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Fig. 1. Neural dual contouring (NDC) is a unified data-driven approach that learns to reconstruct meshes (bottom) from a variety of inputs (top): signed or
unsigned distance fields, binary voxels, non-oriented point clouds, and noisy raw scans. Trained on CAD models, NDC generalizes to a broad range of shape
types: CAD models with sharp edges, organic shapes, open surfaces for cloths, scans of indoor scenes, and even the non-orientable Mobiiis strip.

We introduce neural dual contouring (NDC), a new data-driven approach to
mesh reconstruction based on dual contouring (DC). Like traditional DC, it
produces exactly one vertex per grid cell and one quad for each grid edge
intersection, a natural and efficient structure for reproducing sharp features.
However, rather than computing vertex locations and edge crossings with
hand-crafted functions that depend directly on difficult-to-obtain surface
gradients, NDC uses a neural network to predict them. As a result, NDC
can be trained to produce meshes from signed or unsigned distance fields,
binary voxel grids, or point clouds (with or without normals); and it can
produce open surfaces in cases where the input represents a sheet or partial
surface. During experiments with five prominent datasets, we find that
NDC, when trained on one of the datasets, generalizes well to the others.
Furthermore, NDC provides better surface reconstruction accuracy, feature
preservation, output complexity, triangle quality, and inference time in
comparison to previous learned (e.g., neural marching cubes, convolutional
occupancy networks) and traditional (e.g., Poisson) methods. Code and data
are available at https://github.com/czq142857/NDC.
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1 INTRODUCTION

Polygonal mesh reconstruction from discrete inputs such as point
clouds and voxel grids has been one of the most classical and well-
studied problems in computer graphics [Berger et al. 2017; De Araujo
et al. 2015]. Current solutions to the problem are predominantly
model-driven, often relying on assumptions such as those related
to shape characteristics (e.g., watertightness, zero genus, etc.), sur-
face interpolants (e.g., trilinearity), sampling conditions, surface
normals, and other reconstruction priors. It is only recently that
a few data-driven meshing methods have emerged. However, they
have mostly focused on learning point set triangulations [Liu et al.
2020; Rakotosaona et al. 2021; Sharp and Ovsjanikov 2020]. One ex-
ception is Neural Marching Cubes (NMC) [Chen and Zhang 2021], a
learning-based Marching Cubes (MC) approach for mesh reconstruc-
tion from a voxel grid of signed distances or binary occupancies.
In comparison to the original MC algorithm [Lorensen and Cline
1987] and its best-known variant, MC33 [Chernyaev 1995], NMC
uses tessellation templates with more adaptive mesh topologies and
learns local shape priors from training meshes. As a result, NMC
generalizes well to a broader range of shape types and excels at
preserving sharp features, two long-standing issues in existing MC
work. On the other hand, the NMC tessellation templates are neces-
sarily more complex than those of MC and MC33. As a result, NMC
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Tessellation in each cell is
retrieved from a lookup table,
according to the corner signs.

MC input: signed distances
at cell corners. Note that
gradients are not provided.

The positions of the edge
intersection points are computed
from the signed distances.

Fig. 2. Dual Contouring (DC) vs. Marching Cubes (MC) - visualized in
2D on different inputs that were sampled from the same underlying shape,
DC (top) reconstructs a sharp feature (as an intersection between faces, in
the top-right cell), while MC (bottom) does not.

typically outputs 4-8 times the number of triangles and incurs 100x
or more compute time to reconstruct a mesh.

In this paper, we introduce Neural Dual Contouring (NDC), a
new data-driven approach to mesh reconstruction based on dual
contouring (DC) [Ju et al. 2002]. The key motivation for building our
learning framework upon DC rather than MC is that it provides a
more natural and more efficient means of reproducing sharp features.
As shown in Figure 2, NDC only needs to predict one mesh vertex
per grid cell (i.e., a cube) and one quad for each cell edge intersected
by the underlying surface. In contrast, NMC requires 23 edge, face,
and interior vertices per grid cell [Chen and Zhang 2021, Fig.5].

A traditional drawback of the classical DC, as compared to MC, is
that it requires gradients (i.e., surface normals) as input to compute
a suitable vertex location within each cell. Our data-driven approach
does not have this drawback. NDC employs a neural network trained
on example 3D surface data to predict the vertex locations (Figure 3).
Our neural network learns to compute whatever gradients and/or
contexts that are useful to reproduce the training surfaces, and thus
can operate on a voxel grid without gradients as input.

Another key feature of DC is that its meshing only requires know-
ing whether a cell edge is intersected by the output surface or not [Li
et al. 2010]. We can thus train our network to predict an intersection
or crossing flag per edge, in addition to vertex locations, without
accounting for signs at cell corners (Figure 4). We refer to this ver-
sion of our network as unsigned NDC, or UNDC for short. With
the sign-agnostic UNDC, we can forgo both the input requirement
on signed distances and the output requirement that the resulting
mesh is closed and watertight, as for MC and its variants.

Our learning model is built with 3D convolution neural networks
(CNNis) separately trained for vertex prediction and the prediction
of cell corner signs (NDC) or edge crossings (UNDC)'. Our network

!Note that in the rest of the paper, we use the term NDC to refer to both our overall
dual contouring based learning framework and the specific network that reconstructs
meshes based on sign prediction (Figure 3). On the other hand, the term UNDC is used
exclusively to denote the sign-agnostic version of our method (Figure 4).
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Fig. 3. Neural dual contouring (NDC)
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another network.

