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Abstract

In this paper, we present a novel approach for efficiently evolving meshes using mean-curvature flow. We use a
finite-elements hierarchy that supports an efficient multigrid solver for performing the semi-implicit time-stepping.
Though expensive to compute, we show that it is possible to track this hierarchy through the process of surface
evolution. As a result, we provide a way to efficiently flow the surface through the evolution, without requiring
a costly initialization at the beginning of each time-step. Using our approach, we demonstrate a factor of nearly
seven-fold improvement over the non-tracking implementation, supporting the evolution of surfaces consisting of

IM triangles at a rate of just a few seconds per update.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Geometric algorithms,

languages, and systems—

1. Introduction

Surface evolution, or surface flow, has many important appli-
cations in geometry processing, including surface parame-
terization [JKGO7], surface fairing [DMSB99, BS05], skele-
ton extraction [ATC*08], and mesh editing [CDR00, HP04].
In these applications, the surface is evolved by prescribed
rules, often driven by the gradients of a nonlinear energy, as
in cases like mean-curvature flow and Willmore flow.

Such dynamic systems mainly consist of two iterated
steps: evaluation of the current state of the system, and solu-
tion for the next state of the system. In the context of mean-
curvature flow, the first step involves estimating the current
mass matrix and Laplace-Beltrami operator, and the second
requires the solution of a linear system. The efficiency of sur-
face evolution is determined by the speed with which these
two steps can be performed.

One promising way to implement surface flow efficiently
is to leverage the recent work of Chuang et al. [CLB*09].
In that work, the authors propose an octree-based finite-
elements system that can be used to define a fast multigrid
solver. Unfortunately, the approach is limited by the initial
start-up cost of setting up the multigrid framework, requiring
the construction of an adaptive octree and the partitioning of
the model’s triangles to the faces of the octree cells. As a re-
sult, using this approach in a setting where the geometry is
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changing at each time-step (requiring the computation of a
new octree and a re-partitioning of the model at every frame)
would seem to be impractical.

Focusing on mean-curvature flow, we show how to avoid
the overhead of rebuilding the system at every time-step. The
key idea behind our approach is to evolve the octree defining
the finite-elements system with the deforming surface. Fig-
ure 1 shows a visualization of this approach for a 2D Raptor
model undergoing a swirl deformation (top row). Because
the embedding of the Raptor evolves, a direct application
of [CLB*09] would require fitting a new octree hierarchy at
each step (middle row). Instead, we adapt the hierarchy by
evolving the octree with the deforming surface (bottom row).
As we will show, this approach provides a significant speed-
up, supporting the evolution of high-resolution surfaces at a
rate of just a few seconds per update.

The remainder of the paper is organized as follow: We
start with a brief survey of related work in Section 2, and
review mean-curvature flow, finite-elements solvers, and the
octree-based finite-elements system in Section 3. After that,
we describe our tracking scheme and its implementation in
Section 4. We show results in Section 5 and conclude with a
summary and discussion of future directions in Section 6.



2 M. Chuang & M. Kazhdan / Fast Mean-Curvature Flow via Finite-Elements Tracking

e

e:%;—{

S

Figure 1: A 2D raptor model undergoing a “swirl” defor-
mation (top). Computing a quadtree independently for each
deformation, we obtain a temporally-varying spatial index-
ing structure (middle). Tracking the quadtree with the de-
formed surface, the indexing structure remains constant, al-
lowing us to reuse information from frame to frame (bottom).

2. Related Work

Geometric flow Geometric flow is an important technique
that supports numerous applications in geometry process-
ing and has included well-known flows such as mean-
curvature flow [DMSB99], Willmore flow [BS05], and Ricci
flow [JKGO7]. Other variants have also been used for
volume-controlled fairing [EPT*07], anisotropic diffusion
for detail preserving smoothing [CDR00, HP04], and Gaus-
sian curvature flow [ZGXO06].

In addition to providing methods for smoothing a
mesh, geometric flows have also played an important
role in other graphics applications. Pinching tubular re-
gions, mean-curvature flow has been used for skeleton ex-
traction [ATC*08]. Flowing surfaces to match prescribed
curvature normals, the shearing resulting from differen-
tial coordinate editing [SCOL*04, YZX*04] can be cor-
rected [ATLF06]. And, using boundary position and normal
information, fourth-order flows have been used for filling in
holes [BS05, XPBO06].

