o f  t he  mean square  m e t r i c ,  s i nce  t h e i r  
pr in¢ipal  Function was to compensate for the 
negat ive lobes. Sett ing the posi t ive sidelobes to 
zero also happens to be very close to the minimum 
mean square error p ic ture:  a single Gaussian bump. 

Geometrically, the s i tuat ion may be visual ized 
as in Figure 10. We have suppressed a l l  dimensions 
except two and drawn contour lines for error .  The 
actual  optimum can be seen to be at point A in which 
xc£>O but x~<O. Sett ing x~_=O projects the point A 
onto B, a point  which sa t is f ies  the constraints but 
which i s n ' t  very close to the true constrained 
minimum given by point C. 

How badly do we do by set t ing co-ordinates to 
zero? That depends on the eccent r ic i t y  of the 
e11ipse and the angles that the major axis of the 
e l l i p s e  forms with the co-ordinate axes. With a 
near ly  round e l l i pse ,  one whose major and minor axes 
are very  near ly equal in length, one comes very 
close indeed to the to the optimum, when one sets 
the of fending co-ordinates to zero (Figure 11). In 
the case of reconstruct ing say a I0X13 pixel  
character we are confronted with a 130 dimensional 
e l l i p s o i d .  The e l l i pso id  is formed from the level 
surfaces of  the mean square error funct ional .  To 
f i nd  i t s  eccen t r i c i t y  we merely f ind the ra t i o  of 
the largest  to the smallest of the eigenvalues of 
the Hessian of the (quadratic) error funct ional ,  
i . e .  the matr ix of second order par t ia l  der ivat ives 

This is none other than our old f r iend the Gram 
au tocor re la t ion  matr ix.  Thus we f ind that the set 
o f  eigenvalues, and hence the eccent r i c i t y  of the 
e l l i p s o i d ,  depends on the reconstruction kernel. 

Now, for  an erthonormal reconstruction kernel, 
such as the Nyquist kernel, the Hessian is the 
i d e n t i t y  matr ix .  Hence, the eigenvalues are a l l  
u n i t y  and the e l l i pso id  is per fec t ly  round. 
Therefore, simply set t ing the offending co-ordinates 
to zero ~ives the constrained optim.um exact, l),. 

We do not have Nyquist kernels at our disposal, 
however, but rather Gaussians--which are decidedly 
not orthonormal. I t  turns out that f inding the 
eigenvalues and eigenvectors of the Gram 
au tocor re la t ion  matrix is a well-known procedure 
ca l led  the Karhunen-Loeve transformation. Speaking 
very  loosely,  the eigenvalues correspond to the 
values of  the Power spectral density, v i z .  the 
square of  the Fourier transform magnitude of the 
au tocor re la t ion  Function. But the autocorrelat ion 
o f  a Gaussian d i s t r i bu t i on  is again a Gaussian with 
double the standard deviat ion,  and i t ' s  well known 
tha t  the Fourier transform of a Gaussian is also a 
Gaussian. Thus, there is a tremendous range in the 
magnitude of  the eigenvalues encountered, the values 
being governed by an exponential of a term 
propor t iona l  to the square of the abcissa. In other 
words For a Gaussian d i s t r i bu t i on  the e l l i pso id  is 
very  eccent r ic .  Furthermore, the angle of 
i n c l i n a t i o n  of the e l l i pso id  with respect to the 
co-ord inate hyperplanes (xi=O) is given by d i rect ion 
cosines that  correspond to the inner product of a 
Gaussian with the Karhunen-Loeve eigenvectors. 
These eigenvectors are very roughly sinusoids. 
These d i rec t i on  cosines, at least For the largest 
eigenvalues, are roughly equal, so the e l l i pso id  is 
p i tched at an angle of about 45°--the worst case. 

To sum up the discussion so Far: While set t ing 
the negative coordinates to zero For orthonormal 
basis Functions is a very good procedure, For the 
Gaussian res to ra t ion  kernels i t  is very bad. 

