
Marching Cubes 33:Construction of Topologically Correct IsosurfacesEvgeni V. ChernyaevInstitute for High Energy Physics142284, Protvino, Moscow Region,RussiaE-mail: chernaev@mx.ihep.suAbstractAn algorithm implemented in the HIGZ graphicspackage for the construction of isosurfaces from vol-umetric datasets is discussed. This algorithm is animproved version of the Marching Cubes method. Foreach cell considered independently, the algorithm per-mits the construction of a triangle model, the topologyof which coincides exactly with the topology of the iso-surface of the trilinear function. It is shown that thereare 33 topologically di�erent con�gurations, instead of15 as with the MC-method.1 IntroductionThe Marching Cubes (MC) method [1] is a well-known method for volume visualization. It producestriangle models of isosurfaces F (x; y; z) = � of a scalarfunction given by samples over a cuberille grid. Usu-ally the MC-method is considered as the basic methodfor surface rendering in medical applications. How-ever, it can also be applied in many other areas as, forexample, for the visualization of implicitly speci�edfunctions or for the visualization of calculation resultsin the Finite Elements Method.The MC-method processes one cell at a time. Itdetermines how the isosurface intersects a given cell,and then moves to the next cell. Since there are eightnodes in each cube, and every node can be in twostates, inside or outside the isosurface, there are 28 =256 di�erent arrangements of a cube relative to theisosurface. However, most of the arrangements aretopologically equivalent, and by rotation and/or byswitching the states (in/out) of the nodes, they canbe related to one of the 15 con�gurations shown inFigure 1.These con�gurations are incorporated into a lookuptable. Each entry in the table contains a triangle pat-tern for a corresponding con�guration. For con�gur-ation 0 there are no triangles, because all eight nodeslie inside or outside the isosurface. For con�guration 1the pattern consists of one triangle, since the isosur-

face separates one node from the other seven. Thepatterns for other con�gurations have two, three orfour triangles.In addtion, the type of each cell in the grid is de-termined, and real vertices, formed by the intersectionof the isosurface with the edges, are substituted in thecorresponding triangle pattern. Linear interpolationalong the edges is used to determine the coordinatesof the vertices.
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The main problem with the MC-method is thatthere is the possibility for small \holes" to appear asa result of the discrepancy in the connection of thevertices on the shared face of two adjacent cells. Sucha hole is shown in Figure 2, where a cube with con�g-uration 6 shares a face with the complement of con�g-uration 3. The shared face is the place where the holeappears.
6 3Figure 2: The hole on the shared face of two cellsAnother problem is that even in the case wherethere are no visible discrepancies, the MC-methodcan produce isosurfaces with a topology di�erent fromthat of isosurfaces produced for the same cells usingother methods. Figure 3 shows isosurfaces producedfor the same cude using two di�erent methods. The�rst method is the MC-method, the second is the Di-viding Cubes method [4], which subdivides the cubeinto smaller cubes that lie on the isosurface. The iso-surface generated by the MC-method consists of twoseparate triangles, while the isosurface generated bythe Dividing Cubes method looks like a \tube".
Figure 3: Isosurfaces generated by two di�erentmethodsThe reason why the MC-method sometimes pro-duces topologically incorrect results is explained as fol-lows. In the case when each cell of a grid is processedindependently of the surrounding cells, it is naturalto use trilinear variation over the cube, as a direct