Multigrid Solvers Evolving the surface with the flow often
requires the solution of a sparse linear system of equations
defined over the mesh. Although the construction of efficient
multigrid solvers is a reasonably straight-forward task when
considering (homogenous) linear systems over regular grids
(e.g. [BHMOO]), the task is more challenging in the context
of meshes where the unconstrained triangulation does not
directly admit a hierarchical structure.

A variety of methods have been proposed for addressing
this challenge. These have ranged from ‘“black-box” alge-
braic multigrid solvers that rely solely on the algebraic infor-
mation encoded in the system matrices [RS87] (as applied

in mesh decomposition [CGR*04] and flow-field cluster-
ing [GPR*04]) to more geometry-driven solvers that support
multigrid through the design of mesh hierarchies [KCVS98,
CDROO0, SK01, RL03, AKS05, SYBF06, SBZ09]. More re-
cently, a multigrid solver has been proposed that avoids the
creation of a mesh hierarchy by embedding the mesh within
aregular 3D grid and using the regularity to define the multi-
grid hierarchy on the surface [CLB*09].

3. Review of Mean-Curvature Flow

We begin by reviewing the temporal discretization of mean-
curvature flow using semi-implicit integration. Then, we de-
scribe how finite-elements systems are used to perform the
spatial discretization and outline the finite-elements system
on which our method is based.

In our discussion, the evolution of the surface is defined
with respect to a hierarchy of functions defined on a triangle
mesh M (imbued with some Riemannian metric structure)
and is expressed by the functions X; : M — R3 giving the
embedding of M into three-space at time ¢. Though this is
not the “natural” formulation for describing the octree-based
finite-elements system of Chuang et al. (which defines test-
functions over the embedded surface X (M) rather than the
triangle mesh M), it is precisely this interpretation that en-
ables our adaptation of the octree-based finite-elements to
the context of evolving surfaces.

This approach is similar in spirit to the logical nesting of
Kornhuber and Yserntant [KYO08], where we replace trian-
gles as the atomic units with the patches obtained by in-
tersecting the surface with the nodes of the octree. How-
ever, we stress that we lack the convergence proofs provided
in [KYO08] and validation of our approach is solely empirical.

3.1. Temporal Discretization

Given an embedding X : M — R3 of the mesh into three-
space, mean-curvature flow is a smoothing process evolving
the embedding subject to the differential equation:

9 X — Hy — —AxX

9T T = A
where H. 'y is the mean-curvature vector of the embedded sur-
face and Ay is the Laplace-Beltrami operator, defined with
respect to the embedding.

Perhaps the most straightforward approach for performing
mean-curvature flow is to use explicit integration:

Xivs =X
13}

(Here, A; is the Laplace-Beltrami operator defined with re-
spect to the embedding X;.) However, the difficulty with us-
ing explicit integration is that unless the step-size  is very
small, the flow exhibits instability (manifest as the unwanted

~ AA'ASZJK} = }(}4,5 ~ )(} — E;ZSZJK}.
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negation and amplification of high-frequency content) mak-
ing the approach impractical for long-term flows.

As described by Desbrun et al. [DMSB99], the instability
can be addressed by using a semi-implicit solver:
Xirs —Xi
o
(The integrator is semi-implicit because the Laplace-
Beltrami operator is still defined with respect to the embed-
ding at time ¢.) Although this method has the same conver-
gence properties as the explicit approach, it is stable even in
the presence of larger time-steps, making it more suitable in
practice for simulating large-scale flows.

~—AX.s = (d+8A)X s~X. (1)

3.2. Spatial Discretization

To perform the semi-implicit time-step described in Equa-
tion 1, the PDE needs to be discretized in space. This is most
often done using the finite-elements approach. A set of test-
functions is defined on the base mesh, {B; : M — R}, and
the embeddings X, : M — R> are assumed to reside within
the span of these functions:

X:(p) =Y xBi(p)
1

with x! € R>.

