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Abstract
We introduce the heat method for computing the shortest geodesic
distance to an arbitrary subset of a given domain. The heat method is
robust, efficient, and simple to implement since it is based on solving
a pair of standard linear elliptic problems. The resulting algorithm
represents a significant breakthrough in the practical computation
of distance on a wide variety of geometric domains, since these
problems can be prefactored once and subsequently solved in linear
time. In practice, distance can be updated via the heat method an
order of magnitude faster than with state-of-the-art methods while
maintaining a comparable level of accuracy. We demonstrate that
the method converges to the exact geodesic distance in the limit of
refinement; we also explore smoothed approximations of distance
suitable for applications where differentiability is required.

Keywords: digital geometry processing, discrete differential ge-
ometry, geodesic distance, distance transform, heat kernel
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1 Introduction
Imagine touching a scorching hot needle to a single point on a
surface. Over time heat spreads out over the rest of the domain
and can be described by a function 𝑘𝑡,𝑥(𝑦) called the heat kernel,
which measures the heat transfered from a source 𝑥 to a destination
𝑦 after time 𝑡. A well-known relationship between heat and distance
is given by Varadhan’s formula [1967]

𝑑2(𝑥, 𝑦) = lim
𝑡→0

−4𝑡 log 𝑘𝑡,𝑥(𝑦),

which says that the geodesic distance 𝑑 between any pair of points
𝑥, 𝑦 on a Riemannian manifold can be recovered from the solution
to a short-time heat flow. The intuition behind this behavior stems
from the fact that heat diffusion can be modeled as a large collection
of hot particles taking random walks starting at 𝑥. Any particle that
manages to reach a distant point 𝑦 in a small time 𝑡 will have had lit-
tle time to deviate from the shortest possible path. To date, however,
this relationship has not been exploited by numerical algorithms that
compute geodesic distance.

Why has Varadhan’s formula been overlooked in this context? One
possibility is that for large values of 𝑡 the function −4𝑡 log 𝑘𝑡,𝑥 is a
poor approximation of geodesic distance, yet for small values of 𝑡
the heat kernel is numerically inaccurate due to rapid exponential
decay. A key insight of our method is that even for moderately large
values of 𝑡, the gradient of the heat kernel continues to point very
close to the correct direction, i.e., along geodesic curves. We can
therefore separate the computation of distance into two separate

Figure 1: Geodesic distance on the Stanford Bunny computed using
the heat method.

stages: first compute the gradient of the distance function via the
heat kernel, then recover the distance function itself via Helmholtz-
Hodge decomposition.

With respect to existing algorithms, the heat method offers two ma-
jor advantages. First, it can easily be formulated for any space that
admits a Laplace–Beltrami operator. As a consequence, our method
can be applied to virtually any type of geometric discretization, in-
cluding regular and irregular grids, polygonal meshes, and even
unstructured point clouds. Second, our approach involves only the
solution of sparse linear systems. As a result, problems where we
want to compute the distance to a large number of different sets
benefit enormously since linear systems can be prefactored once and
subsequently inverted in linear time. This feature makes the heat
method particularly promising for applications such as shape match-
ing, path planning, and level set-based simulation (e.g., free-surface
fluid flows), all of which require repeated distance queries on a
fixed geometric domain. Moreover, because Poisson-type equations
are widespread in scientific computing, the heat method can im-
mediately take advantage of new developments in numerical linear
algebra and parallelization.

2 Related Work
The prevailing approach to distance computation is to solve the
eikonal equation

|∇𝜑| = 1 (1)
subject to boundary conditions 𝜑|𝛾 = 0 over some subset 𝛾 of the
domain. This formulation is nonlinear and hyperbolic, making it
difficult to solve directly. In practice, Eq. (1) is often solved by
applying an iterative relaxation scheme such as Gauss-Seidel – spe-
cial update orders are known under the names fast marching and
fast sweeping, which are some of the most popular algorithms for
distance computation on regular grids [Sethian 1996] and triangu-
lated surfaces [Kimmel and Sethian 1998]. Fast marching and fast
sweeping have asymptotic complexity of 𝑂(𝑛 log𝑛) and 𝑂(𝑛), re-
spectively, but sweeping is often significantly slower due to the large
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Figure 2: The heat method computes the shortest distance to a subset
𝛾 of a given domain. (Gray curves indicate lines of equal distance.)

number of sweeps required to obtain accurate results [Hysing and
Turek 2005].