extension to linear variation along an edge:F (q; s; t) = F000 (1� q)(1� s)(1� t)+ F100 q(1� s)(1 � t)+ F010 (1� q)s(1 � t)+ F110 qs(1 � t)+ F001 (1� q)(1� s)t+ F101 q(1� s)t+ F011 (1� q)st+ F111 qst (1)where q; s and t represent local coordinates of thecube, varying from 0 to 1, and F000; : : : ; F111 repre-sent values at the corner nodes of the cube.For each con�guration in the lookup table the MC-method uses only one variant of the isosurface topol-ogy, while the trilinear function often permits severaldi�erent variants. In this article we show that in or-der to take into account all the variants permitted byfunction (1), the number of entries in the lookup tableshould be increased from 15 to 33.2 TerminologyFirst of all, let us formulate a concept of a topo-logically correct model. A triangle model, con-structed for a cubic cell with a given set of values atthe nodes, is topologically correct if its topology co-incides with the topology of the trilinear function (1)speci�ed for the given set of values.Positive and negative nodesAs we have already seen, there are two types ofnode: some nodes lie outside the isosurface; othersinside the isosurface. It is clear that the concepts in-side and outside are conditional and can easily bereversed.Usually, in papers on the MC-method, nodes of onetype are designated asmarked and nodes of the othertype as not marked. We prefer to designate themas positive and negative. Although these designa-tions are rather conditional, we can attribute a phys-ical sense to them.If the isovalue � is subtructed from all values overthe grid, then the problem of the isosurface construc-tion can be reformulated as a construction of isosur-face F (x; y; z) = 0 on a grid with modi�ed values atthe nodes. For such a grid, nodes lying on di�erentsides with respect to the isosurface, will have di�erentsigns.Separated and non-separated nodesWe shall designate two nodes of the same sign asnon-separated or joined if there is a path fromone node to the other, along which the trilinear func-tion (1) does not change sign. If such a path does notexist, we shall designate these nodes as separated.2



It is important to know whether two nodes are sep-arated or not. The required isosurface separates thepositive and negative areas inside the cell, and theinformation about nodes allows us to determine thetopology of the areas, and thus the topology of theisosurface.Ambiguous faceIn particular, the information about separated andnon-separated nodes allows us to decide how to con-nect the vertices on a face. Since the function F varieslinearly along the edges, it is obvious that two nodeslocated on the same edge are not separated. It is alsoobvious that if a face has three or four nodes of thesame sign, then these nodes are non-separated. Anambiguity arises only in the case where a face has twopositive and two negative diagonally opposed nodes.We call such a face an ambiguous face. All fouredges of the ambiguous face are intersected by the iso-surface. For the ambiguous face, the information onthe node signs is insu�cient to decide which nodesare separated and how to connect the vertices on theedges, and therefore it is necessary to carry out addi-tional calculations.Internal ambiguityAs we shall see later, in the majority of cases reso-lution of the ambiguities on the faces of a cell allowsus to take a decision on the separability of all nodes ofthe cell. It is clear that in the case where for two nodesof the same sign there is a path along the faces fromone node to the other, these nodes are non-separated.But if there is no such path along the faces, this doesnot mean that these two nodes are completely sepa-rated. The nodes could be joined inside the cell. Inthis case we shall say that the con�guration has aninternal ambiguity.A typical example is con�guration 4 (see Figure 4).There are no ambiguous faces for this con�guration,but there can be two di�erent cases: in one case thediagonal nodes are completely separated, in the othercase they are joined inside the cell.
Figure 4: Con�guration 4 { two possible cases