Using these test-functions, the embedding at time # 4 0 is
found by projecting the solution to Equation 1 onto the span
of the test-functions. That is, the coefficients at time ¢ + &
are obtained by solving the linear system of equations:

(Bs(p),(1d+8A) X, 5), = (Bi(p): Xt), V]

where (-,-); is the inner-product on the space of functions,
defined by the metric induced by the embedding X;.

Denoting by X; the coefficients of the embedding X; with
respect to the test-functions, the above becomes:

5
(D’ + EL’) X5 =D'% 2)

where D' and L' are the mass and Laplacian matrices, de-
fined with respect to the embedding X;:

Dy = /A./IBI(P)'BJ(P) lg:(p)dp 3)
N g (p)ldp-

Here, g; = dX,TdX, is the metric tensor and V By is the gra-
dient of B;. Note that though the integrands are defined in
terms of a particular Riemannian structure on M, the inte-
grals themselves are independent of the structure as all areas
and angles are computed by pulling back the inner product
from the embedding X;(M).

Ly = = [ (VuBi(p) s () (VB p

Octree-based Finite-Elements System

While a semi-implicit solver provides a stable way for taking
larger time-steps, its use in surface flow (particularly in the
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context of high-resolution meshes) depends on the ability to
construct and solve the system in Equation 2 efficiently.

The approach we pursue in this work builds on the re-
cent work of Chuang et al. [CLB*09]. Instead of defining an
intrinsic function space over the abstract mesh M, Chuang
et al. define an extrinsic function space over the embedded
manifold, .# = X(M). First, a function space is defined on
IR3 by centering a set of degree d B-splines, {Bﬁ’ ‘R R},
within a regular 3D grid of resolution h:

B ~ 111
B?,j,k(p) =B (% —(i,),k) — (5’ 5 5)) for d even
Bﬁj,k(l’) = B <% - (iaj7k)) for d odd

where B(p) is the untransformed B-spline of degree d (ob-
tained by convolving the indicator function of the domain
[—0.5,0.5)® with itself d times). Then, a function space is
defined on the embedded surface by considering the restric-
tion of the functions Eﬁ‘ to the points on ..

Since the space of B-splines defined by a regular grid of
resolution 2/ is nested within the space of B-splines defined
by aregular grid of resolution % and since function restriction
is a linear operator, this definition of test-functions provides
a nesting hierarchy supporting a multigrid solver. In partic-
ular, one can use the same prolongation/restriction operators
used for performing the refinement/coarsening of B-splines
in the 3D case to perform the refinement/coarsening of test-
functions restricted to the embedded surface.

Finally, since the supports of the B-splines associated with
most cells do not overlap the surface, the test-functions can
be indexed by an adaptive octree.

To compute the integrals defining the system coefficients
in Equation 3, the authors use a cubature approach. They clip
the triangles in the original mesh to the faces of the grid cells
(so that the test-functions are polynomial on each clipped
triangle) and then sample at appropriate cubature positions.
Using the set of cubature points & C ., the computation
of the matrix coefficients is performed by setting:

DY = Y Bip )17 (p)|- @p
peEP

Ly = — Y (VaBi(p).VaBi(p) 17 (p)- o
peEP

where 0 < @, < 1 is the cubature weight associated to the
sample p, |7 (p)| is the area of the triangle in .# that con-
tains p, and V 4 is the gradient operator restricted to the em-
bedded manifold (obtained by computing the 3D gradient of
E}’ and projecting it onto the tangent plane of .Z at p).

4. Approach

The challenge of using the octree-based finite-elements
system for performing surface evolution is that the test-
functions depend on the embedding of the triangle mesh
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Figure 4: Mean-curvature flow for a cubical spiral after 0, 5, 10, 20, 40, and 80 iterations with step-size § = 1 x 107,

within R3. As a result, a new set of test-functions would need
to be defined at each time-step, requiring the costly construc-
tion of the octree and partitioning of the input triangles to the
faces of the octree nodes.