TIIE KUIIN-TUCKER CONDITIONS 

Since simply truncat ing the negative lobes of 
ti le output signal w i l l  not provide an optimum 
so lu t ion  subject to the p o s i t i v i t y  constraint ,  we 
must search for  methods that w i l l  provide us with 
the optimum constrained solut ion to the ant ia l ias ing 
problem, Note that we now are ta lk ing about some 
non- l inear  f i l t e r i n g  procedure that w i l l  provide us 
wi th  the optimum sample values For some input image. 
For tuna te ly ,  the structure of the al iasing problem 
is such that  cer ta in key conditions are met. This 
s i m p l i f i e s  the opt imizat ion problem immensely and 
gives us a r e l a t i v e l y  straightforward way to solve 
the problem. These condit ions are the Kuhn-Tucker 
condi t ions and the method of solution is known as 
the method of feasable d i rect ions.  

To optimize a nonlinear funct ional subject to 
i n e q u a l i t y  constra ints is, in general, a very 
d i f f i c u l t  task. I f  the Functional and i t s  
cons t ra in ts  sa t i s f y  the fol lowing assumptions then 
we may apply the Kuhn-Tucker theorems for inequal i ty  
constrained mathematical programming problems. The 
Kuhn-Tucker condit ions are: 

( i )  The funct ional  is convex. That is i f  
x~ and x~ ( i =0 , I  . . . .  , n - l )  are two 
points in the solut ion sp@ce, then 

In other words, the funct ional l les 
below a l ine jo in ing any two of i t s  
values. See Figure 12. 

( i i )  The feasib le set, i . e .  the set of 
points sa t i s fy ing  the constraints, is 
convex and has a nonempty i n t e r i o r .  

For tuna te ly ,  both these assumptions hold for the 
case at hand: reconstruction with Gaussian kernels 
and pos i t i ve  weights. I t s  evident that the square 
e r ro r  metric is convex ( fo r  other visual metrics 
t h i s  condi t ion may no longer hold). The second 
assumption is also sa t i s f i ed .  The pos i t ive  cone is 
obv ious ly  convex and has a generous i n t e r i o r .  
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We now state a Kuhn-Tucker theorem. 

Knhn-Tucker Theorem. Under the conditions 
mentioned above, the nonlinear programming problem 
(Equation 4.1) has a minimal soll l t ion x*>O i f f  there 
ex i s t s  ~,*>0 such that the Lagrangian 

~=0 
has a saddle point at (x*,~,*). 

A useful in terpretat ion of th is theorem 
[Co l l a t z  and Wetterl ing 1975] is that at the optimum 
point  x*, the gradient of the functional is 
perpendicular to the active constraining 
hyperplanes, v iz .  the coordinate hyperplanes in 
which x* has a zero component. I f  there is no 
constra in ing act ive hyperplane t hen  the gradient 
must be zero. 

The Kuhn-Tncker theorem provides the basis for  
a number of d i f f e r e n t  optimization algorithms. One 
of  the simplest (and slowest) is the one we have 
chosen in th is  work: the method of feasible 
d i r ec t i ons .  In th is  i t e r a t i v e  method, a point x ~ is 
updated by a vector proportional to the gradient of 
the funct ional  projected upon a subspace which 
maintains the new i te ra te  in the posi t ive cone: 

Namely, 
% : -6~  

where ~J 
P 

l i m i t s  

~ > 0  
make 

is the gradient of the funct ional .  
is the projection operator which 

~J to a feasible subspace, and 
is a sequence of numbers chosen to 

the Jacobian decrease at each 
i t e r a t i o n  

(Steepest descent). 

There are several sa l ient  points about th is method 
which should be mentioned. 

F i r s t ,  th is  method is nonlinear, e.g. 

In p a r t i c u l a r ,  i f  c is chosen to make the bulk of cf  
negative, then the output w i l l  be zero. 

Second, the method can in certain cases 
col lapse to the unconstrained case. For an input 
image that l i es  deep in the feasible set, i .e .  i t  
is pos i t i ve  everywhere, then one can af ford the 
luxury of negative lobes because the ultimate answer 
w i l l  s t i l l  have only posi t ive coef f i c ien ts .  For an 
input image on the boundary of the feasible set, 
i . e .  one that has many pixels set to zero, the 
method w i l l  suppress negative lobes. The next 
section w i l l  demonstrate how these constraints 
cont ro l  r ing ing.  