3 Resolving the ambiguitiesIn resolving the ambiguities on a face and insidea cube we shall use that the function F varies bilin-early over a face and over any plane parallel to a face.Indeed, if we �x any variable, for example we makeq = q0, then F takes the form:F (s; t) = A(1� s)(1 � t) + Bs(1 � t)+ C(1� s)t + Dst (2)where A = F000(1� q0) + F100(q0)B = F010(1� q0) + F110(q0)C = F001(1� q0) + F101(q0)D = F011(1� q0) + F111(q0)Note that on a face, A;B;C;D are equal to the valuesat the corner nodes of the face.Resolving the ambiguity on a faceA method of resolving the ambiguity on a face,based on the bilinear variation of F over the face,has been described by Nielson and Hamann [6]. LetA;B;C and D represent the values at the nodes ofan ambiguous face, and let A;C be positive, whileB;D are negative. It is easy to verify that the con-tour curve F (s; t) = � is a hyperbola. The decisionconcerning which nodes are separated and which arenot, can be taken by comparing the isovalue �with thevalue F (s�; t�) of the bilinear interpolant (2) at thepoint of intersection of the asymptotes (see Figure 5):F (s�; t�) = AC �BDA+ C �B �D (3)Assuming that � = 0, we can simplify the test. In or-der to determine which nodes are joined, it is su�cientto compare the two products AC and BD, because thedenominator in expression (3) is always positive. So,if AC > BD, then the positive nodes are joined, andthe negative nodes are separated; otherwise the posi-tive nodes are separated, and the negative nodes arejoined.
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Resolving the internal ambiguityThere are di�erent methods of resolving the inter-nal ambiguity. One of them consists of the comparisonof hyperbolas on the opposite faces of the cube wherethe internal ambiguity exists. If two areas of the samesign are joined inside the cube, then the projectionsof the hyperbolas must intersect each other. This fol-lows from the linear behaviour of the trilinear functionalong a line parallel to an edge. In Figure 6 two dif-ferent cases of con�guration 4 are shown. In the �rstcase the diagonal positive nodes are separated; in thesecond case these nodes are joined inside the cube. Inthe top views you can see that the projections of thehyperbolic arcs do not intersect each other in the �rstcase, but do in the second case.
Figure 6: Two cases of con�guration 4.Another method is based on the bilinear variationof F over any plane parallel to a face. If inside acube there are two areas of the same sign, which areseparated on the faces but are joined inside the cube,then there exists a plane parallel to a face such thaton the ambiguous face, formed by the intersection ofthis plane with the cube, the nodes of a given sign arejoined (see Figure 7).Let A0; B0; C0; D0 represent the values at the cor-ner nodes on the face with t = 0, and A1; B1; C1; D1represent the values at the corner nodes on the facewith t = 1. Let the areas to be tested have a positivesign and adjoin the nodes with values A0 and C1. Itis easy to verify thatA0C0 �B0D0 < 0A1C1 �B1D1 < 0If the areas are joined inside the cube, then there is t

such that AtCt �BtDt > 0 (4)Since function F varies linearly along the edges, wehave At = A0 + (A1 � A0)tBt = B0 + (B1 �B0)tCt = C0 + (C1 �C0)tDt = D0 + (C1 � C0)t (5)Substituting (5) into (4) we have a squared inequalityat2 + bt+ c > 0 (6)wherea = (A1 � A0)(C1 � C0) � (B1 � B0)(D1 �D0)b = C0(A1 �A0) + A0(C1 �C0)� D0(B1 �B0) � B0(D1 �D0)c = A0C0 � B0D0
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A Figure 7: Resolving the internal ambiguityIt is easy to see, that the positive areas are joinedonly in the case when the parabola from the left sideof (6) looks as shown in Figure 7: the branches aredirected downwards; the maximum is positive and liesbetween 0 and 1. The algorithm for resolving the in-ternal ambiguity consists of three steps:� �rst, it is necessary to check that in (6), a < 0; ifthis is not true, then the positive areas are sepa-rated;� next, it is necessary to check that 0 < tmax < 0,where tmax = � b2a ; if this is not true, then thepositive areas are separated;� �nally, it is necessary to check that the cornernodes of the face with t = tmax have the requiredsigns and that the inequality (4) is valid; if this istrue, then the positive areas are joined; otherwisethe positive areas are separated.4
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Figure 8: Advanced lookup table Figure 9: Real isosurfaces5



4 Construction of topologically correctisosurfaces - various casesNow that we have methods for resolving the am-biguities on a face and inside a cell, we can proceedto the consideration of various cases of the trilinearfunction behaviour inside the cube. All these casesare collected into an advanced lookup table shown inFigure 8. The corresponding isosurfaces are shown inFigure 9.Simple con�gurationsCon�gurations 0, 1, 2, 5, 8, 9, 11 and 14 have noambiguous faces and no internal ambiguity. All pos-itive nodes, as well as all negative nodes, are joined.Note that con�guration 14 is a mirror image of con-�guration 11.Con�guration 3For this con�guration there is only one ambiguousface. Resolving the ambiguity on this face results intwo di�erent cases:case 3.1 { positive nodes are separated;case 3.2 { positive nodes are not separated.Con�guration 4For this con�guration there are no ambiguous faces,but there is an internal ambiguity. Resolving the in-ternal ambiguity results in two cases:case 4.1.1 { positive diagonal nodes are completelyseparated;case 4.1.2 { positive diagonal nodes are joined insidethe cube.Con�guration 6There is one ambiguous face. If positive nodes onthis face are separated, then there is an internal ambi-guity { these nodes can be either completely separatedor can be joined inside the cube. Thus, three cases arepossible:case 6.1.1 { positive nodes of the ambiguous faceare completely separated;case 6.1.2 { positive nodes of the ambiguous faceare joined inside the cube;case 6.2 { positive nodes on the ambiguous face arenot separated.Con�guration 7There are three adjacent ambiguous faces for thiscon�guration. Their common node is negative. Ifposi-tive nodes on all ambiguous faces are separated,then an internal ambiguity arises { their common neg-ative node can be either completely separated fromother negative nodes or joined with them inside thecube. Resolving the ambiguities results in �ve di�er-ent cases:

