
A Lattice-Preserving Multigrid Method for Solving the

Inhomogeneous Poisson Equations used in Image

Analysis

Leo Grady

Siemens Corporate Research

Department of Imaging and Visualization

755 College Road East

Princeton, NJ 08540

Abstract. The inhomogeneous Poisson (Laplace) equation with internal Dirich-

let boundary conditions has recently appeared in several applications ranging

from image segmentation [1–3] to image colorization [4], digital photo matting

[5, 6] and image filtering [7, 8]. In addition, the problem we address may also be

considered as the generalized eigenvector problem associated with Normalized

Cuts [9], the linearized anisotropic diffusion problem [10, 11, 8] solved with a

backward Euler method, visual surface reconstruction with discontinuities [12,

13] or optical flow [14]. Although these approaches have demonstrated qual-

ity results, the computational burden of finding a solution requires an efficient

solver. Design of an efficient multigrid solver is difficult for these problems due

to unpredictable inhomogeneity in the equation coefficients and internal Dirichlet

boundary conditions with unpredictable location and value. Previous approaches

to multigrid solvers have typically employed either a data-driven operator (with

fast convergence) or the maintenance of a lattice structure at coarse levels (with

low memory overhead). In addition to memory efficiency, a lattice structure at

coarse levels is also essential to taking advantage of the power of a GPU imple-

mentation [15, 16, 5, 3]. In this work, we present a multigrid method that main-

tains the low memory overhead (and GPU suitability) associated with a regular

lattice while benefiting from the fast convergence of a data-driven coarse opera-

tor.

1 Introduction

The inhomogeneous Poisson (Laplace) equation with internal Dirichlet boundary con-

ditions has recently appeared in several applications ranging from image segmentation

[1–3] to image colorization [4], digital photo matting [5, 6] and image filtering [7]. In

addition, the problem we address may also be considered as the generalized eigenvec-

tor problem associated with Normalized Cuts [9], the linearized anisotropic diffusion

problem [10, 11, 8] solved with a backward Euler method, visual surface reconstruc-

tion with discontinuities [12, 13] or optical flow [14]. Although these approaches have

demonstrated quality results, the computational burden of finding a solution on high-

resolution 2D or 3D images demands an efficient solver that is not currently available

in the literature.

2 L. Grady

Although some of these algorithms are framed in a general graph setting, they have

been almost exclusively employed in a rectilinear coordinate system that results in the

use of a (widely) banded Laplacian matrix. Despite the banded structure of the matrix

representing the discrete Laplacian operator on a grid, traditional fast Laplace/Poisson

solvers are inappropriate due to the inhomogeneity of the diffusion constants (i.e., edge

weights, in a graph context). These diffusion constants can vary by many orders of mag-

nitude at neighboring pixels if, for example, a high-contrast image gradient is nearby.

Unfortunately, the inhomogeneity of the diffusion constants is a very important feature

of the behavior of anisotropic diffusion and related algorithms that cannot be eliminated

for the sake of numerical efficiency. The solution of Poisson equations on domains with

uniform diffusion constants may be performed quite efficiently (e.g., [17]).

Multigrid approaches are widely considered to be the best methods for solving a

Poisson equation in a homogeneous domain, resulting in linear time algorithms [18–

20]. Traditional multigrid approaches to solving the Poisson equation fall into two

broad categories: Geometric and Algebraic. Classic geometric multigrid algorithms ap-

ply when the matrix represents a known grid, using bilinear interpolation to project the

coarse-level solutions. Unfortunately, bilinear interpolation causes smoothing of coarse

solutions across object boundaries (represented by small diffusion constants) in an im-

age, causing a poor convergence rate. In contrast, algebraic multigrid [21, 22] uses the

diffusion constants to generate problem-specific interpolation operators and coarsened

matrices. Unfortunately, the coarsened matrices produced via algebraic multigrid are

not guaranteed to represent a banded (lattice) sparsity structure. Note that some work

has been addressed at finding matrix-dependent geometric multigrid methods (see [20]

and references therein). For high-resolution images or 3D volumes in which each pixel

corresponds to one equation, the banded structure of the Laplacian matrix offers signifi-

cant storage and processing savings. Similarly, coarsening strategies have been explored

in the past for graph-based algorithms (specifically, Markov Random Fields), but the ex-

plosion of non-local connectivity at high levels has made these approaches unworkable

for high-resolution images/volumes (e.g., [23, 24]).