For each edge, a quad face is
generated (or not) according to the
predicted edge intersection flags.

A network predicts edge intersection
flags, i.e., whether an edge intersects
the shape surface or not.

Fig. 4. Unsigned neural dual contouring (UNDC)

training is supervised with an L2 reconstruction loss against pseudo
ground-truth vertices computed by DC and binary cross entropy loss
for sign/crossing predictions. As in NMC, our CNNs are designed
with limited receptive fields to ensure generalizability.

We train our NDC networks on a CAD dataset, ABC [Koch et al.
2019], and we test them on ABC and four other datasets to assess
generalizability: 1) Thingi10K [Zhou and Jacobson 2016], a dataset
of 3D-printing models, 2) FAUST [Bogo et al. 2014], a dataset of
human body shapes, 3) MGN [Bhatnagar et al. 2019], a dataset of
clothes as open surfaces, and 4) Matterport3D [Chang et al. 2017], a
collection of scenes with noisy RGB-D depth images. Quantitative
and qualitative evaluations on isosurfacing using voxel data as input
suggest that NDC clearly outperforms MC33 and several variants of
NMC in terms of mesh reconstruction quality, feature preservation,
triangle quality, and inference time, when using signed (distances
or binary voxels) grids as inputs. At the same time, NDC produces
4-8 times fewer mesh elements using 3-20 times less inference time,
compared to NMC. Further experiments with point cloud inputs
suggest that UNDC outperforms both classical non-learning based
methods, such as Ball Pivoting [Bernardini et al. 1999], Screened
Poisson reconstruction [Kazhdan and Hoppe 2013], and recent re-
constructive neural networks such as SIREN [Sitzmann et al. 2020],
Local Implicit Grids [Jiang et al. 2020], and Convolutional Occu-
pancy Networks [Peng et al. 2020]. Qualitative and quantitative
results show significant improvements for NDC in terms of recon-
struction quality, feature preservation, and inference time. Our main
contributions can be summarized as follows:

e We propose the first data-driven approach to mesh reconstruction
based on dual contouring. Unlike classical DC, which optimizes
vertex locations within the confines of individual cells using a
handcrafted Quadratic Error Function (QEF) [Garland and Heck-
bert 1997], NDC predicts vertex locations using a learned function,
which eliminates the need for gradients in the input and accounts
for local contextual information inherent in the training data.



Table 1. Comparing various aspects of NMC vs. NDC.

NMC NDC
Output 5 (bool)+51 (float) per cube 1 (bool)+3 (float) per cube
Network 3D ResNet 6-layer 3D CNN
Totuion Ml b, vt o 1
Output vertex count ~ 8x MC ~MC
Output triangle count ~ 8x MC ~MC

Data preparation

Sample dense point cloud
in each cube; minimize
chamfer distance via back
propagation; complex
and time-consuming

Sample only vertex
signs, intersection points
and normals; then apply

Dual Contouring; Fast
and easy to compute.

Need to consider all Could be a nice

Implementation cube tessellation cases; undergraduate
difficult to implement assignment
Need a complex No regularization
Regularization regularization term term needed

for voxel input

(On ABC training set)
4 days per network
(64® SDF input)
> 1 second per shape

(Same setting)

Trainging ti
rainging time < 12 hours per network

(Same setting)

Infe d
nierence spee 30+ shapes per second

Non-manifold
edges and vertices

Self-intersections, thin

Inherent i . .
nherentissues triangles with small angles

o A unified learning model that is applicable to a larger variety of
inputs than previous meshing methods. As shown in Figure 1, the
allowed inputs include signed/unsigned distance fields, binary
voxels, and un-oriented point clouds.

e A significant, 23:1, reduction in representational complexity by
NDC over NMC translates to across-the-board gains, in terms
of simplicity of the network architecture, as well as reduction
in network capacity, training and inference times, and more; see
Table 1 for a summary.

o A sign-agnostic network, UNDC, that can produce open, even
non-orientable, output surfaces; see Figure 1.

2 RELATED WORK

The literature on mesh reconstruction is extensive and so we refer to
several surveys for full coverage [Berger et al. 2017; De Aratjo et al.
2015]. In this section, we focus on techniques for isosurfacing (i.e.,
mesh extraction from discrete volume data) and surface reconstruc-
tion from point cloud data, with a focus on the recent data-driven
approaches most closely related to our work. Then in Section 2.3,
we formally define dual contouring (DC), establish notations used
throughout the paper, and compare DC to marching cubes.

2.1 lsosurfacing and differentiable reconstruction

The marching cubes (MC) approach for isosurfacing from discrete
signed distances was first proposed concurrently by [Lorensen and
Cline 1987] and [Wyvill et al. 1986]. Since then, many variants
have followed, including the best-known MC33 [Chernyaev 1995],
which correctly enumerated all possible topological cases for mesh
tessellations, based on the trilinear interpolation assumption. Indeed,
most of the MC follow-ups made the same assumption and are
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unable to recover sharp features. This issue was resolved by neural
marching cubes (NMC) [Chen and Zhang 2021], which combines
deep learning with MC for the first time, building on the premise
that feature recovery can be learned from training meshes.

