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Figure 1: TextDeformer deforms a source shape into various text-specified targets. The mesh colors visualize the smoothness of
the mappings.

ABSTRACT
We present a technique for automatically producing a deformation
of an input triangle mesh, guided solely by a text prompt. Our
framework is capable of deformations that produce both large, low-
frequency shape changes, and small high-frequency details. Our
framework relies on differentiable rendering to connect geometry
to powerful pre-trained image encoders, such as CLIP and DINO.
Notably, updating mesh geometry by taking gradient steps through
differentiable rendering is notoriously challenging, commonly re-
sulting in deformed meshes with significant artifacts. These difficul-
ties are amplified by noisy and inconsistent gradients from CLIP. To
overcome this limitation, we opt to represent our mesh deformation
through Jacobians, which updates deformations in a global, smooth
manner (rather than locally-sub-optimal steps). Our key observa-
tion is that Jacobians are a representation that favors smoother,
large deformations, leading to a global relation between vertices
and pixels, and avoiding localized noisy gradients. Additionally, to
ensure the resulting shape is coherent from all 3D viewpoints, we
encourage the deep features computed on the 2D encoding of the
rendering to be consistent for a given vertex from all viewpoints.
We demonstrate that our method is capable of smoothly-deforming
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a wide variety of source mesh and target text prompts, achieving
both large modifications to, e.g., body proportions of animals, as
well as adding fine semantic details, such as shoe laces on an army
boot and fine details of a face.
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1 INTRODUCTION
This paper proposes a method to deform 3D meshes into other
shapes through text guidance. Deforming meshes is a highly re-
searched problem in computer graphics and geometry processing,
with applications in content creation [Gal et al. 2009], character
posing [Jacobson 2013], and morphing [Kraevoy and Sheffer 2004].
Most existing techniques provide a user with the ability to control
a deformation through control handles [Jakab et al. 2020; Shechter
et al. 2022] which expose a space of coarse, low-frequency deforma-
tions. Such deformations are often referred to as detail-preserving.
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“scary alien” “dachshund” “fluffy cat” “snake”

“banjo” “heart vase” “high heel” “kettle”

“incense stick” “genie lamp” “royal goblet” “pagoda”

Figure 2: Gallery of results. Source meshes shown in inset
and target text shown below.

However, 3D modeling often also requires incorporating geomet-
ric details, where an artist needs to meticulously add details in a
laborious process. In this work, we aim to automate the entire de-
formation process, in order to automatically deform the mesh from
its initial shape into the desired target shape, while preserving se-
mantic correspondence between the source and the final shape. To
achieve this goal, we follow the recent success of text-guided gener-
ative methods for images [Ramesh et al. 2022; Patashnik et al. 2021],
meshes [Michel et al. 2021; Khalid et al. 2022], and NeRFs [Poole
et al. 2022], by leveraging language as an intuitive tool for deform-
ing shapes. Similarly to these previous works, our formulation does
not rely on 3D training data, but instead leverages differentiable
rendering to connect powerful pre-trained image encoders (such
as CLIP [Radford et al. 2021]) to provide a signal for modifying the
geometry. After the deformation process, the resultant geometry
respects the structure and characteristics of the source mesh, while
visually adhering to the text specifications.

In contrast to previous text-guided works which aim to either
hallucinate geometry from scratch [Jain et al. 2021; Poole et al. 2022;
Wang et al. 2022] or preserve the geometry of an input mesh [Michel
et al. 2021] while adding detail, we instead focus on the shape
deformation task.

Our framework manipulates an existing input shape, to enable
producing high-quality geometry from the source mesh. More-
over,as can be seen in Fig. 1, our framework is capable of producing
both low-frequency shape changes and high-frequency details (e.g.
the cow’s neck is elongated when deforming to a giraffe) and incor-
porate details (scales are added when deforming to an alligator). The
resulting correspondences from source shape to target are continu-
ous and semantically meaningful (“leg deforms to leg”), which we
visualize by coloring the source mesh (e.g. in Fig. 1 and throughout).
This property is especially critical for shape-morphing applications.