Both multiresolution methods (e.g., [25]) and multigrid numerical schemes have a

long history in computer vision. Since at least as early as the work of Terzopoulos [26,

27], multigrid methods have been employed in computer vision in the context of visual

surface reconstruction, shape-from-shading and optical flow. These early techniques

employed the injection restriction operator and bilinear interpolation prolongation op-

erator common to geometric multigrid methods. Although these operators are efficient

and straightforward to implement, the convergence time for problems with strongly

varying diffusion constants can be slower than necessary because bilinear interpolation

smoothes the coarse-level solution over discontinuities (e.g., object boundaries in an

image). Additionally, these restriction/prolongation operators are not adjoint to each

other, which violates the Galerkin construction that is known theoretically to produce

fast convergence [19]. Acton [28] applied similar multigrid operators to the anisotropic

diffusion problem. Later work by Terzopoulos (and Szeliski) extended these ideas to

handle discontinuities in surface reconstruction [12] and produce a parallel multigrid

algorithm [13]. The technique for addressing discontinuities employed the concept of

molecular inhibition across nodal discontinuities. Although similar in spirit to the multi-

Lattice-Preserving Multigrid 3

grid technique presented here, these nodal molecules did not guarantee a lattice struc-

ture at coarse levels.

The anisotropy of the optical flow problem has prompted investigations into data

(matrix) driven multigrid operators. Ghosal and Vanĕk [14] proposed using a smoothed

aggregate restriction/prolongation operator inspired by the algebraic multigrid concept

introduced by Ruge of strongly coupled nodes [29]. Although similar to the technique

that we present here in the sense that a data-driven aggregation operator is proposed, an

important difference between our work and [14] is that their aggregation technique will

not preserve a lattice structure at coarse levels. Additionally, our method is parameter-

free. Algebraic multigrid techniques have also been applied in computer vision by Kim-

mel and Yavneh [30], using a more traditional algebraic multigrid approach for design-

ing prolongation/restriction operators. However, as above, our method has the important

distinction from this work that we preserve the lattice structure at each coarse level and

employ no parameters for the construction of the prolongation/restriction operators.

In this work, we introduce the Maximally Connected Neighbor coarsening operator

which both uses data-driven operators to produce fast multigrid convergence and pre-

serves the memory-efficient lattice structure at higher levels. In Section 2, we describe

the Maximally Connected Neighbor multigrid method and show that the coarse-level

operators maintain the interpretation as the (inhomogeneous) Laplacian matrix of a

grid. In Section 3 we compare the performance of our multigrid method with precondi-

tioned conjugate gradients and the multigrid method of [31]. We finalize conclusions in

Section 4.

2 Method

The Poisson equation that we consider will be written using graph notation due to the

graph formulation of many of the algorithms in question. Despite this graph formula-

tion, it is important to recognize that the “graph formulation” on a lattice is equivalent

to a finite differences discretization of the continuous Poisson equation on a square

domain with Neumann boundary conditions on the borders of the image.

We begin by fixing our notation for a graph. A graph consists of a pair G = (V,E)
with vertices (nodes) v ∈ V and edges e ∈ E ⊆ V × V . An edge, e, spanning two

vertices, vi and vj , is denoted by eij . A weighted graph assigns a value to each edge

called a weight. The weight of an edge, eij , is denoted by w(eij) or wij . The degree

of a vertex is di =
∑

w(eij) for all edges eij incident on vi. The following will also

assume that our graph is connected and undirected (i.e., wij = wji). In the language of

continuous PDEs, the edge weights may be identified with diffusion constants, which

are assumed here to have arbitrary positive values, i.e., wij > 0. The graphs considered

in this paper will be taken to represent a Cartesian lattice in which every pixel (voxel)

is uniquely identified with a node and each node is connected via an edge to each of

its neighboring nodes with either a 4-connected or 8-connected structure in 2D or a

6-connected or 26-connected structure in 3D.