Our work is inspired by NMC. In NDC, we combine deep learning
with dual contouring (DC) [Ju et al. 2002] to bring key advantages
of classical DC over MC into a learned mesh reconstruction model,
without requiring any additional inputs (e.g. gradients). In addition
to improved efficiency and reconstruction quality (see Section 4),
our method also represents the first unified mesh reconstruction
framework that can take on all the input types shown in Figure 1.
To the best of our knowledge, no previous methods were designed
to reconstruct meshes from unsigned distance fields.

Several recent works, including deep marching cubes (DMC) [Liao
et al. 2018], MeshSDF [Remelli et al. 2020], and Deformable Tetrahe-
dral Meshes (DefTet) [Gao et al. 2020], propose differentiable mesh
reconstruction schemes. While both these methods and NDC bring
deep learning to mesh reconstruction, their focuses and strengths
are quite different. DMC, MeshSDF, and DefTet all target end-to-end
differentiability, while offering limited capabilities to reconstruct
geometric and topological details. They also encode global features
for their predictions, which can hinder both scalability, reconstruc-
tion quality (as downsampling is necessary during training), and
generalizability. In contrast, our work focuses on learning a refined
meshing model applicable to a variety of inputs. We target fine-
grained quality criteria related to feature preservation and surface
quality. Our learning model is also local, hence highly scalable and
generalizable to diverse shape types and classes.

2.2 Mesh reconstruction from point clouds

Many methods have been proposed for surface mesh estimation
from unorganized points. Following the taxonomy in [Berger et al.
2017], previous works can be characterized based on the underly-
ing priors, e.g., smoothness [Kazhdan and Hoppe 2013], visibility
[Curless and Levoy 1996], dense sampling [Amenta et al. 1998], prim-
itives [Schnabel et al. 2009], and learning from data [Williams et al.
2019]. Among the methods based on data priors, some compose sur-
faces explicitly from patches extracted from examples [Funkhouser
et al. 2004; Pauly et al. 2005; Shen et al. 2012]. Others learn implicit
priors, either for entire objects [Chen and Zhang 2019; Chibane et al.
2020; Mescheder et al. 2019; Park et al. 2019; Peng et al. 2021] or for
patches [Badki et al. 2020; Groueix et al. 2018; Hanocka et al. 2020;
Jiang et al. 2020; Mi et al. 2020; Peng et al. 2020; Sitzmann et al. 2020;
Williams et al. 2019]. Both NMC [Chen and Zhang 2021] and NDC
are in the latter category: they learn implicit priors for local regions.

Surface reconstruction methods also differ in whether they can
work for input point clouds without normals [Atzmon and Lip-
man 2020; Tang et al. 2021], whether the output mesh interpolates
the input points via triangulation [Liu et al. 2020; Rakotosaona
et al. 2021; Sharp and Ovsjanikov 2020], and whether they can pro-
duce open surfaces from partial scans, e.g., via an advancing front
scheme [Bernardini et al. 1999; Cohen-Steiner and Da 2004]. Of
course, normals can be estimated in a preprocessing step (e.g., us-
ing [Boulch and Marlet 2012]), and open surfaces can be created
from watertight reconstructions in a postprocessing step (e.g., using
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SurfaceTrimmer in [Kazhdan and Hoppe 2013]). However, these
separate steps rely on heuristic algorithms with parameters that are
difficult to tune (e.g., size of neighborhood for normal estimation,
density of points for surface trimming, etc.). By comparison, our
UNDC includes all these steps in a single learned process that can
produce open, even non-orientable, meshes directly from unori-
ented point cloud inputs, with fast inference. Also, our method is
non-interpolatory, hence insensitive to sampling non-uniformity
and noise (with noise augmentation in training). In Section 4.6, we
compare UNDC with several representative learning-based recon-
struction networks [Jiang et al. 2020; Peng et al. 2020; Sitzmann et al.
2020] whose results are most competitive to ours. Technical details
about these works are described in the supplementary material.

2.3 Dual Contouring (DC)

Ju et al. [2002] introduced Dual Contouring to convert a Signed
Distance Field @ : R? — R into a polygonal mesh M = (V,F);
see Figure 2 (top). This is achieved by discretizing the function
on a lattice G = (X, &). It first samples the ® at the grid vertices
X and determines their signs S. Then, it finds the zero crossings
VE of the ® on the lattice edges spanning vertices with opposite
signs. Next, it computes the gradients of the ® at those crossings,
which provide surface normals N°€. Finally, it creates quadrilateral
polygonal faces ¥ that are dual to the lattice edge crossings &.
In what follows we have |X| = M x N x K lattice vertices, |E| =
(M —-1) X (N —-1) x (K - 1) x 3 lattice edges, and we index X by
(m, n, k), while we refer to edges as (i, j) € &. Dual contouring
assumes as input:

S e BIX, S=fs(0,6), (grid signs) (1)
VEeRIEPS YO (9,G), (edge vertices)  (2)
NE eRrIEPS — NE = fae(®,G),  (edge normals)  (3)

where, analogously to marching cubes [Lorensen and Cline 1987],
S are the signs of ® on the lattice vertices, that is fg : sign(®(X)),
feye computes the zero-crossings of ® along the lattice edges, and
fne VO(VE) are the gradients of ® measured at V&, Given these
quantities, dual contouring generates a polygonal mesh, consisting
of quad faces and corresponding vertices:

F = fr(S), (4)
V = fy(VENO), )

F e Bl
v €R|X|x3’

where, with a slight abuse of notations, we use the same nomen-
clature fg for a polygonal face (i.e. tuple of vertex indices) and the
Boolean value that determines whether the face should be created.