We propose a new method for performing surface evolu-
tion that deforms the test-functions with the evolving surface
(Figure 1). The advantage of our approach is that the nesting
structure of the test-functions initially supporting the multi-
grid solver persists throughout the evolution. As a result, the
same hierarchical structure constructed at t = 0 can be used
for all values of ¢, alleviating the need for the computation-
ally expensive octree initialization.

Although this approach may appear impractical due to the
complexity of the deformed test-functions (function degree
increases under composition), we show that it is in fact easy
to implement. The key to our implementation lies in the ob-
servation that though the function space on the embedded
surface .#; = X;(M) is extrinsic, we can turn this into an
intrinsic function space on M using the pull-back of the em-
bedding. As a result, we obtain a set of test-functions on M
that is independent of the embedding/deformation.

4.1. General Approach

In our approach, we use the initial embedding of the mesh,
Xo: M — ]R3, to define a nested hierarchy of functions on
M. Then, rather than constructing the test-functions from
scratch at each time-step ¢, we use the test-functions defined
by the initial embedding, and only use the embedding X; to
define the metric structure against which we integrate.

Specifically, if we set {B; : M — R} to be the pull-back
of the test-functions on Xo(M) (setting By = B; 0 Xp) and we
set P =X 1(2) to be the pre-image of the cubature points
on M, then the coefficients of the linear system become:

Dy = Y Bi(p)-Bs(p)-Ig(p)|-IT(p)|- wp @

PpEP
Ly ==Y (VuBi(p)) g ' (p)(YuBs(p))-

pEP
VNg:(P)|- 1T (p)| - @p

where |T(p)| is the area of the triangle in M that contains p,
computed with respect to the Riemannian structure on M.
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4.2. Data Re-Use

The advantage of the formulation in Equation 4 is that it
allows for a computation of the matrix entries that re-uses
much of the same information. In particular, since the values
Bj(p) and VyBj(p) are independent of the embedding, we
only need to compute these once. It is only the metric g; that
changes throughout the evolution.

To compute the metric tensor, we use the fact that the so-
lution from the previous time-step provides the coefficients,
!, of the embedding with respect to the test-functions:

X:(p) :Z#Bl(p) with x! € R?.

I
Using these coefficients, the differential of the embedding
can then be expressed as:

x|, =Y. (VuBi(p)"
1

Thus, given the values and gradients of the test-functions
(intrinsic information) and given the coefficients of the em-
bedding at time-step ¢ (extrinsic information), we have the
necessary information for computing the linear system that
defines the embedding at time-step 7 + 6.

Tracking Data with First-Order B-Splines

We define the test-functions by setting the {B;} to be first-
order B-splines centered at the vertices of a regular voxel
grid. Because they are first-order, each B-spline is supported
within the eight grid-cells adjacent to the vertex and every
point p € P is contained in the support of exactly eight test-
functions. Thus, we perform the surface evolution by storing
the following values with each cubature point:

e The weight of the sample: w, = |T(p)|- ®, (I x|P]),
e The values of the test-functions: ﬁ,’, 8 x|P)),
e The values of the gradients, w.r.t. an orthonormal frame

for the tangent space T, M: (n{,,u{,) (16 x |P)).

In addition, for each vertex v € M, we also store the values
of the eight test-functions supported at v, denoted f3;.

We approximate the integrals by using a 3-point cubature
formula with equally weighted samples on the mid-points
of the line segments connecting the vertices of a triangle
to its centroid (visualized by the white points in the inset).
While the correct computation
of the Laplace-Beltrami opera-
tor would require using a fourth-
order integrator and the compu-
tation of the mass-matrix entries
would require a sixth-order inte-
grator (e.g. the 11-point integrator
of Day and Taylor [DT07]), we S
have found that our three-point formula is sufficiently ac-
curate and does not lead to perceptible errors.
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4.3. Mean-Curvature Flow

We implement mean-curvature flow in three logical steps.
First, in a pre-processing step, the values wp, /311,, nII, and ull,
are computed. Then, at each time-step 7, we compute the sys-
tem matrices and define the linear system. Finally, we solve
the linear system and use the solution to evaluate the position
of the vertices on the new mesh.

Pre-Processing To set the values of [311,, we use the embed-
ding Xy to map p into R3. We identify the octree node in
which the sample falls and evaluate the eight B-splines cen-
tered on the corners of the node at the point Xo(p).