4 L. Grady

2.1 Problem formulation

In the greatest generality, we will consider finding a solution to the equation

(T + L) x = f, (1)

in which x is the desired solution (assigning one value to each node), f is an arbitrary

function (assigning one value to each node), T is a diagonal matrix with an arbitrary

nonnegative function on the diagonal, t = diag (T), and L represents the Laplacian

matrix defined as

Lij =











di if i = j,

−wij if vi and vj are adjacent nodes,

0 otherwise,

(2)

where Lij is indexed by vertices vi and vj . Additionally, we would like to permit a set of

internal Dirichlet boundary conditions at a set of nodes VB ⊆ V for which the solution

of xi, vi ∈ VB is prescribed by function xi = hi if vi ∈ VB . These internal boundary

conditions occur frequently in the applications we consider such as segmentation [1–

3], colorization [4], matting [5, 6] and filtering [7]. Note that (1) represents a discrete

Poisson equation if T = 0 and a discrete Laplace equation if f = 0. In the following

sections we will employ the notational convenience of G = (T + L).
Although we motivate this work in terms of a linear system solver, note also that (1)

may be viewed as applying to generalized eigenvector problems of the form

Lx = λTx, (3)

in which λ represents an eigenvalue and f = 0. Problems of the form in (3) have been

studied extensively with respect to the Normalized Cuts algorithm [9].

In the various imaging applications mentioned above the edge weights (diffusion

constants) are used to encode the image structure. This is a common feature of graph

based algorithms for image analysis and several weighting functions are commonly

used in the literature [9, 32, 33]. Although this paper is concerned with solving linear

systems of the form in (1) with arbitrary positive weights, an example of a very common

weighting function is the Gaussian weighting given by

wij = exp (−β(gi − gj)
2), (4)

where gi indicates the image intensity at pixel i and β represents a free parameter.

2.2 Incorporation of the Dirichlet boundary conditions

Since we are primarily concerned with maintaining a lattice structure, the internal

Dirichlet boundary conditions can present a problem. Therefore, our first procedure

will be to enforce the boundary conditions via a diagonal matrix. Specifically, we re-

place our problem in (1), including internal Dirichlet boundary conditions at nodes VB

with the problem

((T + L) + αdiag (b))x = f + αh, (5)

Lattice-Preserving Multigrid 5

Algorithm 1 Basic steps of a multigrid method.

1: multigrid(L,x,f)

2: while not converged to tolerance do

3: Relax G0x0
= f0 with v iterations (relaxation e.g., via Gauss-Seidel)

4: r0
= f − G0x0 (compute the residual)

5: r1
= Rr0 (restrict the residual)

6: c = 0 (initialize the correction to zero)

7: multigrid recursion(1,c,r1
)

8: xk
= xk

+ Pc (update the solution with the prolongated correction)

9: end while

in which b is an indicator vector denoting membership in the boundary set (i.e., bi = 1
if vi ∈ VB and bi = 0 otherwise) and h represents the boundary values (hi = 0 if

vi /∈ VB). As α → ∞ the boundary values are enforced exactly with this construction.

Since this method of enforcing the boundary conditions simply results in a modified

diagonal matrix, T , and modified right hand side, f , we will persist in using the notation

Gx = f to represent the problem (1) with the understanding that any internal Dirichlet

boundary conditions are enforced.