5.  RESULTS 

The a b o v e  a l g o r i t h m  was p rog rammed on a 
DECSYSTEM-20 f o r  b o t h  t h e  one and two d i m e n s i o n a l  
cases. For the input images we hand d ig i t i zed 
characters on e i ther  a IxIDO or I00XI00 gr id.  The 
decimation r a t i o  was set to 100:16 or 6.25. The 
c o e f f i c i e n t s  were then reconstructed with a r t i f i c i a l  
Gaussian d i s t r i bu t i ons  of known variances. 

Results fo r  the one dimensional case  are as 
fo l l ows :  An impulse response centered on a sample 
value gives the ident ical  answer as the t r iangular 
kernel in terpo lant ,  a single Gaussian spot. Also 
shown is the unconstrained optimLJm for  a box, which 
appears in Figure 13 as a ringing s inc - l i ke  
funct ion.  

Figure 14 shows the e f fec t  of constraints upon 
the negative lobes of a step response. Note that 
suppression occurs fo r  not only the negative 
sidelobes but also for  the residual posi t ive 
sidelobes. We s t i l l  have ringing on the posi t ive 
por t ions of the step, however. These can be removed 
by a ran~)o constra int :  i f  we know that the images 
have values between 0 and 1 (as do many graphic 
objects)  then constraining the x~ to O<xL<1, gives 
the reconstruct ion shown in Figure ]5. F ina l l y  the 
response of the algorithm to a chirp signal is shown 
f o r  comparison with the t r iangular case. 

For the two dimensional case, we reconstructed 
several characters with an a r t i f i c i a l  Gaussian spot. 
Rather than reconstruct with the natural electron 
beam spot on the CRT we chose to reconstruct with a 
much larger simulated spot. We did th is fo r  several 
reasons. 

F i r s t ,  the pictures were easier to 
analyze for  a r t i f a c t s .  

Second, at the time of wr i t ing  we had 
as yet not measured the variance of the 
spot on the screen. 

Third, the image display avai lable to 
us had only 4 b i ts  per pixel both for  the 
memory and the colormap. Addi t ional ly ,  
the gamma of the display system was not 
adequately compensated for  ( th is  was a 
display intended for  VLSI design aids). 
I t  is wel l  known that for  an t i -a l ias ing  
experiments proper gamma correction is 
c ruc ia l  [Crow 1975]. Rather than lose 
precious b i t s  by t ry ing to gamma correct 
in tile color map (remember we only have 16 
leve ls  in and out) we decided to 
reconstruct with large spots, gamma 
correct  with high precision inside the 
computer and di ther down. to four b i ts ,  
t rading spat ia l  resolution for  gray scale 
reso lu t ion .  

Figures 16-18 show the results of the algorithm 
compared with the or ig ina l  and the t r iangular f i l t e r  
reconst ruct ion.  

6. FUTURE WORK 

We see many ways to continue this work. 

We have not addressed at a l l  the important 
problem of  overlapping images. At present the 
expedient we use is to place each character In 
frambs that does not overlap. I f  we were to al low 
overlapping frames then we would be allowing more 
pi×eIs per character to y ie ld  a higher e f fec t i ve  
output reso lu t ion .  There are dangers in allowing 
overlapping images, however. Because characters 
almost never occlude one another in the text  case 
there is ust ial ly no danger when one is performing 
l i nea r  processing: one simply adds the resul t ing 
images. In the case of our nonlinear processing the 
s i t u a t i o n  is more d e l i c a t e .  A careful analysis has 
yet  to be done. 
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The foremost task yet to be done is the 
inc lus ion of a bet ter  visual metric than the least 
squares metr ic.  I t  w i l l  be clear from the fol lowing 
discussion that  a minimum mean square reconstruction 
is qu i te  far from opt imum compared with a 
reconst ruc t ion which takes into account certain key 
features of  the human visual system. 