The main drawback of fast marching methods is that they do not
reuse information: the distance to different subsets 𝛾 must be com-
puted entirely from scratch each time. Also note that both ordering
schemes present challenges for parallelization: priority queues are
inherently serial, and irregular meshes lack a natural sweeping order.
Weber et al. [2008] address this issue by decomposing surfaces into
regular grids; this same decomposition could be used to acceler-
ate the heat method. Fast marching can also be used to approxi-
mate distance on implicit surfaces [Memoli and Sapiro 2001], point
clouds [Memoli and Sapiro 2005], or polygon soup [Campen and
Kobbelt 2011], but only indirectly: distance is computed on a sim-
plicial mesh or regular grid that approximates the original domain.

In a different development, Mitchell et al. [1987] give an
𝑂(𝑛2 log𝑛) algorithm for computing the exact piecewise linear
geodesic distance from a single source to all other vertices of a trian-
gulated surface. Surazhsky et al. [2005] demonstrate that this algo-
rithm tends to run in sub-quadratic time in practice, and present an
approximate 𝑂(𝑛 log𝑛) version of the algorithm with guaranteed
error bounds; Bommes and Kobbelt [2007] extend the algorithm
to polygonal sources. Similar to fast marching, these algorithms
propagate distance information in wavefront order using a priority
queue, again making them difficult to parallelize. More importantly,
the amortized cost of these algorithms (over many source vertices)
will be substantially greater than for the heat method since there
is no reuse of information. Finally, although the description given
in [Surazhsky et al. 2005] is simpler than the original formulation,
these algorithms are still challenging to implement and do not im-
mediately generalize to domains other than triangle meshes.

Closest to our approach is the recent method of Rangarajan and
Gurumoorthy [2011], who do not appear to be aware of Varadahn’s
formula – they instead derive an analogous relationship 𝑑2 =
−~ log 𝜑 between the distance function and solutions 𝜑 to the time-
independent Schrödinger equation. We emphasize, however, that
this derivation applies only to R𝑛 where 𝜑 takes a special form
– in this case it may be just as easy to analytically invert the Eu-
clidean heat kernel 𝑘𝑡,𝑥 = (4𝜋𝑡)−𝑛/2𝑒−𝑑𝐸(𝑥,𝑦)2/4𝑡 to recover the
Euclidean distance 𝑑𝐸 . Moreover, they compute solutions using the
fast Fourier transform, which limits computation to regular grids.
For small values of ~ the issue of poor numerical accuracy is ad-
dressed by either combining multiple solutions from various values
of ~, or by using arbitrary-precision arithmetic; no guidance is pro-
vided for determining appropriate values of ~.

Finally, there is a large literature on smooth distances [Coifman
and Lafon 2006; Fouss et al. 2007; Lipman et al. 2010], which are

valuable in contexts where differentiability is required. However,
existing smooth distances may not be appropriate in contexts where
the geometry of the original domain is important, since they do not
attempt to approximate the metric of the original domain and can
therefore substantially violate the unit-speed nature of geodesics
(Figure 8). On spaces of constant curvature these distances can also
be explained in terms of simple discretizations of heat flow – see
Section 3.3 for further discussion.

Contributions We introduce the heat method for computing dis-
tance functions on a broad class of geometric domains and demon-
strate convergence in the setting of finite elements (Appendix A).
At a practical level, the heat method is general since it can be ap-
plied to any domain that admits a discrete Laplacian and gradient
operator, simple to implement since it can be expressed in terms
of well-established discrete differential operators and basic tools
from numerical linear algebra, and highly efficient since it is based
on solving sparse, positive-semidefinite linear systems (Section 3).
In particular, these systems can be prefactored to yield excellent
amortized performance for problems with many different sets of
boundary conditions (Section 4.1). A single parameter 𝑡 provides a
flexible notion of distance: at one extreme (𝑡 → 0), we recover exact
geodesic distance; at the other extreme (𝑡 → ∞) we get a smooth
approximation which is invaluable in applications that require dif-
ferentiability (Section 3.3). We also establish boundary conditions
for our smooth approximation that successfully mimic the behavior
of corresponding surfaces without boundary (Section 3.4). Together
these features make the heat method a practical and powerful tool
for digital geometry processing and numerical simulation.

3 The Heat Method
Our method can be described purely in terms of operations on
smooth manifolds; we explore discretization in Sections 3.1 and 3.2.
Let Δ be the negative-definite Laplace–Beltrami operator acting
on (weakly) differentiable real-valued functions over a Riemannian
manifold (𝑀, 𝑔). The heat method consists of three basic steps:

Algorithm 1 The Heat Method
I. Integrate the heat flow 𝑢̇ = Δ𝑢 for time 𝑡.