2.3 Multigrid methods

Standard relaxation methods, such as Jacobi iteration or Gauss-Seidel relaxation, have

been shown to perform well in correcting high-frequency error [18]. However, low-

frequency error requires an excessive number of iterations to produce convergence with

these methods. The multigrid method works by producing a correction of the current

solution that is derived from a coarsened form of the system. The principle is that

the coarse-grid updates correct low-frequency errors, while fine grid relaxations cor-

rect high-frequency errors. In order to produce the coarse grid correction, the multigrid

method is applied recursively, forming what is known as a V-cycle, described by Algo-

rithm 1. Denote the relaxation iterations parameter by v, the residual vector with r, the

current (intermediate) solution at level k as xk, the coarsened operator at level k as Lk,

the restriction operator as R and the prolongation operator as P . Since our prolonga-

tion/restriction operators are linear, we view them as matrices. Starting with k = 0, the

multigrid method is described in pseudocode in Algorithm 1 and the recursive function

is given in Algorithm 2.

Given the above formalism for multigrid, the main issues that must be addressed in

order to design a multigrid method are:

1. Determining the sampling structure of coarse nodes.

2. Specifying the restriction operator.

3. Specifying the prolongation operator.

4. Producing a coarsened operator.

6 L. Grady

Algorithm 2 Recursive call of a multigrid method.

1: multigrid recursion(k,y,d)

2: if k = kMAX then

3: Solve Gky = d exactly

4: else

5: Relax Gkyk
= dk with v iterations (relaxation)

6: rk
= dk

− Gkyk (compute the residual)

7: rk+1
= Rrk (restrict the residual)

8: c = 0 (initialize the correction to zero)

9: multigrid recursion(k + 1,c,rk+1
) (continue recursion)

10: end if

11: yk
= yk

+ Pc (update the solution with the prolongated correction)

The design of restriction, prolongation and coarse operator typically follows the Galerkin

construction

Gk+1 = RGkP, (6)

P = RT , (7)

which is known to have favorable theoretical properties [19]. Consequently, the spec-

ification of the restriction operator is sufficient to fully describe the prolongation and

coarsened operators of a multigrid method.

The sampling structure of the coarse nodes used in the geometric multigrid has

been to select every second node in each direction along the axes. Geometric multigrid

has a tremendous advantage for high-resolution images/volumes because the sampling

structure and coarsened operator also represent a lattice and therefore the storage (and

smoothing) at coarse levels has minimal indexing overhead. In addition to memory

efficiency, a lattice structure at coarse levels is useful because it is possible to take

advantage of the power of a GPU implementation [15, 16, 5, 3]. Unfortunately, matrix-

independent geometric multigrid is inappropriate for inhomogeneous domains since

the projection operators (bilinear interpolation) do not take the weights (diffusion con-

stants) into account, permitting the smoothing of a coarse solution over areas of low

diffusivity. The advantage of algebraic multigrid is that the weights are used to produce

the prolongation/restriction and coarse operators, which does not smooth a coarse solu-

tion over areas of low diffusivity. Unfortunately, the algebraic multigrid procedure has a

matrix-driven sampling structure that leads to coarse operators which have an arbitrary

sparsity structure, forcing a high memory consumption and limiting possible applica-

tion to high resolution images/volumes. Our approach in this paper is to suggest a new

coarsening operator that adopts the lattice-preserving sampling structure of geometric

multigrid while still using a matrix-driven (inhomogeneity-driven) restriction operator,

chosen in such a way as to preserve a lattice structure at higher levels. Therefore, one

may consider our method as a matrix-dependent geometric multigrid solver.

In the next section, we detail the proposed restriction operator and show that the

resulting coarsened operators still maintain a lattice sparsity structure.

Lattice-Preserving Multigrid 7

Fig. 1. Coarse-lattice neighbors in 3D. Black nodes correspond to coarse-lattice samples, dark-

gray nodes to 1st order neighbors, light-gray nodes to 2nd order neighbors and white nodes to

3rd order neighbors.

2.4 Maximally Connected Neighbor coarsening

If R has only a single ‘1’ entry on each row, then the coarse-level operator, RGRT ,

represents the Laplacian (plus diagonal) of a coarse-level graph, where each node on

the fine-level node is subsumed into a large node on coarse-level. Such a prolonga-

tion/restriction operator is termed an agglomerative operator [19] since it may be viewed

as grouping together fine-level nodes into a single coarse-level node. The advantage of

an agglomerative operator is that the coarse-level matrix is guaranteed to be the Lapla-

cian of a graph, and therefore the approach is guaranteed to be stable. In contrast, the

coarse-level operator RGRT that uses weighted bilinear interpolation as the prolonga-

tion operator (as suggested by [31]) is not guaranteed to produce the Laplacian of some

graph on the coarse level, and therefore exhibits instability.