Defining the values |T'(p)| and (nz’,7 u},) requires choosing
a Riemannian structure for M. We do this by pulling back
the differential structure from the inital embedding Xj: For
a point p contained in a triangle 7 C M, we set |T(p)| to
the area of Xo (7). Similarly, we set (77,17» /,LII,) by choosing an
orthonormal basis for the plane tangent to Xy (7") and project-
ing VB; onto this basis. (This makes the initial metric-tensor,
80, equal the identity.)

Computing the System Matrices To compute the matrices
D and L from the coefficients of the embedding, X, we per-
form the following steps:

Algorithm: SetSystemMatrices( X )
D,L+0
forpep
dX < ComputeDifferential(p, X)
g+ dxTax
for I € NeighborCorner(p)
for J € NeighborCorner(p)

Dyy < D1y +By- By - /18l -wp

Ly Ly +(np,ub)g™ (ng, u))" - Viel-wp
return (D' , L")

Here, NeighborCorner(p) returns the indices of the eight
grid corners whose associated B-splines contain Xy(p) in
their support and ComputeDifferential(p, X) is the function
that uses the coefficients of the current embedding to evalu-
ate the differential of the embedding map at p:

Algorithm: ComputeDifferential( p , X )
dX <0
for I € NeighborCorner(p)
dX +dX +x'(n), u})
return dX

Solving and Updating the System Given the system ma-
trices and the coefficients of the embedding ¥;, we set X, 5
to the solution of the linear system in Equation 2, obtained
using the multigrid solver described in [CLB*09].

Lastly, to determine the new embedding of the mesh M,
we need to evaluate the embedding X; , 5 at each of the ver-
tices of M. To this end, we use an approach similar to the
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one used for computing the differential, invoking the func-
tion EvaluateVertex(v, x, 5) at each vertex v € M:

Algorithm: EvaluateVertex( v, X )
g0
for I € NeighborCorner(v)
q 4+ q+Bix
return g

5. Results

To evaluate our approach, we demonstrate its stability and
measure its accuracy. We also discuss extensions to minimal
surface flow and summarize the performance characteristics.
We conclude by discussing limitations of our approach. (All
models except the sphere are scaled to fit into a unit-cube.)

5.1. Stability

To evaluate the stability of our approach, we evolved two
different models under the action of mean-curvature flow.
The results of these flows can be seen in Figures 2 and 3,
which show the evolution of the Isidore Horse and the Nep-
tune models. The figures highlight the robustness of our
method. Using small time-steps, our solution remains sta-
ble even after many iterations of semi-implicit integration
(Isidore). Using the stability of semi-implicit time-stepping,
we can also take larger time-steps (Neptune), to quickly ar-
rive at the “skeleton” of the mesh, as described in [ATC*08].

Note that in pinching regions, the cubature points do not
contribute to the integrals. As a result, the associated solu-
tion coefficients remain unchanged by the iterative solver.
Since we use the solution from the previous time-step to ini-
tialize the solver, this has the effect of anchoring vertices.

5.2. Accuracy

To evaluate the correctness of our approach, we consider
three questions: How does our solver compare to existing
methods? What is its multigrid behavior? And, how stable is
the integration?

Comparison to Existing Methods

We compare the results of using our tracked-finite-elements
with two other implementations of mean-curvature flow.
In the first, we use the octree-based finite-elements sys-
tem of Chuang et al. [CLB*09], fitting a new octree at
each time-step and using the associated functions to de-
fine the coefficients of the linear system. In the second, we
use the cotangent-weight Laplacian operator, combined with
(non-diagonally-lumped) mass-matrix, defined by integrat-
ing products of per-vertex hat functions [Dzi88] (and deriva-
tives) over the mesh.

Figure 5 shows results for the Bimba model after one, ten,

Figure 5:
and one hundred time-steps of mean-curvature flow using
a step-size of 8 = 1 x 1073, The figures compare the re-
sults obtained using the cotangent-weight Laplacian (top),
Chuang et al.’s octree-based system without frame-to-frame
tracking (center), and our tracking adaptation (bottom).