II. Evaluate the vector field 𝑋 = −∇𝑢/|∇𝑢|.
III. Solve the Poisson equation Δ𝜑 = ∇ ·𝑋 .

The final function 𝜑 approximates geodesic distance, approaching
the exact distance as 𝑡 goes to zero. Initial conditions 𝑢0 = 𝛿(𝑥)
for some point 𝑥 ∈ 𝑀 recover the distance to a single source as in
Figure 1, but in general we can compute the distance to any subset
𝛾 by setting 𝑢0 to a distribution on 𝛾 (see Figures 2 and 14, right).
Once the function 𝜑 is known, we can trace geodesic curves by
simply following the gradient ∇𝜑 (Figure 14, left).

Figure 3: Outline of the heat method. Left to right: (I) heat 𝑢 is
allowed to diffuse for a brief period of time; (II) the temperature
gradient ∇𝑢 is normalized (and negated) to get a unit vector field 𝑋
pointing along geodesics; (III) a function 𝜑 whose gradient follows
𝑋 recovers the final distance.



Figure 4: Top left: even for very small values of 𝑡, simply taking the
logarithm of the heat kernel may not provide an accurate approxi-
mation of geodesic distance. Top right: normalizing the heat kernel
gradient results in a more accurate solution, as indicated by more
evenly spaced isolines. Bottom: for large values of 𝑡 Varadhan’s
formula produces uneven spacing (left); normalization becomes
critical for producing a smoothed distance function (right).

The heat method can be motivated as follows. Consider the solu-
tion 𝑢 to the heat equation for a fixed (small) time 𝑡 and with initial
conditions 𝑢0 = 𝛿(𝑥). Varadhan’s formula asserts that if 𝑡 is suffi-
ciently small, then the quantity 𝑑 :=

√
−4𝑡 log 𝑢 approximates the

shortest geodesic distance to 𝑥. One numerical difficulty is that 𝑑
cannot be reliably evaluated for arbitrarily small values of 𝑡, since
heat decays exponentially as we move away from the source 𝑥; for
more moderate values of 𝑡, Varadhan’s formula may not yield an ac-
curate approximation of geodesic distance (see Figure 4). To remedy
these difficulties, we observe that (i) the gradients ∇𝑢 and ∇𝑑 are
parallel (despite having different magnitudes) and (ii) the gradient of
the true distance function has unit length (as implied by the eikonal
equation). We therefore normalize the gradient of 𝑢 itself (yielding
the vector field 𝑋), then compute the closest scalar potential 𝜑 by
minimizing

∫︀
𝑀

|∇𝜑 − 𝑋|2. This final step, related to Helmholtz-
Hodge decomposition, is equivalent to solving the Poisson equation
Δ𝜑 = ∇ ·𝑋 . (Note that 𝜑 is unique only up to an additive constant
and should be shifted such that the smallest distance value is zero.)
The overall procedure is depicted in Figure 3.

3.1 Time Discretization

We discretize the heat equation from step I of Algorithm 1 using a
single backward Euler step. In practice, this means that we solve the
linear (elliptic) equation

(id− 𝑡Δ)𝑢 = 𝑢0. (2)

Note that backward Euler maintains a maximum principle, prevent-
ing unphysical oscillations in the solution [Wade et al. 2005]. This
scheme is not only simple to implement, but is also closely con-
nected to Varadhan’s original proof that heat flow recovers geodesic
distance as 𝑡 → 0. Indeed, consider a region Ω on the smooth sur-
face 𝑀 , and let 𝛾 be the boundary of Ω. Fix 𝑡, and let 𝑣𝑡 be the
solution to the elliptic boundary value problem

(id− 𝑡Δ)𝑣𝑡 = 0 on Ω

𝑣𝑡 = 1 on 𝛾 .
(3)

An essential step of Varadhan’s proof is to show that for any 𝑥 ∈ Ω,

lim
𝑡→0

−
√
𝑡

2
log 𝑣𝑡(𝑥) = 𝑑(𝑥, 𝛾) , (4)

where 𝑑(𝑥, 𝛾) is the shortest geodesic distance from 𝑥 to 𝛾 [Varad-
han 1967]. If we use Eq. (3) as the starting point for our algorithm
(rather than the better-known formula introduced in Section 1), then
we do not even have to consider the question of time discretization.
Eq. (4) also ensures the validity of steps II and III since the gradient
of 𝑑𝑡 := −(

√
𝑡/2) log 𝑣𝑡 remains parallel to ∇𝑣𝑡.