In the context of the present applications, an agglomerative operator should exhibit

two properties:

1. Coarse-level boundaries should correspond to fine-level boundaries (i.e., the ag-

glomeration should represent a rough presegmentation).

2. The coarse-level graph topology should be regular (i.e., be a lattice), so that it may

be stored/processed efficiently.

We now define the maximally connected neighbor (MCN) restriction operator to meet

these objectives.

We will restrict our attention to 4- or 8- connected lattices in 2D, 6-, 10- or 26-

connected lattices in 3D or, more generally, ≤ (3p − 1)-connected lattices in p-D. With-

out loss of generality, we will provide our definitions for a 3D lattice. We begin by first

writing each node in terms of its 3D coordinates (starting with (0, 0, 0) and moving

in the positive directions). Define a node as belonging to the k-th order distance set,

N k ⊂ V , if the number of odd digits in its coordinates are equal to k. Our coarse sam-

pling set will consist of all nodes in N 0. Note that, for p-D, (N 0∪N 1∪ . . .∪N p) = V .

8 L. Grady

The k-th order distance sets are represented pictorially in Figure 1. A node in the N kth

distance set will be referred to as a kth-order neighbor of a coarse node.

We now proceed to define the maximally connected neighbor concept. Define the

operator

M(vi ∈ N k) = vj ,

s.t. vj ∈ N k−1,

∃ eij ∈ E,

wij ≥ wib, ∀ vb.

(8)

In the case of a tie (in terms of weight) for maximal neighbors of a node, we define

M(vi) = vj if (i − j) is minimum for all eligible nodes having equal, maximal weight

with vi. We term vj the maximally connected neighbor of vi. This definition of M(·)
may be applied recursively until a coarse node (a node in N 0) is reached. Let M∗(vi)
denote this recursive operator, i.e., M∗(vi) = M(M(. . . M(vi))) = vj ∈ N 0.

Given the set of coarse nodes, ci ∈ N 0, we may therefore represent the M(·)
operator in matrix form as:

Rvicj
=

{

1 if M∗(vi) = cj ,

0 else.
(9)

2.5 Coarse graphs

We first show that the coarse-level matrix, RGRT = R (L + T) RT , is in fact a matrix

of the same form as G. Clearly, RTRT = Tc results in a Tc that is also diagonal with

a nonnegative diagonal. Consequently, our concern is whether or not Lc = RLRT is

also a coarse Laplacian matrix.

Any graph Laplacian matrix may be decomposed [34] into

L = AT CA, (10)

where C is an m × m diagonal matrix, indexed by edge, ei, such that Cii = wi and A
is the m × n edge-node incidence matrix defined as

Aeijvk
=











+1 if i = k,

−1 if j = k,

0 otherwise,

(11)

for every vertex vk and edge eij , where eij has been arbitrarily assigned an orientation.

Note that neither P nor A contain information about the edge weights. Therefore, if

B = AP is an incidence matrix for some graph, then

Lc = RLRT = RAT CART = BT CB, (12)

is also a graph Laplacian, which is necessarily isomorphic to a graph [34] (i.e., the

matrix is a unique representation of a graph).

This result follows from the following lemma:

Lattice-Preserving Multigrid 9

Fig. 2. Coarsening weights from a fine lattice to a coarse lattice. Black circles represent selected

coarse nodes while open circles indicate fine-level nodes. Dashed lines show groups of fine-level

nodes that have a common maximally connected neighbor. The graph on the right indicates the

coarse-level weighting derived from the fine-level MCN groupings. Although a single diagonal

edge has been introduced in the coarse-level graph, the coarse-level graphs will have connectivity

no greater than an 8-connected lattice (or a 26-connected lattice in 3D). Weights on internal edges

in the MCN grouping have no influence on the coarse-level weighting and are therefore unlabeled

to avoid confusion.