The Bimba model, evolved through one, ten,

and one hundred steps of mean-curvature flow with step-size
8 =1x 107, Visually, the results of our tracking implemen-
tation (bottom) are indistinguishable from the results of both
the non-tracking (middle) and cotangent-weight Laplacian
(top) solutions.

We quantify these results using the Metro [Met07] tool,
computing the distances from the solutions obtained using
the octree-based systems at depth 8 to the solution obtained
using the cotangent-weight Laplacian. For the octree-based
flows, we solve Equation 2 using one W-cycle with five
Gauss-Seidel iterations per level. For the cotangent-weight
flows, we used the LIS library [LIS10] to solve with a
Conjugate-Gradients solver, pre-conditioned with Smoothed
Aggregation AMG, and run for at most 3000 iterations per
time-step or until the residual was below 1 x 10710,

Results of these experiments are shown in the left plots
of Figure 6, with the maximum (Hausdorff) distance to the
cotangent-Laplacian solution drawn with dashed lines and
the RMS distance drawn with solid lines. As the plots show,
the error obtained using our tracked octree method (orange)
tend to be lower than the errors obtained by naively rebuild-
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Figure 6: Error plots for mean-curvature flow of the Bimba model (left) and the sphere (right), showing the maximum (dashed
lines) and RMS (solid lines) errors. For the Bimba model, the distances are measured to the solution obtained using the
cotangent-weight Laplacian. For the sphere, the distances are measured from the ground-truth, semi-implicit solution.
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Figure 7: Plots for mean-curvature flow, showing the residuals for the Bimba (left) and Hausdorff distances for the sphere
(right), as a function of the depth of the octree and the number of W-cycles.

ing the octree at each time-step (black). We believe that this
is largely due to the clipping of triangles to the faces of
the octree nodes. Although both methods estimate the inte-
grals over the refined triangulation, the non-tracking solution
“flattens” the resulting geometry at the end of each time-step
by only sampling the flow at the original vertices. In contrast,
the tracking solution works with the same refined triangula-
tion, allowing us to capture more fine-grained properties.

To test this hypothesis, we re-ran the non-tracking flow,
but this time we applied a 1-to-4 face-split to the initial mesh,
thereby allowing the flow to evolve a higher-resolution sur-
face. As the plots show (blue), refining the mesh before run-
ning the non-tracked solver improves the accuracy.

We also evaluated the accuracy of the three methods when
performing one hundred steps of mean-curvature flow on a
unit sphere, using a step-size of & = 1 x 1073 These re-
sults are shown in the right plots of Figure 6. In this case,
the ground-truth solution is known so we compare all three
methods against it. Although the analytic solution for the ra-
dius of the sphere acted on by mean-curvature flow is:

7)) = 2z =

r(t)

this is not the ground-truth solution that we compare against.

r(t+8) =/r(t) — 48,
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The reason is that comparing against the analytic solution
captures errors that arise due to both temporal and spatial
discretization. However, the choice of finite-elements system
only affects the spatial discretization. To isolate the effects of
spatial discretization, we compare the results to the sphere
whose radius is predicted by a semi-implicit solution:

3

()= (1+8A)r(t+8) = r(t+6)= rz(’t)%.
As the plots on the right of Figure 6 show, the results ef-
ficiently obtained using a multigrid solver with our tracked
system (orange) are comparable to the results obtained using
a more expensive pre-conditioned conjugate-gradient solver
(red) and are slightly more accurate than the results obtained
using non-tracking octrees (blue), even when the mesh used
for the non-tracking octrees is initially refined.

Multigrid Behavior

To evaluate the multigrid behavior of our solver, we consider
the accuracy of the solution, as a function of the depth of
the octree and the number of W-cycles used. For the Bimba
model, where a ground-truth solution is not available, we
measure the accuracy in terms of the norm of the residual.
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For the sphere, we use the Hausdorff distance. The results of
these experiments are shown in Figure 7.