Thus, our framework is must satisfy several properties: 1) pro-
duce high-quality surface geometry, with minimal self-intersections

Source

“Albert Einstein” “Bust of Venus” “Obama”

Jacobians

Vertex Displacement

Figure 3: Globally-Coherent Deformations. Max Planck de-
forms into different targets using our method (bottom row),
where the front/back view is shown in pairs of left/right.
Removing Jacobians and predicting displacements (top row)
takes locally sub-optimal steps, which results in distorted
shapes with significant artifacts. Jacobians produce global
deformations, resulting in cleaner geometries and even pre-
vents the spurious face mirroring (for example, in “Obama”).

and noisy normals; 2) produce plausible results which match the
text description; 3) adhere to the input geometry (e.g., deform the
source’s head into the target’s head and not into body). This leads
to several challenges which we solve through our technical contri-
butions.

First, straightforward optimization of mesh vertices through dif-
ferentiable rendering, as previous text-to-3D methods displayed,
often converges to undesirable local minima, and gradient steps
often turn parts of the mesh inside-out, introducing significant
artifacts. The crux of the difficulty lies in that the back-propagated
gradient from CLIP is noisy, with many undesirable local minima
and arbitrary directions. Thus, instead of displacing vertices, we
take inspiration from Neural Jacobian Fields [Aigerman et al. 2022]
to devise a more robust representation of deformations. We opti-
mize matrices representing the deformation’s gradients, i.e., the
Jacobians of each of the triangles, and compute the deformed vertex
positions from them, by solving Poisson’s equation. Our key obser-
vation is that representing the deformation through Jacobians in
this way leads to a representation that favors smoother, large defor-
mations, and leads to a global relation between vertices and pixels,
thus avoiding localized noisy gradients. More precisely: i) smooth
Jacobians represent low-frequency, large-scale deformations, and
ii) Poisson’s equation leads to each Jacobian affecting all vertices,
and in turn all pixels of the rendering. Thus, when CLIP’s gradients
back-propagate to the Jacobians, each pixel’s gradient has a global
effect, leading to a more regularized solution, see Fig. 3.

Second, we observe that CLIP per-pixel embedded features are
unfortunately view-dependent and the same 3D coordinate may be
assigned significantly different features in different 2D viewpoints.
This in turn implies a given vertex on the mesh may receive con-
flicting gradients from different viewpoints (conceptually, when
deforming a cow into an elephant, one viewpoint may try to tug on
a vertex to grow a trunk out of it, while the other will try to use it as
a tip of a tusk). This leads to incoherent results, and, in some cases,
lack of global consistency (e.g., adding multiple trunks when de-
forming a cow into an elephant). To counter that, we devise a novel
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“horse” “camel” “giraffe”

“balalaika” “mandolin” “double bass”

“army boot” “sporty shoe” “loafer”

Figure 4: Text-driven deformation. Our method can deform
the same source into different text-specified geometries,
achieving local geometric details (shoe laces and giraffe) and
low-frequency shape modifying deformations (body of gui-
tar, shape of animal).

loss, which encourages vertices to achieve similar CLIP features
from different viewpoints, thereby leading to global coherency in
the deformations.

Third, to ensure the deformed shape still lies in semantic corre-
spondence to the input shape, we add a identity-preserving term,
which ensures that the deformation optimization step does not
stray too far from the initial input mesh, thereby preventing the
optimization from ignoring the input geometry.

Through experiments, we show we can apply text-driven defor-
mations to a large class of source shapes and desired targets (from
organic to man-made shapes). TextDeformer produces plausible
shapes, beyond the capabilities of previous text-driven mesh gen-
eration techniques, while additionally providing abilities achieved
solely through a deformation framework, such as significant resem-
blance to the input shape, and providing meaningful correspon-
dences between the source and deformed shapes.

2 RELATEDWORK
There has been a large variety of works in the space of text-guided
content synthesis driven by CLIP [Radford et al. 2021], a founda-
tional model which learns a joint embedding space for text and
images. Many generative models such as StyleCLIP [Patashnik et al.
2021], GLIDE [Nichol et al. 2021], and DALLE-2 [Ramesh et al. 2022]
leverage text during training by computing distance between text
and images in the embedding space of CLIP. Additionally, there
has been work on using CLIP guidance in fine-tuning the latest

state-of-the-art diffusion models to achieve even higher quality
results [Kim et al. 2022].