Lemma 1. For m × n edge-node incidence matrix A and n × q matrix Q, the product

B = AQ is an edge-node incidence matrix if Q is a binary matrix (i.e., all values are

zero or one) where each row has one and only one nonzero entry.

Proof. A matrix is an incidence matrix if each row has no greater than one {−1, 1}
pair, with all other entries being zero.

Consider the ith row of A, ai, which must contain either all zeros or a single {−1, 1}
pair. If all zeros, then the corresponding row of B, Bi is all zeros. If there is a {−1, 1}
pair, denote the nonzero entries by Aij and Aik, respectively. Since each row of Q
contains a single ‘1’, then Bi will either be all zeros (if Qjs = Qks = 1 for some

column s) or will contain a {−1, 1} pair (if Qjs = Qkr = 1 for s 6= r). ⊓⊔

We now proceed to show that the coarse level graph will maintain a lattice structure.

Given the formulation of the coarse-level Laplacian matrix in (12), the weight between

two coarse nodes on the upper-level graph is given by

wij =
∑

M∗(vs)=vi,M∗(vq)=vj ,∀vs,vj

wsq. (13)

Therefore, the weight between neighboring coarse nodes is nonzero only if ∃ eij ∈
E, s.t. M∗(vi) 6= M∗(vj). A k-th order neighbor may be mapped to a set of 2k coarse

nodes through M∗(vi), which we may denote as the reach of vi through M∗, H(vi).
Given two neighboring nodes, vi and vj , of kth and (k − 1)th order respectively, we

note that H(vj) ⊂ H(vi). Since |H(·)| is maximal for a node vi ∈ N k, and contains

all nodes in the hypercube surrounding vi, only coarse-level nodes at the corners of this

10 L. Grady

hypercube may become connected. Consequently, if a fine-level lattice is connected

within a coarse-level hypercube, i.e., (3p − 1)-connected in p-D, then the coarse-level

lattice will remain (3p − 1)-connected in p-D for every subsequent coarse level. Figure

2 illustrates an example of the MCN coarsening in which a fine-level four-connected

2D lattice is coarsened to an eight-connected 2D lattice.

2.6 Efficient implementation

A description of an efficient method for effecting the three operators (restriction, coarse-

level and prolongation) is given by:

1. Find M∗ of each node in the fine-level graph by examining kth-level neighbors

from k = 0 to k = P , where P represents the data dimension.

2. The restriction may be effected by summing together the solution at each fine-level

node that maps through M∗ to the same coarse-level node to produce the coarse-

level solution.

3. Produce the weights for the coarse-level graph, Lc, from (13), i.e., for every two

neighbors with different M∗ nodes, add the weight between them to the weight

between their M∗ nodes.

4. Produce the diagonals for the coarse-level graph, T , by summing together the diag-

onal at each fine-level node that maps through M∗ to the same coarse-level node.

5. The prolongation operator may be efficiently implemented by copying the solution

at a coarse-level node to each of the fine-level nodes that were mapped by M∗ to

that coarse node.

Note that each of these steps require linear computational complexity. In the next sec-

tion, we examine the speed effects of our method with respect to an optimized conjugate

gradients and the pertinent multigrid method described in [31].

3 Results

The generalized inhomogeneous Poisson equation in (1) has found application for sev-

eral problems, as reviewed above. The multigrid method will produce the same solution

to the linear system, only faster. Consequently, it is sufficient to benchmark the method

for speed on any model problem of the form in (1) if it is run to the same level of conver-

gence as the competing numerical methods. The application chosen for the experiments

was the segmentation method of [2]. Five high-resolution images were seeded and seg-

mented using [2], followed by progressive downsampling of both the images and seeds

to lower resolution. Our goal was to replicate the same segmentation problem at multi-

ple resolutions.