case 7.1 { positive nodes are separated on all am-biguous faces;case 7.2 { positive nodes are joined on one ambigu-ous face and are separated on two other ambiguousfaces;case 7.3 { positive nodes are joined on two ambigu-ous faces and are separated on the third ambiguousface;case 7.4.1 { positive nodes are joined on all ambigu-ous faces; the negative node common to all ambigu-ous faces is completely separated from other negativenodes;case 7.4.2 { positive nodes are joined on all ambigu-ous faces; the negative node common to all ambigu-ous faces, is joined inside the cube with other negativenodes.In case 7.3, for the �rst time we have a situationwhen, for better conformity of the triangle model tothe isosurface, it is necessary to use an additional ver-tex, situated inside the cube. It will be a commonnode for all triangles in the model (see Figure 10).One of the simplest ways to choose this vertex is totake it as the average of all other vertices.
Figure 10: Case 7.3 - additional vertexCon�guration 10In all previous con�gurations we have used the re-verse of the node signs, so that the number of posi-tivenodes exceeded the number of negative nodes. Wecannot use the reverse of signs for this purpose anymore, since all remaining con�gurations have equalnumbers of positive and negative nodes. However, byreversing the node signs we can ensure that one ofthe ambiguous faces will always have separated pos-itive nodes. This allows us to reduce the number ofdi�erent cases.In particular, for con�guration 10 we consider thatthe positive nodes on the top face are separated. So,the ambiguity exists only for the bottom face. If thepositive nodes on this face are separated, then an in-ternal ambiguity exists. Thus three di�erent cases arepossible:6



case 10.1.1 { positive nodes on the top and bottomfaces are separated; positive nodes located on the endsof large diagonals are also separated;case 10.1.2 { positive nodes on the top and bottomfaces are separated; positive nodes located on the endsof large diagonals are joined inside the cube;case 10.2 { positive nodes on the top face are sep-arated, but on the bottom face are not; in this case,as well as in case 7.3, an additional vertex is used forthe construction of the triangle model.Con�guration 12For con�guration 12 there are two ambiguous faces.By reversing the signs it is always possible to ensurethat positive nodes, at least on one of the ambiguousfaces, are separated. In the case when positive nodesare separated on both ambiguous faces, then there isan internal ambiguity. In total, there are four di�erentcases:case 12.1.1 { positive nodes are separated on bothambiguous faces; their common positive node is com-pletely separated from other positive nodes;case 12.1.2 { positive nodes are separated on bothambiguous faces; their common positive node is joinedinside the cube with other positive nodes;cases 12.2 and 12.3 { these are mirror cases: posi-tive nodes are separated on one ambiguous face andare not separated on the other; in both cases an ad-ditional vertex should be used for the construction ofthe triangle model.Con�guration 13Con�guration 13 is the most complex con�guration.All six faces are ambiguous. Before beginning to con-sider the various cases, let us prove the following state-ment.Statement 1 The case in which positive nodes ontwo opposite faces are separated and on two other op-posite faces are non-separated, is not possible for con-�guration 13.Proof: Let us assume that statement 1 is not valid,and that on the bottom and top faces of a cude,the positive nodes are joined, and on the front andrear faces they are separated. Let A0; B0; C0; D0 andA1; B1; C1; D1 represent the values at the corner nodeson the bottom and top faces respectively (see Fig-ure 11). For the bottom and top faces we have:A0C0 > B0D0B1D1 > A1C1 (7)On the front and rear faces the following inequalitiesare valid: A0D1 < A1D0B1C0 < B0C1 (8)