2.1 Text-Guided 3D Synthesis.
In comparison to text guided image generation, text-to-3D is rela-
tively undeveloped. While there are some works that propose train-
ing joint embeddings of text descriptions and 3D objects [Chen et al.
2018], these works are lacking in scale as the largest captioned 3D
dataset (the recent ObjaVerse dataset with 800k assets [Deitke et al.
2022]) is several orders of magnitude smaller than the LAION-5B
dataset [Schuhmann et al. 2022]. Nevertheless, there have been
large strides in text-to-3D leveraging large pre-trained 2D models
such as CLIP.

CLIP-Forge [Sanghi et al. 2021] overcomes the lack of pre-trained
counterpart to CLIP for 3D by using renderings of training shapes
to bridge the gap between text and 3D data. They first train a voxel
encoder and an implicit decoder on available 3D datasets using
CLIP image embeddings, then swap image embeddings for text
embeddings at inference time. However, their method is still limited
by the availability of 3D datasets used to train their autoencoder.
Point-E [Nichol et al. 2022] proposes to generate an image from
text using a 2D diffusion model, then trains a point cloud diffusion
model conditioned on images on a private dataset of millions of 3D
shapes. While not on par with the state-of-the-art in terms of shape
quality, their approach can generate 3D shapes significantly faster.

Several approaches tackle zero-shot geometry synthesis, bypass-
ing the need of a 3D dataset. Dreamfields [Jain et al. 2021] leverage
volume rendering with a Neural Radiance Field (NeRF) [Mildenhall
et al. 2020] to directly optimize views of a 3D shape against a desired
text prompt in CLIP’s embedding space. Recently, leveraging 2D
diffusion models [Rombach et al. 2022; Saharia et al. 2022], Dream-
Fusion [Poole et al. 2022] and [Wang et al. 2022] propose to distill
such models as a differentiable image-based loss. Extracting and
editing an explicit mesh from these works is not straightforward,
since NeRFs represent shapes through network weights.

Other works have used surface-based differentiable rendering
in order to pass views of explicit 3D objects to CLIP. Using this
method, Text2Mesh [Michel et al. 2021] employs a network to pre-
dict colors and deformations along the normals of a template mesh.
Their objective is to stylize the template mesh while preserving the
initial content. In contrast, CLIP-Mesh [Khalid et al. 2022] proposes
deforming the vertices of a sphere in accordance to an input text
prompt to synthesize a completely new geometry. Magic3D [Lin
et al. 2022] combines both representations by first optimizing a
radiance field using score-distillation similar to DreamFusion, then
extracts an explicit mesh from the radiance field and optimizing its
vertices via differentiable surface rendering and score distillation.
The code is not public at the time of submission. Our work also
leverages differentiable rendering and CLIP, but focuses on the
problem of deforming explicit geometry rather than generating it
from scratch.

2.2 Neural Shape Deformation.
Shape deformation has been traditionally approached by providing
a user with handles that control a deformation space, either through
an energy-minimizing formulation [Sorkine et al. 2004; Sorkine and
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Alexa 2007] or through skinning the mesh with weights that inter-
polate coordinates with respect to the handles [Jacobson et al. 2014;
Fulton et al. 2019]. Skinning methods have been used extensively
in learning context [Xu et al. 2019, 2020; Holden et al. 2015; Li
et al. 2021], point handles [Liu et al. 2021], and cages [Yifan et al.
2020], while variational formulations are used as regularizers, e.g.,
ARAP [Sun et al. 2021] or the Laplacian [Kanazawa et al. 2018]. Both
of these approaches span only a subset of possible deformations
and prevent fine-grained control over details.

Other methods focus on learning tasks over one template
mesh [Tan et al. 2018; Gao et al. 2018], and assign per-vertex co-
ordinates [Shen et al. 2021] or offsets from a simpler (e.g., linear)
model [Bailey et al. 2018, 2020; Romero et al. 2021; Zheng et al. 2021;
Yin et al. 2021].

While some recent works propose data-driven approaches to
predict realistic deformations [Aigerman et al. 2022; Jakab et al.
2020; Yifan et al. 2020; Hanocka et al. 2018; Yumer et al. 2015], the
semantic capabilities of all these works are limited once again by
the lack of 3D datasets pairing shapes and captions. Our work is
similar in spirit to these methods, but instead of requiring explicit
supervision, we leverage differentiable rendering and powerful
visual models such as CLIP to drive deformations of a template
shape.

3 METHOD
Fig. 5 shows an overview of our method. Given an input shape,
TextDeformer enables manipulating the geometry guided by a user-
specified text description.