We compared our multigrid approach for solving (1) to a conjugate gradients method

and the multigrid method of [31] on 2D images of increasing size. The conjugate gra-

dients method was heavily optimized and employed an incomplete Cholesky precon-

ditioner that was modified to keep the dropped values along the diagonal (see [35] for

more details). Both of the multigrid methods were run in a standard V-cycle with two

Lattice-Preserving Multigrid 11

Fig. 3. Comparison of the conjugate gradient method (with incomplete Cholesky preconditioner)

to the proposed multigrid method for solving (1) when segmenting images [2]. All images were

square, with the length of one side given by the x-axis.

Gauss-Seidel smoothing iterations for the multigrid method of [31] and one Gauss-

Seidel smoothing iteration for the MCN multigrid. All three methods were run until

the norm of the residual of the solution was within a tolerance value that was kept

constant for all experiments. The computations used to provide a solution to (1) were

all performed with double precision. Note that the conjugate gradients algorithm in-

creased computation time with roughly O
(

n1.4
)

complexity, despite the visualization

which may make it appear to increase with a linear dependence on resolution. The

MCN multigrid did in fact increase computation with a roughly linear dependence on

resolution.

For each image at each resolution, all three algorithms were applied and the total

time reported for execution on an Intel Xeon 2.4GHz machine with 3GB of RAM.

The error bars represent one standard deviation of the runtime of the image set. While

both multigrid approaches significantly outperform the conjugate gradients approach,

the MCN multigrid is faster than the multigrid method of [31] by approximately five

times. Due to the lattice structure of our MCN multigrid method, a GPU could easily

be applied to produce additional speed gains [15].

4 Conclusion

We have presented a multigrid method for solving problems of the general form given

in (1). Problems with this structure have become increasingly important in image pro-

12 L. Grady

cessing applications such as segmentation [1–3], colorization [4], matting [5, 6] and

filtering [7, 8]. Similar systems have also been studied in the context of visual recon-

struction [12] and optical flow [14].

Previous approaches to multigrid solvers have typically employed either a matrix-

dependent coarsening operator with fast convergence or the maintenance of a lattice

structure at coarse levels with low memory overhead (see [20] for some exceptions). A

coarse-level lattice structure is essential for memory demands (and fast processing) of

high-resolution images or volumes. In addition to memory efficiency, a lattice structure

at coarse levels is also essential to taking advantage of the power of a GPU imple-

mentation [15, 16, 5, 3]. However, matrix-dependent restriction/prolongation operators

are essential for fast convergence of the multigrid method in the presence of disconti-

nuities. The Maximally Connected Neighbor multigrid algorithm presented here both

preserves a lattice structure at higher levels as well as employs the matrix-dependent

restriction/prolongation operators that result in fast convergence. Our experiments com-

pared our method with optimized preconditioned conjugate gradients code and another

Laplacian-specific multigrid method. Our method strongly outperforms the speed of

both methods when applied to real images. Future work includes a GPU implemen-

tation of our fast inhomogeneous Poisson solver which is expected to produce even

greater efficiency gains and the technique of recombining iterants [36] to further accel-

erate the convergence speed of the algorithm.

Acknowledgments

The author would like to thank Oren Livne for several useful discussions.

References

1. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE

Trans. on Pat. Anal. and Mach. Intel. 28(3) (March 2006) 469–475

2. Grady, L.: Random walks for image segmentation. IEEE Trans. on Pat. Anal. and Mach.

Intel. (Nov. 2006) 1768–1783

3. Bhusnurmath, A.: Applying Convex Minimization Techniques to Energy Minimization Prob-

lems in Computer Vision. PhD thesis, U. Pennsylvania (2008)

4. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: Proc. of SIG-

GRAPH. Volume 23., ACM (August 2004) 689–694

5. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive alpha-

matting. In: Proc, of VIIP, ACTA Press (Sept. 2005) 423–429

6. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. In:

Proc. of CVPR 2006, New York (June 2006)

7. Grady, L., Schwartz, E.: Anisotropic interpolation on graphs: The combinatorial Dirichlet

problem. Technical Report CNS-TR-03-014, Boston University (2003)