Dual faces ¥ are created only whenever lattice edges connect
lattice vertices of opposite signs S:

fFixor(S;,S;j), (i,j) €&. (6)

Vertices are created by triangulating, a-la Garland and Heckbert
[1997], the planar constraints defined on the edges of each voxel in
the lattice:

fv: arg;nin Z (NEe - (x-VE))2, (7)

€€EGmnk

where Gp,ni refers to the voxel rooted at Xk, and e iterates the
12 edges of the voxel.

Comparison to MC. DC has the drawback that it assumes the
availability of the function’s gradients N'€. This perhaps justifies
why it has not been as popular as MC, which only requires signs (1)
and zero-crossings (2). Nonetheless, the mesh creation mechanism of
dual contouring is significantly simpler than the one in MC, where
the former involves simple Boolean operations, while the latter
involves enumerating all possible combinations and employing look-
up tables that define the corresponding topology. Further, note that
MC tends to discard high frequency information (i.e. sharp corners),
DC is capable of preserving such details to a much better extent.

3 METHOD

In this paper, we introduce a learning framework, neural dual con-
touring (NDC), that achieves the simplicity and sharp features of DC
without requiring function gradients in the input. Given any com-
mon input representation J (e.g. point cloud, signed or unsigned
distance functions, or voxelized grids), NDC can be formalized by
a simple generalization of Equations (1, 4, 5). In particular, we in-
troduce two different techniques, illustrated with a 2D example
in Figure 3 and Figure 4, and detailed in what follows.

The first, and default, variant of our method, which reconstructs
meshes based on sign prediction, is simply referred to as NDC. It
can be algebraically formalized as:

S =fs(1.G; 0),
NDC(1) =1V = fy(1.G: 0), ®
F =xo0r(S;, Sj).

The logic controlling whether a face should be generated is identical
to classical DC, while vertices and signs are predicted by neural
networks (with trainable parameters 6) that receive as input 7. At
the same time, the input requirements of NDC are closer to the ones
of MC and NMC: we do not require the availability of normals as
in classical DC since we do not perform explicit optimizations for
vertex locations using (7). Instead, vertex positions are predicted
with a network trained from examples.

The second variant, named UNDC, with U denoting “unsigned”,
is similar to NDC, but it directly predicts the existence of dual faces
¥ rather than resorting to sign prediction:

V=fy.G:0),
F =f#7(1.G; 0).

The key advantage of this variant is that it can produce surface
crossings without having to rely upon differences of inside/outside
signs at grid cell vertices. This feature allows UNDC to operate on
unsigned distance fields or non-oriented point clouds (we employ
the prefix U to indicate this variant’s ability to operate on unsigned
inputs). It also allows UNDC to produce mesh faces, likely in the
form of thin sheets, in regions where the underlying object parts are
thinner than one voxel. Clearly, such thin parts are not representable
by differences of grid vertex signs, and as a result, methods including
MC, NMC, as well as NDC, would not be able to reconstruct them
at all; see Figure 8 in Section 4. Additionally, UNDC can produce
open surfaces with boundaries directly for input data representing

UNDC(J) = { (O]
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Fig. 5. Training data preparation with data augmentation - The
ground truth meshes computed using classical DC (a) can be noisy. With
proper augmentation for the training data (see bottom), our NDC network

can be trained to output meshes with better tessellation quality (b).

partial surfaces. These advantages are in contrast to other methods
like MC and variants that guarantee their outputs to be watertight
and can represent only solid objects without thin features.

3.1 Encoders

Let us now consider the design of fq,, fs, and f& for different types
of input 7: @ signed/unsigned distance functions, @ voxelized
occupancy, and @ point clouds.

Distance Function Inputs. When a Signed Distance Function (SDF)
® is provided as input, our model f« first samples the function ®
at the grid vertices X into a floating point tensor of shape |X|. We
then use a 3D CNN to process this tensor; the 3D CNN has 6 layers,
with the first 3 layers having kernel size 3> and the last 3 layers
having kernel size 13, an overall receptive field of 73. We employ
hidden layers with 64 channels to make the network computation-
ally efficient (i.e. 37 fps) as it has few network weights (i.e. IMB).
Leaky ReLU activation functions are employed everywhere except
at the output layer where sigmoids are used. Note that when NDC
operates on SDFs, fg is extremely efficient as it just requires the
computation of a sign at lattice locations similarly to classical dual
contouring. Finally, the architecture of f# for the UNDC model is
the same as f, in the NDC model.

Voxelized Occupancy Inputs. For this class of inputs, we use a
network with almost the same architecture as for SDF input, but
with a small modification to enlarge the receptive field to 15> (i.e.
employ 7 rather than three 3 convolutional layers). Our rationale
is that voxelized occupancies are heavily quantized, and a larger
receptive field would allow the network to develop stronger priors
to cope with the larger degree of ambiguity in the data.