Though we fix the number of Gauss-Seidel iterations
within a resolution to five, there is no deterioration in solver
performance as the resolution is increased. Additionally, for
the Bimba, we see reduction in residual as the number of W-
cycles goes up. For the sphere, we do not see an analogous
reduction in error when the finite-elements are defined over
a low-resolution octree. We believe that this is because the
limiting factor in reducing the Hausdorff distance is the pre-
cision of the test functions, not the performance of the solver.
(We validated this by examining the residuals, which exhibit
similar trends to the ones shown for the Bimba model.)

Note that since we are using a multigrid solver with W-
cycles rather than V-cycles, solving at a higher depth implies
that coarser resolutions are relaxed more often. As a result,
when the system is predominantly low-frequency (e.g. after
the mean-curvature flow has been run for a few time-steps
and the geometry has been smoothed) the solution obtained
using the higher resolution system tends to give lower resid-
ual than the solutions from the lower resolution systems.

RMS/Max Cubature Error (Sphere): s=samples, depth=8
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Figure 8: Plots showing the accuracy of our tracked solver
as a function of the number of cubature samples used.
Though the one-point cubature (blue) provides an inaccurate
estimate of the integral, our three-point cubature (orange)
gives results identical to those of the full 11-point cubature
(red) (and is, consequently, obscured in the plot).

Stability of the integration

To evaluate the accuracy of the integrals obtained using our
three-point cubature, we compare to the results obtained us-
ing a simple one-point estimate and a correct 11-point esti-
mate [DTO7]. The results of these experiments for the sphere
(run at depth 8, with one V-cycle, and 5 Gauss-Seidel iter-
ations per resolution) are shown in Figure 8. As the plots
demonstrate, the assumption that the functions are piece-
wise constant on the triangles is too simplifying and results
in large error. However, the use of an 11-point cubature for
estimating the integrals of degree six polynomials is also un-
necessary, as the results obtained using our three-point cuba-
ture are indistinguishable.

DAA

Figure 9: Evolving the head with short time-steps (top)
results in undesirable surface pinching. Using larger time-
steps (bottom) approximates the minimization of the Dirich-
let Energy and quickly converges to a minimal area surface.

5.3. Minimal Area Surfaces

For non-water-tight surfaces, we extend our approach by
constraining the solver to lock the positions of points on
the boundary. We do this by fixing the coefficients of test
functions whose support overlaps the boundary. At the finest
resolution, we use the fact that the identity function can be
expressed as a linear combination of test functions:
p= Z (lvjvk)gljk(p)
ijk

and set the coefficient of a test function overlapping the
boundary, indexed by corner (i, j,k), to be (i, j, k). This has
the effect of reproducing the identity function in nodes con-
taining the boundary. At coarser resolutions, we use the fact
that the boundary constraints are guaranteed to be met at the
finest resolution and lock the coefficients of functions whose
support overlaps the boundary to zero. Figure 4 shows an ex-
ample of the solver for a cubical helix, demonstrating how
the initial surface evolves towards a minimal area surface.

Examining Equation 1, we observe that as the time-step 8
get larger, the system converges to:

AXips =0
X +5(p) = Xo(p)

Noting that this is the minimizer of the Dirichlet energy, we
see that (for large time-steps) our approach approximates
Pinkall and Polthier’s [PP93] method for computing mini-
mal area surfaces. As described in their work, the advan-
tage of using the minimizer of the Dirichlet Energy is that it
avoids unwanted surface pinching. This can be seen in Fig-
ure 9 which shows two evolutions of the Mannequin head.
Using short time-steps (top) the surface pinches at the neck
while using large time-steps (bottom) we quickly converge
to the minimal surface.

Vp e oM
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Model Depth | Input Vertices | Split Triangles | Dimension | System Set-up Time | System Update + Solve Time
Isidore Horse | 9 1.1 x 10° 1.0 x 107 1.2 % 10° 16 (+10) 3.7 +0.47
Neptune 9 5.0x10° 43x10° | 47x10° 7 (+4) 1.3+0.20
Cubical Spiral | 9 5.3 %107 1.1x 107 1.4 % 10° 15 (+10) 3.4 +0.48
Bimba 8 3.0x 107 2.7 x 10° 3.4x%x10° 4 (+3) 0.9 +0.14
Sphere 8 3.7%x10° 3.8 x 10° 5.1%x10° 6 (+3) 1.4+0.22
Mannequin 7 2.7 x 10* 37x10° | 7.8x10* 1 (+0.5) 0.1 +0.05

Table 1: Performance of mean-curvature flow for the models in Figures 2-9, showing the depth of the octree, the number of
vertices in the input model, the number of triangles after splitting to the octree cells, the dimension of the linear system, the
pre-processing time for initializing the octree (plus the time it would have taken to construct the system), and the average times
for setting up and solving the linear system at each frame. All timings are in seconds.