Note that all products in all inequalities are positive;therefore multiplication of the left and right parts ininequalities (7) and (8) produces a contradiction:A0B1C0D1 > A1B0C1D0A0B1C0D1 < A1B0C1D0For the case of other pairs of opposite faces, we havethe same contradiction. Statement 1 is proven.
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B 0Figure 11: Case, not allowed for con�guration 13For con�guration 13, by reversing the node signs itis always possible to ensure that the number of faceswith separated positive nodes will be greater or equalto the number of faces where the positive nodes arejoined. Therefore, it is necessary to consider onlythose cases where the number of faces with separatedpositive nodes is equal to 6, 5, 4 or 3. The �rst threecases are the following:case 13.1 { positive nodes are separated on all faces;case 13.2 { positive nodes are separated on �ve facesand are joined on one face;case 13.3 { positive nodes are separated on fourfaces and are joined on two faces, which must be ad-jacent as follows from statement 1; for this case it isnecessary to use an additional vertex to construct thetriangle model.Now it remains for us to consider the cases whichhave three faces with separated positive nodes. Inaccordance with statement 1 these faces must be ad-jacent. Their common node can be either positive ornegative; in the case where it is positive, the internalambiguity arises:case 13.4 { the common node is negative; for con-struction of the triangle model it is necessary to usean additional vertex;case 13.5.1 { the common node is positive and iscompletely separated from other positive nodes; op-posite negative node is also completely separated fromother negative nodes;case 13.5.2 { the common node is positive and isjoined inside the cube with other positive nodes; oppo-7



site negative node is again completely separated fromother negative nodes.Note that resolution of the internal ambiguity canresult in a case where instead of the positive node, itsopposite negative node will be joined inside the cubewith other negative nodes. But this is not a di�erentcase, since by reversing the signs it can be transformedto case 13.5.2.Thus, six di�erent cases are possible for con�gura-tion 13, giving for all con�gurations 33 di�erent cases.5 ConclusionsIn this article we have presented an advancedmethod for the construction of isosurfaces inside acube. The concept of a topologically correct modelhas been formulated. It has been shown that thereare two kinds of ambiguity: the ambiguity on a faceand the internal ambiguity. Techniques for resolvingboth kinds of ambiguity have been considered. Finally,it has been shown that to cover all possible cases oftopological behaviour of the trilinear function speci-�ed for a cube, the set of topologically di�erent pat-terns should be increased from 15 to 33.The described method was implemented in theframework of the PAW/HIGZ project [7], which isbeing carried out at the European Organization forNuclear Research (CERN).References[1] W.E.Lorensen and H.E.Cline, \Marching Cubes:A High-Resolution 3D Surface Construction Al-gorithm", Proceedings of SIGGRAPH '87; orComputer Graphics, Vol. 21, No. 4, pp. 163-169,July 1987.[2] G.Wyvill, C.McPheeters and B.Wyvill, \Datastructures for soft objects", The Visual Com-puter, Vol. 2, No. 4, pp. 227-234, 1986.[3] M.J.D�urst, \Additional reference to MarchingCubes", Computer Graphics, Vol. 22, No. 2, pp.72-73, 1988.[4] H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Craw-ford and B.C. Teeter, \Two algorithms for thethree-dimensional reconstruction of tomograms",Medical Physics, Vol. 15, No. 3, pp. 320-327,May/June 1988.[5] J.Wilhelms and A.Van Gelder, \Topological Con-siderations in Isosurface Generation", ComputerGraphics, Vol. 24, No. 5, pp. 79-86, 1990.[6] G.M.Nielson and B.Hamann, \The AsymptoticDecider: Resolving the Ambiguity in MarchingCubes", Proceedings of Visualization '91, IEEEComputer Society Press, pp. 83-90, 1991.

[7] \PAW { Physics Analysis Workstation", CERNProgram Library Long Writeup Q121.
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