We represent the geometry of the input shape using a mesh
M defined by a set of vertices V ∈ R𝑛×3 and faces F . We opti-
mize a displacement map Φ : R3 → R3 over the vertices through
differentiable rendering.

3.1 Deformations through Jacobians.
A naive optimization of Φ would simply entail directly displacing
each vertex V , which may overly distort the original shape, es-
pecially when the target text describes a highly-detailed texture.
This is due to this representation exposing high-frequency, oscilla-
tory modes of deformation. Thus, in this work we opt for a differ-
ent parameterization of deformations. Inspired by Neural Jacobian
Fields [Aigerman et al. 2022], we parameterize the shape using a
set of per-triangle Jacobians which define a deformation. Specif-
ically, we represent per-triangle jacobians by matrices 𝐽𝑖 ∈ R3×3

for every face 𝑓𝑖 ∈ F . Following [Aigerman et al. 2022], we solve a
Poisson problem to compute a deformation map Φ∗ as the mapping
with Jacobian matrices for each face that are closest to {𝐽𝑖 } in the
least-squares sense, that is:

Φ∗ = min
Φ

∑︁
𝑓𝑖 ∈F

|𝑓𝑖 |∥∇𝑖 (Φ) − 𝐽𝑖 ∥22 (1)

where ∇𝑖 (Φ) denotes the Jacobian of Φ at triangle 𝑓𝑖 and |𝑓𝑖 | is
the area of that triangle. Hence, we may optimize the deformation
mapping Φ indirectly by optimizing the matrices {𝐽𝑖 } which define
Φ∗. These Jacobians are initialized to identity matrices, thereby
initializing Φ∗ as the identity mapping. Please refer to [Aigerman
et al. 2022] for the full technical details.

Input

“A 
shark”

Base Mesh

Text prompt

Poisson 
Solve

Deformed 
Mesh

Differentiable 
Renderer

View-
Consistency Loss

Semantic Loss

Renderings
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patches

Jacobian 
Regularization

OutputOptimize

: Jacobians

Figure 5: Overview. TextDeformer deforms a base mesh by
optimizing per-triangle Jacobians using natural language as
a guide. We optimize the deformation using three losses: a
CLIP-based semantic loss drives the deformation toward the
text prompt, a view-consistency loss matches multiple views
of the same surface patch to ensure a coherent deformation,
and our regularization on the Jacobians controls the fidelity
to the base mesh.

3.2 Language Guidance.
Our objective is to use text to guide the deformation of the source
shape. We leverage the pre-trained vision-language CLIP [Radford
et al. 2021], which provides a shared embedding space between
images and text. In order to connect geometry to images, we pass
our shape through a differentiable renderer R [Laine et al. 2020].
Hence, we may differentiably embed the renders of the deformed
shape

𝑒M = CLIP(Φ∗ (M)) ∈ R512

We abuse notation and the rendering function R is understood to
be implicit when passing shapes to CLIP. The desired deformation,
described with a natural language prompt P, is also embedded
𝑒P = CLIP(P) ∈ R512. Then, we may optimize Φ∗ such that 𝑒M
and 𝑒P agree, by maximizing the cosine similarity between the
embeddings:

LP (Φ∗,M,P) = sim
(
𝑒M , 𝑒P

)
(2)

where sim(·, ·) stands for cosine similarity. As in StyleCLIP [Patash-
nik et al. 2021], we find that incorporating relative directions
in CLIP’s embedding space can give stronger signals when the
optimization landscape between Φ∗ and P is unclear. Given a
base caption P0 that describes M, we compute the direction be-
tween the target prompt and the base prompt: ΔCLIP(P,P0) =

CLIP(P) − CLIP(P0). We compute the direction of the deforma-
tions and aim to optimize:

LΔP (Φ∗,P,P0) = sim
(
ΔCLIP(P,P0),ΔCLIP(Φ∗ (M),M)

)
. (3)

3.3 Jacobian Regularization.
To prevent the deformation from straying too far from the input
undeformed geometry, we introduce another regularization term
on the predicted Jacobians, which penalizes the difference between
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the Jacobians {𝐽𝑖 } and the identity, i.e., no deformation:

L𝐼 (𝑡 𝑗 ) = 𝛼

| F |∑︁
𝑖=1

∥ 𝐽𝑖 − 𝐼 ∥2 (4)

where 𝛼 is a hyper-parameter which may be tuned to control the
strength of the deformations defined by {𝐽𝑖 }.