Point Cloud Inputs. For point cloud inputs, we devise a local point
cloud encoder network divided into two parts: @ point cloud pro-
cessing and @ regular grid processing. The former is implemented
as a dense PointNet++ [Qi et al. 2017b], while grid processing has
three 3% convolution layers and three 13 convolution layers, hence
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of a similar architecture to the one used for inputs represented as
grids. The network architecture is shown in Figure 6. Further details
are available in the supplementary material.

3.2 Training data preparation

To obtain the training data, we place random 3D mesh objects in
the grid G to compute signs, intersection points, and corresponding
ground truth normals?, and then apply classical DC to obtain the
ground truth vertex predictions. However, this process can result in
aliased normals, which can lead to poorly positioned vertices after
the optimization in (7); see Figure 5-(left).

While this situation might seem problematic at first, we make
the same observation made by Lehtinen et al. [2018] in this setting.
In particular, the use of an L2 reconstruction loss, coupled with
data augmentation, leads to a zero-mean distribution in the ver-
tex positions predicted by our model; see Figure 5-(b). To achieve
this zero-mean distribution of optimization residuals, we augment
the training data by rotation (by /2 around the Euclidean axes),
mirroring, and (global) sign inversion. Note this augmentation is
not done within a mini-batch, but rather, we rely on stochastic gra-
dient descent for aggregating data towards a zero-mean residual
configuration progressively over the course of training.

3.3 Training losses

Given ground truth data, note that all the sub-networks within
the NDC and UNDC models can be trained separately, leading to a
simpler training setup where no hyper-parameter tuning between
losses becomes necessary. Note that we leverage our input data to
only supervise the prediction made by the networks in a narrow-
band around the input surface, with binary masks Mg, M« that
evaluate to one if we are within the narrow-band, and zero other-
wise; see the supplementary material for additional details. This
is because surfaces should only be created in the proximity of ei-
ther changes in the sign of @, in occupancy for voxelized inputs, or
proximity of the input points for point cloud inputs. We start with
a simple L2 reconstruction loss of pseudo ground-truth vertices (i.e.
as computed by dual contouring):

Ly(0) =B(1 My -0 ., [IMy 0 (Fy(Z.6; 0) - Vll3].
m,n,k

where © is the Hadamard product on G. For NDC, we supervise the
prediction of signs via Binary Cross Entropy (BCE):

L5(0) =E(1,Ms,8,)~D Z [Ms ©BCE (fs(I,G; 6),Sgt)] -
m,n,k
Finally, for UNDC the loss L#(0) is analogous to £ g(8), and hence
we do not repeat its definition.

3.4 Post-processing

When UNDC is operating on sparse or noisy point clouds, the func-
tion fr(7, G; 0) that predicts grid edge crossings can make mis-
takes, leading to small holes in the output mesh. Empirically, the
holes are typically small and isolated (see Table 8), and so we can
use a simple post-processing step to close them. We employ our

2Note that these intersection points and normals were utilized to create the pseudo-
ground truth at training time; they are not used at test time.
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Fig. 6. The architecture of our point cloud processing network for UNDC.
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(a) Input point cloud and the
mesh before post-processing

’
(b) The tessellation of the
mesh before post-processing

(c) The mesh after
post-processing

Fig. 7. Post-processing UNDC outputs — The post-processing step can
close small holes by adding quad faces.

tensor representation of the mesh ¥ € B €] to determine boundary
edges from M, and we flip Boolean entries in # that would result
in three/four edges to change their boundary state; see Figure 7.
These post-processing steps are executed on the GPU, resulting in a
negligible impact on the overall inference time.

4 RESULTS AND EVALUATION

We ran a series of experiments with NDC and UNDC to evaluate
their performance in comparison to previous methods for a vari-
ety of input types, including SDFs, unsigned distance fields (UDF),
binary voxel grids, point clouds, and depth image scans.

4.1 Datasets, training, and evaluation metrics

In all of our experiments, we train NDC and UNDC on the ABC
dataset [Koch et al. 2019] following the protocols in NMC [Chen and
Zhang 2021]. The ABC dataset consists of watertight triangle meshes
of CAD shapes, which are characterized by their rich geometric
features including both sharp edges and smooth curves, as well
as their topological varieties. We only use the first chunk of ABC
dataset for our experiments. We split the set into 80% training (4,280
shapes) and 20% testing (1,071 shapes). During the data preparation,
we obtain meshes over 323 and 64° grids to train our network. We
evaluate the methods on the test set of ABC.

Generalization. To assess generalization capabilities of the meth-
ods, we evaluate on four other datasets, also following the experi-
mental settings as in NMC [Chen and Zhang 2021]. The additional
test sets include 2,000 shapes from Thingil0K dataset [Zhou and Ja-
cobson 2016], a dataset of 3D-printing models; 100 shapes of human
bodies from FAUST dataset [Bogo et al. 2014], a dataset of organic
shapes; several shapes in MGN [Bhatnagar et al. 2019], a dataset of
clothes with open surfaces; and several rooms from Matterport3D

[Chang et al. 2017], a dataset containing scans of indoor scenes ac-
quired with depth cameras. In all cases, we evaluate NDC and UNDC
after training on the ABC training set without any fine-tuning.