TIIIT SINGLE CHANNEL MODEL 

The simplest model of the visual system is the 
so-ca l led Lateral I nh ib i t i on  model (also known as 
the s ingle channel model). The model is given by 
the fo l lowing equation 

Where f (~)  is the input image, ~(~) is the 
reconstrncted ~ image and h(~) is a PSF known as the 
l a t e ra l  i nh i h i t i on  kernel (or Rat l iF f  kernel) .  
Thus, in th is  model, each of the indiv idual images 
to be compared undergoes a logarithmic point 
t ransformat ion a f te r  which the dif ference is 
f i l t e r e d  and then summed in a mean square procedure. 
The frequency response corresponding to h(~) is 
shown in Figure Ig where the peak of the response 
curve is at about 3 cy/deg [Cornsweet 1971]. 

Let us analyze th is  image metric a b i t .  Recall 
tha t  tile Parseval theorem relates mean square error 
in the spat ia l  domain to that in the frequency 
domain [Rudin 1966]: 

o9 
~0 

A p p l y i n g  t h i s  f o rmu la  to  the exp ress ion  f o r  the  
v i s u a l  model response we o b t a i n  ( v i a  the c o n v o l u t i o n  
t h e o r e m )  

where H(~) is the Fourier transform of h(~), ~i (~) 
and ~2_ ((~) are the Fourier transforms of log fl and 
log f~- .  Note that  in th is  form the response is jus t  
a c l a s s i c a l  we igh ted  l e a s t  square e r r o r  m e t r i c  
between the logs  o f  the images. From the HTF o f  the 
v i s u a l  system ( F i g u r e  ]9 )  we see t h a t  t h i s  w e i g h t i n g  
f a v o r s  the h igh f r e q u e n c i e s  much more than the low 
f r e q u e n c i e s .  

There a re  two e s s e n t i a l  f e a t u r e s  t h a t  cause the 
opt imum image r e c o n s t r u c t i o n  f o r  ti~e o r d i n a r y  l e a s t  
squa re  m e t r i c  and f o r  the l a t e r a l  i n h i b i t i o n  model 
m e t r i c  to  d i f f e r  s i g n i f i c a n t l y .  The f i r s t  concerns 
the  r e l a t i v e  impor tance  g iven to  e r r o r s  a t  d i f f e r e n t  
l um inance  l e v e l s  and the second concerns the 
r e l a t i v e  impor tance  g iven  to  e r r o r s  a t  d i f f e r e n t  
s p a t i a l  f r e q u e n c i e s .  

The l o g a r i t h m i c  p o i n t  t r a n s f o r m a t i o n ,  which 
f o r m s  t i l e  n o n l i n e a r i t y  in  the i n i t i a l  s tage o f  the 
model , ,  imp lements  Weber 's law:  

E__AZ 

where A I  is the jus t  noticeable di f ference in 
luminance and I is the average luminance. This law 
holds over a range of in tens i t ies  that easi ly  
encompasses the range encountered in graphics and 
t e x t  d isp lay .  I t  has been found that k~.02. The 
precise form for the function implementing Weber's 
law is in dispute. However, a l l  proposed functions 
are reasonably close to the logarithm for a range of 
i n t e n s i t i e s  and share most of i t s  important 

proper t ies- -such as concavity. In words, th is  law 
s t a t e s  t h a t  sma l l  luminance e r r o r s  f o r  the low 
l um inance  p o r t i o n s  o f  an image are f a r  more 
o b j e c t i o n a b l e  than those f o r  the h igh luminance 
p o r t i o n s .  

An o p t i m a l  a p p r o x i m a t o r  us ing t h i s  image m e t r i c  
w i l ]  thus  be more f a s t i d i o u s  about the low luminance 
p o r t i o n s  o f  an image, spending more o f  i t s  e r r o r  
budget to f i t  the data there. Since the human 
v isua l  system is more sensi t ive to errors in th is  
por t ion  (hence the logarithm in the model) images 
reconstructed in th is  manner should compare 
favorab ly  to those of the ordinary least squares 
metr ic in which a l l  the errors are treated as 
e q u a l s .  