5.4. Performance

The performance of our system is summarized in Table 1,
showing the depth of the octree, the size of the input trian-
gle mesh, the size of the mesh obtained after splitting to the
faces of the octree cells, the dimension of the linear system
(defined by the number of finest-level octree nodes), the time
required to initialize the octree, and the times required to set
up and solve the linear system at each semi-implicit time-
step. All of these results were run using a single W-cycle
with five Gauss-Seidel iterations per level. (The depth was
chosen so that the dimension of the system would roughly
match the number of input vertices.)

As the table indicates, the time required for adapting an
octree and re-partitioning the mesh markedly outweighs the
combined time for constructing the system matrices at time ¢
and solving for the embedding at time ¢ + §. In particular, we
see that by tracking the finite-elements system, we are able
to get a nearly 7-fold improvement in the processing time.

5.5. Limitations

Though our approach provides an effective method for track-
ing a multigrid solver with an evolving surface, the use of
cubature for performing the integration can come at a cost
in both space and time. Using 3-point cubature, we require
the storage of 3 -25 floating point values with each clipped
triangle and, even with the use of first-order B-splines, each
of these cubature points contributes to as many as 64 differ-
ent matrix coefficients. While we have been unsuccessful in
developing a stable implementation using Monte-Carlo inte-
gration with many fewer samples, this is an area of research
we hope to continue pursuing in the future.

Additionally, we would like to stress that the contribution
of our work is not a solver that outperforms existing tech-
niques. Comparisons to the performance described by Shi et
al. [SYBFO6] indicate that though our solver is faster, we
spend more time setting up the system matrices, resulting
in comparable overall run-time performance. Rather, we be-
lieve that the contribution of our work is its exploration and
adaptation of a recently developed finite-elements solver to

submitted to COMPUTER GRAPHICS Forum (11/2010).

the context of evolving surfaces, providing an alternate ap-
proach to defining and solving linear systems over meshes.

Also, we note that our finite-elements tracking scheme as-
sumes that the test-functions pulled back by the initial em-
bedding provide a function space rich enough to describe
signals over embeddings in future time-steps. While this is
true in the context of mean-curvature flow, which preserves
the general shape of the geometry throughout the evolution,
this may not be true for other flows (e.g. flows morphing one
shape into another) and requires further investigation.

Finally, as discussed in [CLB*09], using test functions
that are defined in 3D has the disadvantage of “supplant-
ing geodesic distances with Euclidian ones, at the resolu-
tion of the ... functions”. In the context of surface evolution,
this limitation is manifest in two ways. First, when a surface
pinches under the action of mean-curvature flow, then even
if the singularity is identified and the topology of the sur-
face is changed to split the surface at the pinch region (as
in [PP93]), the test functions do not provide the resolution to
allow the separated surfaces to evolve in different directions.
Second, in evolving surfaces to have minimal area, the con-
straints that the boundary remain locked are implemented at
the resolution of the test functions, so the position of any
point falling within a node intersected by the boundary will
remain unchanged.

6. Conclusion

In this work, we presented an approach for tracking a hierar-
chical finite-elements system with a surface evolving under
mean-curvature flow. Using our approach, we have shown
that it is possible to significantly reduce the computational
overhead of adapting the linear system to the geometry of
the evolving surface without sacrificing either stability or ac-
curacy. We have demonstrated the utility of this approach in
several simulations, demonstrating that our method supports
the deformation of high-resolution models at a rate of just a
few seconds per frame.

In future work, we would like to explore extensions of our
approach to higher-orders flows such as those defined by the
Willmore, membrane, and flexural energies.
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