4.2 Metrics

We evaluate surface reconstructions quantitatively by sampling
100K points uniformly distributed over the surface of the ground
truth shape and the predicted shape, and then computing a suite of
metrics that evaluate different aspects of the reconstruction. The
metrics are divided into five groups.

Reconstruction accuracy. We use Chamfer Distance (CD) and F-
score (F1) to evaluate the overall quality of a reconstructed mesh.
The metrics are good at capturing significant mistakes such as miss-
ing parts, but may not be informative for evaluating the visual
quality. Therefore, we introduce other metrics to evaluate sharp
feature preservation and surface quality.

Sharp feature preservation. We follow NMC [Chen and Zhang
2021] and use Edge Chamfer Distance (ECD) and Edge F-score (EF1)
to evaluate the preservation of sharp edges. For a given shape, points
are sampled near sharp edges and corners to form a set of edge
samples. The ECD and EF1 between two shapes are simply the CD
and F1 between their edge samples.

Surface quality. As in many other papers, we use Normal Consis-
tency (NC) to evaluate the quality of the surface normals. However,
NC is similar to CD and F1 in that it mainly captures significant mis-
takes and neglects small mistakes which contribute significantly to
visual artifacts. Therefore, we break down NC to show the percent-
age of inaccurate normals (% Inaccurate Normals, or %IN) according
to a threshold. To compute %IN, for each point sampled from shape
A, we find its closest point in the points sampled from shape B, and
then compute their angle. If the angle is larger than the threshold,
the point from A is labeled as having an inaccurate normal. %IN (gt)
is the percentage of points sampled from the ground truth shape that
have inaccurate normals. %IN (pred) can be obtained similarly on
points from the predicted shape.3 Another aspect of mesh quality is
the number of small angles in the reconstructed triangles. Therefore,
we also report the percentage of small angles that are smaller than
a threshold, as % Small Angles, or %SA.

3Note that these two metrics are the surface normal counterparts of the two terms
assembling the symmetric Chamfer Distance.



Table 2. Quantitative evaluation on ABC with SDF (signed or unsigned)
inputs at two resolutions, evaluated on the test set split, using mesh quality
metrics, output complexity, and inference times.

643 CD| F1T NC! ECD| EF11 #V #T  Inference
SDF input (x10%) (x10%) time
NMC 4365 0.878 0976 0340 0766 42,767 85544  1.148s
NMC-lite 4356 0.878 0975 0338 0767 21,933 43,877  1.135s
DC-est 4673 0827 0958 3.810 0.167 5459 10,969  0.421s
MC33 4873 0788 0950 5759 0.103 5473 10,954  0.005s
NMC* 4400 0.874 0972 0409 0715 42767 85544  0.158s
NMC-lite* 438 0.875 0973 0416 0725 21,933 43,877  0.153s
NDC 4463 0867 0970 0338 0745 5459 10,969  0.027s
UNDC 0.930 0873 0.974 0328 0.746 5584 11,295  0.051s
UNDC (UDF) 0960 0.868 0971 0379 0735 5692 11,420  0.053s
1283 CD] F1T NC! ECD| EF17 #V #T  Inference
SDF input (x10%) (x10%) time
NMC 4129 0882 0979 0204 0.806 175926 351,867  8.991s
NMC-lite 4117 0882 0979 0231 0.808 88419 176,853  8.984s
DC-est 4132 0879 0977 2215 0266 22,088 44,213  1.765s
MC33 4144 0870 0972 4247 0.193 22,048 44,107  0.030s
NMC* 4116 0.882 0978 0257 0779 175926 351,867  1.126s
NMC-lite* 4114 0882 0979 0285 0785 88419 176,853  1.112s
NDC 4131 0881 0978 0214 0.802 22088 44,213  0.207s
UNDC 0.789 0.890 0.983 0.149 0.813 22,578 45411  0.410s

UNDC (UDF) 0.792 0.889 0.983 0.227 0.810 22,874 45,715 0.409s

Table 3. Quantitative results on Thingi10K with SDF input.

1283 CcD| F17 ECD| EF1] #V #T %IN %SA
SDF input (x10°) (x10%) >5° < 10°
MC33 2421 0.890 2.657 0.197 22,324 44,656  19.08 2.43
NMC* 2.613  0.902 0.269 0.760 169,211 338,427 20.99 0.77
NMC-lite* 2.651 0902 0.254 0.772 89,260 178,527 17.04 1.74
NDC 2300 0901 0.215 0.792 22,295 44,631 12.52 0.24
UNDC 0.757 0.904 0.189 0.795 22,478 45,043  12.66 0.29

UNDC (UDF) 0.748 0.903 0.222 0.785 22,784 45395 13.19  0.28

Table 4. Quantitative results on FAUST with SDF input.

1283 CD| F1T ECD| EF17 #V #T  %IN %SA
SDF input (x10°%) (x10%) >5° < 10°
MC33 0.453  0.985 0.086 0.387 12,551 25,076 34.28  4.23
NMC* 0385 0.990 0.146 0.552 83,024 166,038 44.58  1.18
NMC-lite* 0381 0991 0.119 0.567 50,207 100,404 3833  2.63
NDC 0397 0.989 0.044 0.530 12,538 25100 3838 0.11
UNDC 0.362 0.992 0.038 0.574 12,609 25258 37.38 0.16

UNDC (UDF) 0365 0.991 0.045 0549 12,682 25293 3872 0.21

Triangle & vertex counts. We count the number of vertices (#V)
and triangles (#T) in the output shape to reveal the fidelity-complexity
trade-off. Note that while our method generates quad faces, we al-
ways randomly split each quad into two triangles for evaluations
and visualizations.