8. Zhang, F., Hancock, E.R.: Graph spectral image smoothing. In: Proc. of GbRPR 2007.

(2007) 191–203

9. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on Pat. Anal. and

Mach. Intel. (Aug. 2000) 888–905

10. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE

Trans. on Pat. Anal. and Mach. Intel. 12(7) (July 1990) 629–639

Lattice-Preserving Multigrid 13

11. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using

diffusion and curvature flow. In: Proc. of CGIT. (August 1999) 317–324

12. Terzopoulos, D.: The computation of visible-surface representations. IEEE Trans. on Pat.

Anal. and Mach. Intel. 10(4) (July 1988) 417–438

13. Szeliski, R., Terzopoulos, D.: Parallel multigrid algorithms and computer vision applications.

In et al., J.M., ed.: Proc. of the Fourth Copper Mountain Conf. on Multigrid Methods, SIAM

(April 1989) 383–398

14. Ghosal, S., Vanĕk, P.: A fast scalable algorithm for discontinuous optical flow estimation.

IEEE Trans. on Pat. Anal. and Mach. Intel. 18(2) (Feb. 1996) 181–194

15. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: Conjugate

gradients and multigrid. In: ACM Trans. on Graphics. (July 2003) 917–924

16. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical

algorithms. In: ACM Trans. on Graphics. (July 2003) 908–916

17. Sapiro, G.: Inpainting the colors. Technical Report IMA Preprint Series #1979, University

of Minnesota, Institute for Mathematics and its Applications (2004)

18. Briggs, W.L., Hensen, V.E., McCormick, S.F.: A Multigrid Tutorial. 2nd edn. SIAM (2000)

19. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic Press, San Diego (2000)

20. Wesseling, P.: An Introduction to Multigrid Methods. R.T. Edwards (2004)

21. Dendy, J.E.: Black box multigrid. J. of Computational Physics 48 (1982) 366–386

22. Brandt, A.: Algebraic multigrid theory: The symmetric case. Appl. Math. Comput. 19 (1986)

23–56

23. Gidas, B.: A renormalization group approach to image processing problems. IEEE Trans.

on Pat. Anal. and Mach. Intel. 11(2) (Feb. 1989) 164–180

24. Pérez, P., Heitz, F.: Restriction of a Markov random field on a graph and multiresolution

statistical image modeling. IEEE Trans. on IT 42(1) (January 1996) 180–190

25. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. on

Comm. COM-31,4 (1983) 532–540

26. Terzopoulos, D.: Multilevel computational processes for visual surface reconstruction. Com-

put. Vision, Graphics, and Image Processing 24 (1983) 52–96

27. Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE Trans. on Pat.

Anal. and Mach. Intel. 8(2) (March 1986) 129–139

28. Acton, S.T.: Multigrid anisotropic diffusion. IEEE Trans. on Image Proc. 7(3) (March 1998)

280–291

29. Ruge, J., Stüben, K.: Algebraic multigrid. In McCormick, S., ed.: Multigrid Methods. Vol-

ume 3 of Frontiers in Applied Mathematics. SIAM, Philadelphia (1987) 73–130

30. Kimmel, R., Yavneh, I.: An algebraic multigrid approach for image analysis. SIAM J. of

Sci. Comput. 24(4) (2003) 1218–1231

31. Grady, L., Tasdizen, T.: A geometric multigrid approach to solving the 2D inhomogeneous

Laplace equation with internal boundary conditions. In: Proc. of ICIP 2005. Volume 2., IEEE

(2005) 642–645

32. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation

of objects in N-D images. In: Proc. of ICCV 2001. (2001) 105–112

33. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE

Trans. on Image Proc. 7(3) (March 1998) 421–432

34. Biggs, N.: Algebraic Graph Theory. Number 67 in Cambridge Tracts in Mathematics.

Cambridge University Press (1974)

35. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo,

R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. SIAM (November 1993)

36. Brandt, A., Mikulinksy, V.: On recombining iterants in multigrid algorithms and problems

with small islands. SIAM J. of Sci. Comput. (1995)