3.4 View Consistency.
A common problem when performing multi-view optimization
through CLIP is the lack of view-consistency, i.e., a particular view
may pull the shape toward a specific deformation while another
view pulls toward a different deformation. Averaging gradients on
the Jacobians for each view does not necessarily lead to a coherent
3D deformation which may manifest in various artifacts, including
muddled details and incorrect geometry.

We introduce another regularization term to tackle this prob-
lem by utilizing the patch-level deep features of CLIP’s vision
transformer (ViT). In ViTs, the image is split into non-overlapping
patches 𝑃0, 𝑃1, . . . 𝑃𝑛 , which are then projected into a higher-
dimensional space and passed through transformer encoder blocks
T1,T2, . . . T𝑛 . For each vertex 𝑣 ∈ V , and each render 𝑟 ∈ R(M), if
𝑣 is visible, we compute the pixel 𝑝 (𝑣, 𝑟 ) in 𝑟 that contains 𝑣 . Then,
by associating 𝑝 (𝑣, 𝑟 ) with the nearest corresponding patch center
𝑃 (𝑣, 𝑟 ), we extract a deep feature vector corresponding to 𝑣 and 𝑟
and encourage vertices to have similar deep features across renders
from different viewpoints:

LVC (𝑣) =
| R (M) |∑︁

𝑖=1

| R (M) |∑︁
𝑗=1
𝑗≠𝑖

sim
(
T𝑘 (𝑃 (𝑣, 𝑟𝑖 )),T𝑘 (𝑃 (𝑣, 𝑟 𝑗 ))

)
(5)

for some chosen layer T𝑘 . In practice, we choose to use the token
output of the final transformer block. Then, we simply penalize this
loss over all vertices 𝑣 ∈ M:

LVC (M) = 𝛽
∑︁
𝑣∈V

LVC (𝑣) (6)

where 𝛽 is another tunable hyper-parameter. To compute 𝑃 (𝑣, 𝑟 ),
we follow [Amir et al. 2022] by modifying CLIP’s ViT to use
a smaller stride in its initial convolution, obtaining overlapping
patches. Then, by interpolating the positional encoding, we achieve
finer-resolution deep features.

4 EXPERIMENTS
We run TextDeformer on a variety of text prompt, source mesh
pairs. Each pair takes approximately 1.5 hours for 5000 iterations.

4.1 Generality of TextDeformer
We show that TextDeformer can handle a wide variety of source and
target prompts. We represent the source mesh as a small inset next
to the deformed shapes unless otherwise specified. Fig. 2 shows one
such collection of source and targets. We see that TextDeformer
is capable of producing high-quality results for different types of
source and target pairs.

Adjective Targets. We see that TextDeformer is capable of de-
forming source meshes in accordance to a target adjective. In Fig. 2,
we see that TextDeformer deforms a cat to be ”fluffy,” a vase to be
“heart-shaped,” an alien to be “scary,” and a shoe to be “high-heeled.”

Figure 6: Visualizing iterations of the optimization as the
source mesh is deformed to the target (“Einstein”, “Obama”).
Due to our formulation and energy, each facial feature of
Max Planck is deformed into the corresponding facial feature
of the target (nose to nose, eyes to eyes etc.).

For this style of target text, our method produces deformation maps
that preserve the overall structure of the source shape.

Related Targets. TextDeformer is also capable of deforming
source meshes into related shapes, which are not exactly descriptors
of the original mesh, but also not too semantically different. For
example, in Fig. 2, we see that TextDeformer is able to deform an
acoustic guitar into a “banjo,” a candle into an “incense stick,” the
Eiffel tower into a “pagoda,” a vase into a “royal goblet,” and so on.

Unrelated Targets. Finally, we observe that TextDeformer is capa-
ble of deforming source meshes into completely unrelated shapes,
which are far from the source mesh. This capability is illustrated
in Fig. 2 where an ant is deformed into a “snake,” and a clothing
iron is deformed into a “kettle,” as well as in Fig. 1 where a cow is
deformed into various unrelated animals such as a “turtle”.