3.1.1 Time Step

The accuracy of the heat method relies in part on the choice of time
step: for large 𝑡 we get only a smooth approximation of geodesic
distance; pick 𝑡 too small and we may run into numerical issues.
For triangulated surfaces, the time step 𝑡* := 𝐴𝑀/|𝐹 | captures
the most important scaling laws, where 𝐴𝑀 is the total surface
area and |𝐹 | is the number of faces. The numerator 𝐴𝑀 ensures
that 𝑡* is scale-independent, i.e., resizing the mesh does not affect
the appearance of the result. The denominator |𝐹 | accounts for
resolution independence – scaling the surface down by a factor
𝑠 effectively increases the time step by a factor 𝑠2 (consider the
matrix 𝐴−1 from Section 3.2.1). Since the number of triangles also
increases by a factor 𝑠2, we divide by |𝐹 |. The only remaining
degree of freedom is a constant factor 𝑐 in front of 𝑡*; simply using
𝑐 = 5 works remarkably well in practice.

3.2 Spatial Discretization

In principle the heat method can be applied to any domain with a
discrete Laplacian Δ and gradient operator ∇. Here we take a quick
look at several possible discretizations on common domains.

3.2.1 Simplicial Meshes

Let 𝑢 ∈ R|𝑉 | specify a piecewise linear func-
tion on a triangulated surface. A standard dis-
cretization of the Laplacian at a vertex 𝑖 is
given by

(𝐿𝑢)𝑖 =
1

2𝐴𝑖

∑︁
𝑗

(cot𝛼𝑖𝑗 + cot𝛽𝑖𝑗)(𝑢𝑗 − 𝑢𝑖),

where 𝐴𝑖 is one third the area of all triangles incident on vertex
𝑖, the sum is taken over all neighboring vertices 𝑗, and 𝛼𝑖𝑗 , 𝛽𝑖𝑗

are the angles opposing the corresponding edge [Duffin 1959]. We
can express this operation via a matrix 𝐿 = 𝐴−1𝐿𝐶 , where 𝐴 ∈
R|𝑉 |×|𝑉 | is a diagonal matrix containing the vertex areas and 𝐿𝐶 ∈
R|𝑉 |×|𝑉 | is the cotan operator representing the remaining sum.
Heat flow can then be computed by solving the system (𝐼− 𝑡𝐿)𝑢 =
𝑢0, (where 𝐼 is the identity matrix) or equivalently

(𝐴− 𝑡𝐿𝐶)𝑢 = 𝐴𝑢0.

The advantage of the latter system is that it is sym-
metric and can be more efficiently solved or prefac-
tored. (Note that a Dirac delta appears as a literal one
in this system since we are effectively working with
integrated quantities.) The gradient in a given triangle
can be expressed succinctly as

∇𝑢 =
1

2𝐴𝑓

∑︁
𝑖

𝑢𝑖(𝑁 × 𝑒𝑖)



Figure 5: Since the heat method is based on well-established discrete
operators like the Laplacian, it is easy to adapt to a variety of
geometric domains. Above: distance on a hippo composed of high-
degree nonplanar (and sometimes nonconvex) polygonal faces.

where 𝐴𝑓 is the area of the face, 𝑁 is its unit normal,
𝑒𝑖 is the 𝑖th edge vector (oriented counter-clockwise),
and 𝑢𝑖 is the opposing value of 𝑢. The integrated
divergence associated with vertex 𝑖 can be written as

∇ ·𝑋 =
1

2

∑︁
𝑗

cot 𝜃1(𝑒1 ·𝑋𝑗) + cot 𝜃2(𝑒2 ·𝑋𝑗)

where the sum is taken over incident triangles 𝑗 each with a vec-
tor 𝑋𝑗 , 𝑒1 and 𝑒2 are the two edge vectors of triangle 𝑗 containing 𝑖,
and 𝜃1 and 𝜃2 are the opposing angles. If we call the vector of (inte-
grated) divergences 𝑑, then the final distance function is computed
by solving the symmetric Poisson problem

𝐿𝐶𝜑 = 𝑑.

Note that the heat method can be applied to a triangulated manifold
of any dimension by using the standard Laplacian for piecewise
linear functions; this matrix can easily be built using discrete exterior
calculus via 𝐿 = ⋆−1

0 𝑑𝑇0 ⋆1 𝑑0 [Desbrun et al. 2008].

3.2.2 Polygonal Surfaces

For a mesh with (not necessarily planar) polygonal faces, we use
the polygonal Laplacian recently introduced by Alexa and Wardet-
zky [2011]. The only difference in this setting is that the gradient
of the heat kernel is expressed as a discrete 1-form associated with
half edges, hence we cannot directly evaluate the magnitude of the
gradient |∇𝑢| needed for the normalization step (Algorithm 1, step
II). If we assume that ∇𝑢 is constant over a given face, then