Inference time. We report inference times (seconds per shape) for
the methods tested on the ABC test set. Timings are collected on
the same machine with one NVIDIA GTX 1080ti GPU.

4.3 Reconstruction from SDF

We first test NDC and UNDC on mesh reconstruction from grids of
signed distances, and compare them to Marching Cubes 33 (MC33)
(an improved version of MC to guarantee topological correctness in
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Fig. 8. Mesh reconstruction results from SDF grid inputs at a relatively low
resolution of 643. The shapes in the first three columns are from ABC test
set, and the last column from Thingi10K. Zoom in to see various surface
artifacts and artifacts near edges on NMC-lite* and NMC™ results, broken
meshes from MC33 (red arrows), and non-manifold edges from NDC and
UNDC (green arrows). Pay special attention to the thin sheets (blue arrows)
reconstructed by the sign-agnostic UNDC, which correspond to parts of

the ground truth shape that are thinner than one voxel. In contrast, none of
the other methods (a-e) could even recover any of these thin parts.

each cube [Chernyaev 1995; Lewiner et al. 2003]), classical DC with
estimated normals (DC-est), and two versions of Neural Marching
Cubes (NMC and NMC-lite) [Chen and Zhang 2021].

DC-est takes the same SDF input as our method, obtains gradient
values at grid points by local differentiation over the SDF, and runs
the classical DC [Ju et al. 2002] as described in Figure 2 by estimating
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Fig. 9. Mesh reconstruction results from SDF grid inputs at 128% resolution
on the FAUST dataset; see insets to compare triangle quality.
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Fig. 10. Qualitative results of mesh reconstruction from UDF inputs at
1283 resolution on two cloth shapes from the MGN dataset. Note the open
surfaces reconstructed by our sign-agnostic method UNDC.

% Inaccurate Normals (gt) % Inaccurate Normals (pred)

% Small Angles

50% 1y 50% 10%

40% 40%

30% 30%

20% 20% 4%

10% 10% 2%

0% 0% 0%
1 6° 11° 16° 1° 6° 1r° 16° 1 11° 210 3r

Normal error threshold Normal error threshold Small angle threshold
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Fig. 11. Some plots of surface quality (via % of Inaccurate Normals) and
triangle quality (via % of Small Angles), on ABC test set with 64> SDF input.
NDC and UNDC consistently outperform other isosurfacing methods.

the intersection points and their gradients via linear interpolation.
Since NMC and NMC-lite use large networks to ensure the qual-
ity of the output meshes, which makes the inference significantly
slower, we replace the large backbone networks in them with our
6-layer CNN to obtain NMC* and NMC-lite*, in order to have a fair
comparison on reconstruction quality with respect to the inference
time. In addition, we include the results of UNDC when the input
is a grid of unsigned distances as UNDC (UDF). Since there is no
method to reconstruct meshes from grids of unsigned distances to
our knowledge, we do not compare it with other methods.

We show visual results in Figure 8, with more results provided in
the supplementary material. We report the quantitative results on
the ABC test set in Table 2. To make the paper compact, we reduce
the sizes of the tables by removing some less representative metrics.
The full tables can be found in the supplementary material.

Reconstruction accuracy. NDC and UNDC consistently outper-
form model-driven MC33 and DC-est in terms of CD and F1. Clearly,
normal estimation is not expected to be accurate, especially near
sharp features. The results of DC-est are similar to or slightly better
than those of MC33, as shown in Figure 8 and Table 2.

Although the network size has been significantly reduced in
NMC* and NMC-lite*, they usually have slightly better results than
NDC, since, given the same input resolution, Marching Cubes meth-
ods are able to reconstruct more inner structures inside each cube
with their abundant tessellation templates, while NDC cannot due
to its simple tessellation design. However, NMC and NMC-lite are
significantly worse than UNDC in CD, even with their original large
networks, due to the fact that UNDC can reconstruct thin structures
which NMC methods and NDC cannot. Visual results in Figure 8
show some examples. Note in the first and the third columns (blue
arrows), some thin structures are not reconstructed by any methods
other than UNDC. In the fourth column and in Figure 9, we show
that even on smooth shapes, NDC and UNDC can preserve more
details, such as the crevices, compared to MC33. However, in the
second column (green arrows), we show failure cases from NDC
and UNDC, where the walls of the tube are merged together with
non-manifold edges, as a result of their simpler tessellations in each
cube - this problem does not occur in NMC”.

Sharp features. As shown in Tables 2, 3, and 4, NDC and UNDC
consistently outperform MC33, DC-est, NMC*, and NMC-lite*, in
ECD and EF1, for feature preservation. The only exception is the EF1
in Table 4, which may be due to NDC’s tessellation being too simple
to handle the fine structures of human shapes, e.g., the fingers.