4.2 Expressiveness of TextDeformer
Frequency. We study the expressiveness of our method by exper-

imenting with different text prompts for the same source mesh. We
observe that TextDeformer is powerful enough to express both high-
frequency texture details as well as low-frequency deformations to
the shape structure. In Fig. 4, we see in the top row that TextDe-
former can produce the requisite low-frequency deformations to
change the donkey into various other animal shapes, but also add
high-frequency deformations to emulate “giraffe” spots. Similarly in
middle row, TextDeformer produces different low-frequency maps
to change the shape of the guitar body while preserving the neck.
Alternately in the last row, TextDeformer produces high-frequency
deformations to emulate fine details such as the laces of an “army
boot” or the creases in a “sporty shoe.” Similarly, we observe TextDe-
former producing high-frequency deformations in Fig. 1, particular
in the “alligator” example.

Dense Matching. In Fig. 6, we demonstrate the ability of TextDe-
former to preserve highly detailed semantics throughout the opti-
mization process. Not does TextDeformer correctly deform features
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Source 𝛼 = 25 𝛼 = 10 𝛼 = 5 𝛼 = 2 𝛼 = 1 𝛼 = 0.5 𝛼 = 0

Figure 7: Identity preservation. The source shape (left) is deformed into a ”giraffe” (top), ”pagoda” (bottom) using decreasing
amount of weight on the proposed Jacobian regularization. Higher weight encourages preservation of the identity of the source.
Note that results with zero Jacobian regularization (right column) may contain artifacts.

Figure 8: Deformations of different source vases into the
same target text, “a cactus” and different source meshes into
the same target text, “a skyscraper”. Our method meaning-
fully respects the input geometry while conforming to the
desired target text.

of Max Planck to the corresponding features of the target (“Einstein,”
“Obama”), it is consistent at every step.We observe at different inter-
mediate faces that the corresponding features are always mapped
correctly.

4.3 Identity Preservation
We demonstrate our method’s ability to preserve the source shape
in two ways.

Impact of the Input Geometry. In Fig. 8, we use TextDeformer
to deform different vases with various appendages into “a cactus.”
Note that the resulting deformation map grows cactus branches
depending on where appendages are on the source mesh. Hence,
TextDeformer is able to produce a deformation map that conforms
to the target text, “cactus,” in an adaptive manner, borrowing coarse
structures from the input geometry. We also observe a similar effect
when deforming semantically diverse meshes into the target text,
“skyscraper”. TextDeformer preserves different aspects of eachmesh,
such as the base of the candle and the body of the guitar. It also

produces interesting variation e.g. deforming the flatter iron into a
dome structure instead of a thinner needle.

Jacobian Regularization. Recall that we also define a Jacobian
regularization termL𝐼 in (2) which is scaled by a hyper-parameter𝛼 .
In Fig. 7, we show that adjusting 𝛼 controls how far the deformation
map Φ∗ is allowed to deviate from the source mesh. With 𝛼 = 25, we
see that the cow and the Eiffel tower do not change meaningfully in
accordance to their respective text prompts (“giraffe” and “pagoda”),
while setting 𝛼 = 0 may result in some artifacts in the deformed
shape. We observe that setting 𝛼 to intermediate values offers the
best results.

4.4 Viewpoint Consistency
We experiment with the qualitative effect of the viewpoint con-
sistency loss LVC by using TextDeformer with and without this
loss term and noting the differences in the deformed meshes. We
observe in Figure 9 that the deformations produced without LVC,
although smooth due to our choice in representation, often contain
unrealistic geometric features. Such abnormalities can be caused
by outliers in the sampled camera views during optimization. This
problem is especially apparent in the “gaming chair,” in which the
backrest is crooked. This inaccuracy may appear correct in some
perspectives, but is overall an undesirable feature. Another exam-
ple is the tip of the “skyscraper,” which is pulled to one side of the
building during optimization. Finally, we observe that the back
of the “fluffy poodle,” and the wings of the “bat” are incorrectly
curved inwards when they are optimized without LVC. We provide
a quantitative evaluation of these observations in Sec. 4.7.

4.5 Effect of Jacobians
We also experiment with replacing Jacobians with vertex displace-
ments in our pipeline, but keeping the additional losses we intro-
duce, LΔP and LVC.