𝑢𝑇
𝑓 𝐿𝑓𝑢𝑓 =

∫︁
𝑀

|∇𝑢|2𝑑𝐴 = |∇𝑢|2𝐴𝑓 ,

where 𝑢𝑓 is the vector of heat values in face 𝑓 , 𝐴𝑓 is the magnitude
of the area vector, and 𝐿𝑓 is the local (weak) Laplacian. We can
therefore approximate the magnitude of the gradient as

|∇𝑢|𝑓 =
√︁

𝑢𝑇
𝑓 𝐿𝑓𝑢𝑓/𝐴𝑓

which is used to normalize the 1-form values in the corresponding
face. The integrated divergence is given by 𝑑𝑇𝑀𝛼 where 𝛼 is the
normalized gradient, 𝑑 is the coboundary operator and 𝑀 is the mass
matrix for 1-forms (see [Alexa and Wardetzky 2011] for details).
Figure 5 demonstrates distance computed on an irregular polygonal
mesh.

3.2.3 Point Clouds

For a discrete sample 𝑃 ⊂ R𝑛 of 𝑀 with no connectivity informa-
tion, we solve the heat equation (step I) using the symmetric point
cloud Laplacian recently introduced by Liu et al. [2011], which ex-
tends previous work of Belkin et al. [2009a]. In this formulation,

Figure 6: The heat method can also be applied directly to scattered
point clouds that lack connectivity information (yellow points are
close to the source). Left: face scan with holes and noise; dis-
connected components receive a constant value (red) Right: kitten
surface from Figure 10 with connectivity removed (for reference).

the Laplacian is represented by 𝐴−1𝐿𝑃𝐶 , where 𝐴 is a diagonal
matrix of approximate Voronoi areas 𝐴𝑝 associated with each point,
and 𝐿𝑃𝐶 is a symmetric positive semidefinite matrix (see [Liu et al.
2011], Section 3.4, for details).

To compute the vector field 𝑋 = −∇𝑢/|∇𝑢| (step II), we represent
the function 𝑢 : 𝑃 → R as a height function over approximate
tangent planes 𝑇𝑝 at each point 𝑝 ∈ 𝑃 and evaluate the gradient
of a weighted least squares (WLS) approximation of 𝑢 [Nealen
2003]. To compute tangent planes, we use a moving least squares
(MLS) approximation for simplicity – although other choices might
be desirable (see Liu et al..) The WLS approximation of ∇𝑢 also
provides a linear mapping 𝜑 ↦→ 𝐷𝜑, taking any scalar function to
its gradient. To find the best-fit scalar potential 𝜑 (step III), we solve
the quadratic minimization problem

min
𝜑

∑︁
𝑝∈𝑃

𝐴𝑝‖𝑋(𝑝)−𝐷𝜑(𝑝)‖2 ,

which again amounts to solving a linear, positive-semidefinite Pois-
son equation. The distance resulting from this approach is depicted
in Figure 6. Other discretizations of ∇ are certainly possible; we
picked one that was simple to implement in any dimension. Note
that the computational cost of the heat method depends primarily
on the intrinsic dimension 𝑛 of 𝑀 , whereas methods based on fast
marching require a grid of the same dimension 𝑚 as the ambient
space [Memoli and Sapiro 2001] – this distinction is especially
important in contexts such as machine learning where 𝑚 may be
significantly larger than 𝑛.

3.3 Smoothed Distance

The exact geodesic distance fails to be smooth at points in the cut
locus, i.e., points at which there is no unique shortest path to the
source. These points appear as “cusps” in the level lines of the dis-
tance function, giving the appearance of two wavefronts crashing
together (see Figure 7). Non-smoothness can result in numerical dif-
ficulty for applications which need to take derivatives of the distance
function 𝜑 (e.g., level set methods), or may simply be undesirable
aesthetically.

A number of distances have been designed with smoothness in mind,
including diffusion distance [Coifman and Lafon 2006], commute-
time distance [Fouss et al. 2007], and biharmonic distance [Lipman
et al. 2010] (see the latter reference for a more detailed discussion).



Figure 7: A source on the front of the bunny results in nonsmooth
“cusps” on the opposite side. By running our heat flow for progres-
sively longer durations 𝑡, we obtain smooth approximations of the
exact geodesic distance (right).

These distances can be difficult to evaluate accurately, requiring
one to compute a large number of Laplacian eigenvectors (∼150−
200 in practice) or else solve a linear system for each vertex of
the mesh. Moreover, although these distances satisfy a number of
important properties (smoothness, isometry-invariance, etc.), they
tend to poorly approximate the true geodesic distance, as indicated
by uneven spacing of isolines (see Figure 8, middle).