A second d i f f e r e n c e  i s  man i f es ted  by the 
f r e q u e n c y  w e i g h t i n g  which appears in Equat ion 6 .1 .  
Here the  model c o r r e c t l y  p r e d i c t s  t h a t  we are by f a r  
more s e n s i t i v e  to  h igh s p a t i a l  f r equency  e r r o r s .  I t  
i s  t h i s  i n c r e a s e d  s e n s i t i v i t y  a t  h igh f r e q u e n c i e s  
t h a t  makes the a r t i f a c t s  o f  f u z z y  edges produced by 
t he  t r i a n g u l a r  k e r n e l - - a n d  the p e r s i s t e n t  r i n g i n g  
p roduced  by the u n c o n s t r a i n e d  l i n e a r  l e a s t  squares 
a p p r o x i m a n t - - s o  o b j e c t i o n a b l e .  Both a r t i f a c t s  are  
h i gh  f r e q u e n c y  e f f e c t s  whose e f f e c t  i s  enhanced by 
ou r  v i s u a l  sys tem.  Using the l a t e r a l  i n h i b i t i o n  
m e t r i c  w i l l  r e s u l t  in improved image sharpness and 
l o w e r  r i n g i n g  a t  the expense or  o f  h ighe r  e r r o r s  a t  
t he  low f r e q u e n c y  p o r t i o n s  o f  the image, which 
p r e s u m a b l y  we do not  see. 

The methods For c a l c n l a t i o n  o f  an op t ima l  
a p p r o x i m a n t  f o r  such an image m e t r i c  have y e t  to  be 
resolved.  Int roduct ion of the logarithmic 
n o n l i n e a r i t y  (or any other non l inear i ty  popular in 
v isua l  modell ing) causes a loss of convexity for the 
f u n c t i o n a l .  Thus ,  the Kuhn-Tucker theorems may not 
be appl ied d i r e c t l y .  We are current ly  invest igat ing 
implementations which w i l l  bypass th is  d i f f i c u l t y .  

HULTICHANNEL MODELS 

More r e a l i s t i c  visual models can be considered 
f o r  use in the op t ima l  approx imant  scheme. 
C u r r e n t l y  p o p u l a r  in  the psychophys i ca l  l i t e r a t u r e  
a r e  a c l a s s  o f  models know as m u l t i c h a n n e l  models 
[Graham and Nachmias 1971, H o s t a f a v i  and Sak r i son  
1976, Kaj iya 1979]. In these models the image, 
a f t e r  p a s s i n g  th rough  a n o n l i n e a r i t y ,  i s  not  
f i l t e r e d  by a s i n g l e  f r equency  shaping ne twork  but  
r a t h e r  by many bandpass channels  o f  v a r y i n g  
s e n s i t i v i t i e s .  There is  a c e r t a i n  amount o f  
c o n t r o v e r s y  ove r  the c h a r a c t e r i s t i c s  o f  such 
c h a n n e l s  and the mode o f  summation o f  the ou tpu ts  o f  
such c h a n n e l s ,  but  i t  i s  a p romis ing  p o s s i b i l i t y  
t h a t  L m e t r i c s  r a t h e r  than L m e t r i c s  may be c l o s e r  
t o  the  t r u t h .  I f  t h i s  i s  the case then the door i s  
open f o r  n o n l i n e a r  Chebyshev techn iques  to  be 
a p p l i e d  to  the  a n t i a l i a s i n g  prob lem.  

CONCLUSIONS 

There  i s  f a r  more to  the a n t i a l i a s i n g  problem 
than  s i m p l e  l i n e a r  f i l t e r i n g .  We have ana lyzed  the 
p e r f o r m a n c e  o f  the l i n e a r  F i l t e r i n g  approach to  
a n t i a l i a s i n g ,  and i n t r o d u c e d  the use o f  more 
p o w e r f u l  t e c h n i q u e s  f o r  c e r t a i n  c r i t i c a l  
a p p l i c a t i o n s  such as the d i s p l a y  o f  h igh q u a l i t y  
t e x t .  Perhaps someday compu ta t i ona l  techn iques  w i l l  
be d i s c o v e r e d  to  pe r f o rm  these c a l c u l a t i o n s  f o r  more 
g e n e r a l  s y n t h e t i c  images. For now, though, the 
p r a c t i c a l  use o f  our techn ique  i s  l i m i t e d  to  images 
wi th  r e l a t i v e l y  small p ixel  sizes--such as the 
d isp lay  of t ex t  characters.  
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