Surface Quality. We observe that our use of Jacobians plays a key
in obtaining high-quality surface geometries. In Fig. 10, we show
that replacing Jacobians with vertex displacements in TextDeformer
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“fluffy poodle”

No LVC With LVC

“gaming chair”

No LVC With LVC

“skyscraper”

No LVC With LVC

“bat”

No LVC With LVC

Figure 9: Viewpoint Consistency Ablation. Ablation results of removing LVC for four different source-text pairs. In each
example we see instances of incorrect geometry in the shapes deformed without LVC.

drastically decreases the resulting surface quality for three differ-
ent examples. In the “diamond-shaped vase,” vertex displacements
cause the shape to collapse inwards. In the other two examples,
vertex displacements create details which do not respect the initial
shape template and contain many self-intersections. The bottom
row of Fig. 12 highlights this deterioration of surface quality for
another example. We observe that vertex displacements cause a
large number of self-intersections, even in areas where the resulting
surface appears to require a relatively simple deformation, such as
the lens of the “goggles.”

Globally-Coherent Deformations. Recall from (1) that we solve
a global Poisson system to compute the deformation map from
the Jacobians. Hence, unlike the gradients of vertices which only
affect one point, gradients propagated through Jacobians influence a
large surface mesh area, leading to a globally-coherent deformation.
In Fig. 3, in which a bust of Max Planck is deformed to various other
faces, we observe that vertex displacements take local, sub-optimal
steps, not only contributing to poor surface quality, but also, in
the example of “Obama,” causing spurious face mirroring on the
back of the head. Since there are few camera views in which the
front and back of the head are visible, the optimization process
naturally leads to this result. However, we observe that Jacobians
do not experience this artifact.

4.6 Qualitative Comparisons
Beyond ablations, we also qualitatively evaluate our method against
two existing text-based methods for 3D synthesis and editing, CLIP-
Mesh and Text2Mesh. In Fig. 11, we show results for 5 different
target text prompts: “an alligator”, “a camel”, “a chinese lantern”, “a
comfortable chair”, and “an octupus”. TextDeformer outperforms
the baselines in multiple aspects. First, our method produces more
semantically accurate deformations: a more elongated “alligator”,
a larger “comfortable chair”, and a rounder “chinese lantern”. In
the examples of “a camel” and “an octopus” where CLIP-Mesh pro-
duces semantically correct results, we observe that it produces poor
quality surfaces with irregular triangulation and self-intersections,
whereas TextDeformer produces smoother, more realistic geometry.

4.7 Quantitative Evaluation
We evaluate TextDeformer quantitatively in two ways, comparing
to CLIP-Mesh [Khalid et al. 2022], Text2Mesh [Michel et al. 2021], as
well as our method without LVC and our method but using vertex
displacements.

Table 1: Quantitative evaluation.We use our text prompts and
deformed meshes in a retrieval task to compute R-Precision.
We observe that regularizing for viewpoint consistency im-
proves TextDeformer R-Precision. TextDeformer and CLIP-
Mesh achieve quantitatively comparable R-Precision, TextDe-
former (Ours) produces higher-quality geometry both quali-
tatively (see Fig. 12) and quantitatively (significantly fewer
self-intersections). All methods significantly outperform
Text2Mesh in R-Precision.

CLIP R-Precision (L/14) ↑ Intersections ↓
Ours 55.2% 3.2%
Ours-noVP 51.5% 3.3%
Ours-Verts 55.4% 67.7%
CLIP-Mesh 57.4% 62.8%
Text2Mesh 12.7% 17.3%

Retrieval Precision. First, following CLIP-Mesh [Khalid et al.
2022], we compute the R-Precision of CLIP-L/14 on a retrieval
task. Specifically, we use a set of 111 text prompt, source mesh
pairs to generate a set of deformed meshes. Then, we retrieve de-
formed shapes for each text prompt through CLIP (L/14) cosine
similarity. The first column of Tab. 1 shows the results of this ex-
periment. We observe that the viewpoint consistency loss LVC
increases the deformation quality of the model, affirming our obser-
vations in Sec. 4.4. We also observe that the pipelines using vertex
displacements achieve the highest R-Precision scores. This is to be
expected as vertex displacements give a high amount of freedom
when deforming the shape towards the text prompt, without respect
to the initial template geometry. Finally, all methods outperform
Text2Mesh, which is more suited for stylization and texturization
problems rather than our semantic editing problem.