In contrast, one can rapidly construct smoother versions of the exact
distance by simply applying the heat method for large values of
𝑡 (Figure 7). As before, the computational cost is a single linear
solve; isolines stay evenly spaced for any value of 𝑡 due to the
normalization step. (Normalization also makes it challenging to
prove that the resulting functions satisfy the properties of a metric,
but numerical tests indicate that this is likely the case in practice.)
Note that these smoothed functions are isometrically invariant – but
not conformally invariant – since geometrically they depend only
on the intrinsic Laplace–Beltrami operator.

Existing smooth distance functions can also be understood in
terms of numerical approximations to heat flow. In particular, the
commute-time distance 𝑑𝐶 and biharmonic distance 𝑑𝐵 can be ex-
pressed in terms of the harmonic and biharmonic Green’s functions
𝑔𝐶 and 𝑔𝐵 (respectively):

𝑑𝐶(𝑥, 𝑦)
2 = 𝑔𝐶(𝑥, 𝑥)− 2𝑔𝐶(𝑥, 𝑦) + 𝑔𝐶(𝑦, 𝑦),

𝑑𝐵(𝑥, 𝑦)
2 = 𝑔𝐵(𝑥, 𝑥)− 2𝑔𝐵(𝑥, 𝑦) + 𝑔𝐵(𝑦, 𝑦).

On a manifold of constant sectional curvature the sum 𝑔(𝑥, 𝑥) +
𝑔(𝑦, 𝑦) is constant, hence the commute-time and biharmonic dis-
tances are essentially a scalar multiple of the harmonic and bihar-
monic Green’s functions (respectively), which can be expressed as
one- and two-step approximations of heat flow via backward Euler
as 𝑡 goes to infinity:

𝑔𝐶 = lim
𝑡→∞

(id− 𝑡Δ)†𝛿,

𝑔𝐵 = lim
𝑡→∞

(id− 2𝑡Δ+ 𝑡2Δ2)†𝛿.

(The symbol † denotes the pseudoinverse.) Note that for finite 𝑡
the identity operator acts as a regularizer, preventing a logarithmic
singularity. For spaces with variable curvature, the Green’s func-
tions provide only an approximation of the corresponding distance
functions.

3.4 Boundary Conditions

As 𝑡 approaches zero, vanishing Neumann or Dirichlet boundary
conditions both yield the exact geodesic distance (see [von Renesse
2004], Corollary 2 and [Norris 1997], Theorem 1.1, respectively).
For larger values of 𝑡, however, the choice of boundary condi-
tions matters and substantially alters the behavior of our smoothed
geodesic distance – Figure 9 illustrates this behavior. We advocate
the use of the Robin boundary conditions obtained by taking the
mean of the Neumann solution 𝑢𝑁 and the Dirichlet solution 𝑢𝐷 ,

Figure 8: Top row: our smooth approximation of geodesic distance
(left) and biharmonic distance (middle) both mitigate sharp “cusps”
found in the exact geodesic distance (right), but notice that isoline
spacing of the biharmonic distance can vary dramatically. Bottom
row: biharmonic distance (middle) tends to exhibit elliptical level
lines near the source, while our smoothed distance (left) maintains
isotropic circular profiles as seen in the exact distance (right).

Figure 9: For smoothed geodesic distance, boundary conditions
substantially alter behavior. Pictured here are Neumann (top-left),
Dirichlet (top-right) and Robin (bottom-left) boundary conditions.
Note that Robin conditions qualitatively capture the behavior of the
same surface without boundary.

Figure 10: Visual comparison of accuracy. Left: exact geodesic
distance. The heat method (middle) and fast marching (right) both
produce results of comparable accuracy, here within less than 1%
of the exact distance – see Table 1 for a more detailed comparison.



i.e., 𝑢 = 1
2
(𝑢𝑁 + 𝑢𝐷). The intuition behind these conditions is

again based on interpreting heat diffusion in terms of random walks:
zero Dirichlet conditions absorb heat, causing walkers to “fall off”
the edge of the domain. Neumann conditions prevent heat from
flowing out of the domain, effectively “reflecting” random walkers.
Robin conditions mimic the behavior of a domain without boundary:
the number of walkers leaving equals the number of walkers return-
ing. Figure 11 shows how different boundary conditions affect the
behavior of geodesics in a path-planning scenario.

4 Comparison

4.1 Performance

A key advantage of the heat method
is that the linear systems describing
heat flow and Helmholtz-Hodge
decomposition can be prefactored.
Our implementation uses sparse
Cholesky factorization [Chen
et al. 2008], which in theory
has sub-quadratic complexity for
Poisson-type problems but in
practice scales even better [Botsch et al. 2005]; moreover there is
strong evidence to suggest that sparse systems arising from elliptic
PDEs can be solved in very close to linear time [Schmitz and Ying
2012; Spielman and Teng 2004]. Independent of these issues, the
amortized cost for problems with a large number of right-hand
sides is roughly linear, since back substitution can be applied in
essentially linear time. See inset for a breakdown of relative costs
in our implementation.