Geometric Quality (Self-Intersections). We also measure the ratio
between the number of self-intersections in the deformed mesh
and the number of faces. This validates the qualitative evaluation of
in Fig. 10, Fig. 11, and Fig. 12 that the vertex displacement pipelines
disregard the triangulation of the shape in order to optimize CLIP
cosine-similarity.

4.8 Qualitative Comparison with Stable
Dreamfusion

In Figure 13, we compare qualitatively against Stable Dreamfu-
sion. We use the third-party open source implementation of the
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method 1 [Tang 2022]. We show the geometry extracted from the
neural radiance field with the representative neural image as an
inset. We observe that the surfaces of geometries from Dreamfusion
lack smoothness, which we naturally obtain through our Jacobian
representation. Second, we observe that DreamFusion often suffers
from the Janus effect, even wiht the use of prompt augmentation on
the renderings, whereas our View-Consistency loss helps produce
more coherent geometry.

5 DISCUSSION AND FUTUREWORK
In this paper, we propose TextDeformer, a zero-shot text-driven
mesh deformation technique which does not need to be trained
on any 3D dataset or 3D annotations. Instead, it is guided by pre-
trained vision-language models trained on billions of visual and
language concepts.

Our work aims to produce high-quality geometry outputs by
predicting low-frequency shape changes and high-frequency details
through source shape deformations. We opt to use per-face Jacobians
as ameans for predicting smoothmesh deformations, which enables
retaining interesting characteristics of the source shape. This leads
to high-quality mesh outputs with useful geometry and mitigates
local artifacts commonly caused by vertex displacements.

We presented a view consistency loss, which avoids over-fitting
geometry to specific salient views, and ensures that the same region
is roughly interpreted the same from all viewpoints. Our novel loss
significantly reduces the number of visual artifacts. We also propose
an identity regularization term, which can be controlled by the user
to control the magnitude of the deformation. We demonstrate that
our method enables retaining interesting global characteristics of
the source shape, while still matching it to a highly dissimilar term,
providing the user with a controllable and expressive system.

In the future, we would like to explore the possibility of learning
the space of prompt-driven deformations instead of just optimizing
them for a single mesh instance. This strategy would be fast, since
Jacobians can be predicted in a single feed-forward pass, instead
of through optimization. In addition, training over a collection of
shapes may induce a neural-regularization which may improve the
results further. We would like to also connect our method with a
retrieval module to provide a more comprehensive artist-driven
creation tool that enables users to explore the results arising from
different combinations of sources and prompts.
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“submarine” “diamond-shaped vase” “cow Pokémon”

Figure 10: Deformation Ablation. Top row: TextDeformer
with vertex displacements. Bottom row: TextDeformer with
Jacobians. Jacobians are crucial to preserving the structure of
the input geometry and maintaining high-quality surfaces.

Source Ours CLIP-Mesh Text2Mesh
Figure 11: Qualitative Comparison From top to bottom, the
target text prompts are “an alligator”, “a camel”, “a comfort-
able chair”, “a chinese lantern”, “an octupus”. Compared to
CLIP-Mesh, our method produces more semantically correct
and higher quality surfaces. Text2Mesh fails to produce se-
mantically meaningful deformations in all examples.

Ours No VC Verts (with VC) CLIP-Mesh

Figure 12: Self-intersections. Comparison results for the
shown source and target text “goggles". Self-intersections are
highlighted in red (bottom row). Removing view-consistency
(VC) losses causes distortion on the temple arms. Removing
Jacobians and optimizing vertices introduces further surface
distortion and self-intersections which may impede utility.
When applying CLIP-Mesh to this template, we observe the
“janus” effect e.g. unrealistic repeated geometry on each side.
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“high heel”

“banjo”

“pagoda”

Figure 13: Comparison to Stable Dreamfusion We compare
TextDeformer against the open-source implementation of
Dreamfusion [Tang 2022] based on Stable Diffusion [Rom-
bach et al. 2022]. For Stable Dreamfusion, we show a repre-
sentative neural rendering as well as the extracted geometry.
For TextDeformer, we show the initial mesh. First, notice
that the surface of Dreamfusion meshes has heavy artifacts
compared to the smoothness of our deformations obtained
through Jacobians. Second, we notice that Dreamfusion suf-
fers frequently from the Janus problem (see the highheels for
instance) which we help alleviate with our View-Consistency
loss.
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