In terms of absolute performance, a number of factors affect the run
time of the heat method including the type of geometric domain, the
choice of discrete Laplacian, particular geometric data structures,
and so forth. As a typical example, we compared our simplicial
implementation (Section 3.2.1) to the first-order 𝑂(𝑛 log𝑛) fast
marching method of Kimmel & Sethian [1998] and the 𝑂(𝑛2 log𝑛)
exact algorithm of Mitchell et al. [1987] as described by Surazhsky
et al. [2005]. In particular we used the state-of-the-art fast marching
implementation of Peyré and Cohen [2005] and the exact implemen-

Figure 11: For path planning, the behavior of geodesics can be con-
trolled by altering boundary conditions and the integration time 𝑡.
Top-left: Neumann conditions encourage boundary adhesion. Top-
right: Dirichlet conditions encourage boundary avoidance. Bottom-
left: small values of 𝑡 yield standard straight-line geodesics. Bottom-
right: large values of 𝑡 yield more natural trajectories.

Figure 12: Meshes used to test performance and accuracy (see
Table 1). Top to bottom, left to right: BUNNY, ISIS, LION,
APHRODITE, RAMSES, HORSE, BIMBA.

tation of Kirsanov [2005]; the heat method was implemented in C++
using a half edge data structure. All timings were taken on a 2.4
GHz Intel Core 2 Duo machine using a single core – Table 1 gives
timing information. Note that for a single distance computation
the heat method tends to outperform fast marching as mesh size
increases; more importantly, updating distance via the heat method
for new subsets is consistently at least an order of magnitude faster
than both fast marching and the exact algorithm.

4.2 Accuracy

The accuracy of distance computation relies primarily on the choice
of spatial discretization. In the case of the heat method this means
the choice of differential operators; although we explore only low-
order operators in this paper, many interesting choices are avail-
able [Belkin et al. 2009b; Hildebrandt and Polthier 2011]. Accuracy
is also affected by the choice of time step – see Section 3.1.1. In
the case of the fast marching method, accuracy is determined by
the choice of update rule. A number of highly accurate update
rules have been developed in the case of regular grids (e.g., HJ
WENO [Jiang and Peng 1997]), but fewer options are available on
irregular domains such as triangle meshes (the predominant choice
being the first-order update rule of Kimmel and Sethian [1998]).

As a baseline for comparison in the simplicial case, we used the
exact (piecewise linear) geodesic distance computed using the algo-
rithm of Mitchell et al. [1987]. Table 1 gives accuracy information
for a number of examples – MAX is the maximum absolute error
as a percentage of mesh diameter and MEAN is the mean relative
error at each vertex. Note that fast marching tends to achieve a
smaller maximum error, whereas the heat method does better on
average. Figure 10 gives a visual comparison of accuracy; the only
notable discrepancy is that the heat method produces level sets that
are slightly smoother at sharp cusps.



MODEL FACES HEAT METHOD FAST MARCHING EXACT
FACTOR SOLVE MAX MEAN TIME MAX MEAN TIME

BUNNY 28k 0.29s 0.02s 1.65% 0.74% 0.28s 1.05% 1.16% 0.99s
ISIS 93k 1.27s 0.11s 1.29% 0.54% 1.08s 0.61% 0.85% 5.61s

HORSE 96k 0.99s 0.07s 1.16% 0.38% 1.01s 0.76% 0.73% 6.28s
APHRODITE 106k 1.13s 0.08s 1.95% 0.93% 2.38s 0.90% 1.04% 4.68s

BIMBA 149k 2.45s 0.15s 1.35% 0.90% 2.78s 0.61% 0.65% 14.14s
LION 353k 7.05s 0.37s 0.68% 0.44% 10.93s 0.74% 0.68% 22.36s

RAMSES 1.6M 26.47s 1.27s 1.59% 0.46% 104.86s 0.42% 0.47% 110.17s

Table 1: Comparison of the heat method with fast marching and exact geodesic distance on triangle meshes. MAX and MEAN are maximum
absolute (w.r.t. mesh diameter) and mean relative error; FACTOR, SOLVE and TIME give execution time. Best overall time/accuracy for a
single boundary set is indicated in bold. Notice that when updating the boundary set the heat method outperforms fast marching by an order
of magnitude in all cases (compare SOLVE and TIME columns). Meshes pictured in Figure 12.

Figure 13: Tests of robustness. Left: smoothed approximation of
distance (Section 3.3) appears similar on meshes of different reso-
lution. Right: even for meshes with severe noise (top) we recover a
good approximation of the distance on the original surface (bottom,
visualized on noise-free mesh).

The approximate algorithm of Surazhsky et al. also provides an in-
teresting comparison since it is on par with fast marching in terms
of performance and produces results substantially closer to the ex-
act piecewise linear distance (see [Surazhsky et al. 2005], Table 1).
Similar to fast marching, however, it does not take advantage of pre-
computation and therefore exhibits a significantly higher amortized
cost than the heat method; it is also limited to triangle meshes.

4.3 Robustness

Two substantial factors contribute to the robustness of the heat
method, namely (1) the use of an unconditionally stable implicit
time-integration scheme that satisfies a maximum principle and (2)
the fact that we are solving an elliptic PDE. Figure 13 verifies that the
heat method continues to work well even on meshes that are poorly
discretized or corrupted by a large amount of noise (here modeled
as uniform Gaussian noise applied to the vertex coordinates). In this
case we use a moderately large value of 𝑡 to investigate the behav-
ior of our smoothed distance approximation; the same behavior is
observed for small 𝑡 values.

5 Conclusion
The heat method is a simple, general method than can easily be
incorporated into a broad class of algorithms. However, a great deal
remains to be explored – in particular, a better quantitative under-
standing of numerical accuracy and a more thorough investigation
of possible discretizations. Another obvious question is whether
the same type of transformation can be applied to a more general
class of Hamilton-Jacobi equations. We would also like to explore
weighted distance computation, which appears to be a straightfor-
ward extension of the present algorithm.
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A Convergence
We sketch a proof that the heat method recovers geodesic distance
on a smooth surface in the limit of spatial refinement and as 𝑡 → 0.
Consider a triangulated surface 𝑀ℎ that is closely inscribed into
a smooth surface 𝑀 ⊂ R3, i.e., the vertices of 𝑀ℎ reside on 𝑀 ,
and 𝑀ℎ lies within the so-called reach of 𝑀 . As usual, ℎ denotes
the longest edge length of 𝑀ℎ. Let Δℎ = 𝐴−1𝐿𝐶 denote the
cotangent Laplacian of 𝑀ℎ (see Sec. 3.2.1). For fixed 𝑡, let 𝑣ℎ,𝑡 be
the solution of (3) with Δℎ in place of Δ. Here we assume that 𝛾
is sampled with straight edges of 𝑀ℎ and that the triangulation 𝑀ℎ

is uniformly shape regular, independent of ℎ. Let 𝑣𝑡 be the solution
of (3). Then due to the ellipticity of the operator 𝐿𝑡 = (𝑖𝑑 − 𝑡Δ),
the convergence analysis in [Dziuk 1988; Hildebrandt et al. 2006]
seamlessly carries over to our setting, yielding

‖𝑣𝑡 − 𝑣ℎ,𝑡‖0 + ℎ‖∇𝑣𝑡 −∇𝑣ℎ,𝑡‖0 ≤ 𝐶

𝑡
ℎ2 ,

where the constant 𝐶 = 𝐶(𝑀,𝛾) is independent of 𝑡 and ℎ, and
where ‖ · ‖0 denotes the 𝐿2-norm. Notice that due to the normal-
ization step (II) of the heat method, these estimates do not yet
suffice for our purpose. However, well-known estimates for the
maximum-norm error for linear elements (see, e.g., [Ciarlet 1978;
Scott 1976]) yield that ‖∇𝑣ℎ,𝑡 −∇𝑣𝑡‖∞ → 0 as ℎ → 0, implying
that 𝑋ℎ.𝑡 := ∇𝑣ℎ.𝑡/‖∇𝑣ℎ,𝑡‖ converges to 𝑋𝑡 := ∇𝑣𝑡/‖∇𝑣𝑡‖ in
the maximum norm as well. This implies that the 𝐿2-best-fit scalar
potential 𝜑ℎ,𝑡 of 𝑋ℎ,𝑡 converges to the 𝐿2-best-fit scalar potential
𝜑𝑡 of 𝑋𝑡, which together with (4) implies convergence of 𝜑ℎ,𝑡 to
the geodesic distance on the limit surface 𝑀 , provided that ℎ → 0
at a considerably faster rate than 𝑡 → 0. We leave further analysis
for future investigation.
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Figure 14: Tracing geodesics is simply a matter of following the
gradient of the distance function 𝜑.

Figure 15: Distance to the boundary on a region in the plane (left)
or a surface in R3 is achieved by simply placing heat along the
boundary curve. Note good recovery of the cut locus, i.e., points
with more than one closest point on the boundary.

Figure 16: Smoothed geodesic distance on an extremely poor trian-
gulation with significant noise – note that small holes are essentially
ignored. Also note good approximation of distance even along thin
slivers in the nose.
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