Normal quality. Since the compared methods generally have simi-
lar point-wise reconstruction accuracies, the quality of the generated
surfaces in terms of visual appearance can be a better differentiator.
We consistently observe that after switching to smaller networks,
NMC* and NMC-lite* tend to generate noisy surfaces even over flat
regions, as shown in Figure 8 (c-d). We use %IN (IN = inaccurate nor-
mals) as a means to quantify the quality of surface normals, which
correlate with surface quality. Figure 11 shows the %IN-threshold
curves on the ABC test set, where the normal errors of NDC and
UNDC are noticeably less than those from other methods for small
threshold values, which is consistent with our visual observation
that NMC* and NMC-lite* outputs exhibit more surface artifacts.

Triangle quality. In Figure 11, we show %SA-threshold (SA = small
angles) curves for various methods on the ABC test set, showing
that NDC outperforms the others in triangle quality, with UNDC
coming close. A visual comparison can be found in Figure 9.

Triangle and vertex count. The #V and #T in Table 2 show that the
vertex and triangle numbers of NDC and UNDC are very similar
to those of MC33. NMC and NMC-lite produce more vertices and
triangles due to their complex cube tessellation templates.



Inference time. With no deep networks involved, MC33 is un-
doubtedly the fastest, as shown by the inference times in Table 2.
With our light network design, NDC and UNDC are next in line
in terms of speed. Since NDC does not need sign predictions, it is
half the size of and twice as fast as UNDC, running in real time
on an NVIDIA GTX 1080ti GPU. With the newer RTX 3090 being
twice as fast as GTX 1080ti, we expect UNDC to also run in real
time on a higher-end GPU. In comparison, the original NMC and
NMC-lite require more than a second to test on an input grid of
64°. Even after we replace their networks with our light designs,
NMC* and NMC-lite* are still 2-4 times slower than UNDC and NDC,
due to their more complex cube tessellations. Finally, the inference
time for classical DC is far from optimal as we employed our own
implementation of DC-est with an unoptimized QEF solver.

Robustness to translation and rotation. We highly encourage the
readers to watch the video in the supplementary material where we
test the methods on a shape while moving and rotating the shape
inside the sampling grid. It clearly shows that NDC and UNDC are
the most robust compared to others.

Varying input grid resolutions. We report quantitative results ob-
tained by the various methods on 64° and 128% input resolutions
in Table 2. When increasing the input resolution, the gap of recon-
struction accuracy diminishes, as reflected by CD and F1. But NMC*
and NMC-lite* will always produce significantly more vertices and
triangles, and take more time to process a shape.

Generalizability. To show the generalizability of our method, we
show the quantitative results on Thingi10K and FAUST in Table 3
and 4, respectively. Visual results can be found in Figure 8 and 9.
All data-driven methods are only trained on the ABC training set.
These results are consistent with our analysis above. Specifically, in
terms of surface quality, we show %IN (pred) with error greater than
5° in Table 3 to show that NMC* and NMC-lite* have more surface
artifacts. However, on organic shapes from FAUST, MC33 outper-
forms deep learning methods, as shown by %IN (pred) in Table 4. It
makes sense, because Marching Cubes was originally designed to
reconstruct smooth shapes, and none of the deep learning methods
are trained on smooth shapes. We also report %SA with angles less
than 10° in Table 3 and Table 4 for Thingi10K and FAUST, to show
that our method produces fewer small-angle triangles.

4.4 Reconstruction from UDF

As shown in the last rows of Table 2, 3, and 4, the results on UDF
are similar to those on SDF, but are usually worse due to the lack of
signs. Still, UNDC is able to recover the shapes reasonably well by
just observing the changes of unsigned distances in nearby cells. The
visual results on UDF are very similar to the results on SDF when
tested on the three datasets in the previous experiment. Therefore,
we show the results of reconstructing clothes with open surfaces
in MGN dataset [Bhatnagar et al. 2019] from grids of unsigned
distances in Figure 10. Note that in our experiments with UDF, we
do not compare with prior works, since, to the best of our knowledge,
UNDC is the only method that can reconstruct meshes from UDF.
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Table 5. Quantitative results on ABC test set with binary voxel input.

643 CD| F1T NCT ECD| EF17 #V #T  Inference
Voxel input  (x10°%) (x10%) time
MC33 26862 0.085 0921 11342 0018 5826 11,656  0.005s
NMC* 9452 0422 0927 0.698 0346 42,045 84,089  0.156s
NMC-lite*  9.428 0.420 0927 0.604 0356 21431 42,862  0.154s
NDC 9387 0.428 0930 0567 0.360 5,345 10,726  0.055s
UNDC 9.139 0.428 0.931 0.564 0359 5365 10,772  0.055s
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Fig. 12. Mesh reconstruction results from binary voxel (occupancy) in-
puts at 643 resolution. Zoom in to see some surface artifacts by NMC-lite*

and NMC*, marked with blue arrows. The shapes in the first column are
from ABC test set, and the last three columns from Thingi10K.

4.5 Reconstruction from binary voxels

Reconstructing meshes from binary voxels is clearly more challeng-
ing than from SDF grids. Learning from data is absolutely necessary
in this scenario if one wishes to produce plausible outputs, as re-
flected in Table 5, where MC33 is significantly worse than all others
in all metrics, except for vertex and triangle count. The results on
Thingi10K and FAUST, and on 1283 inputs are in the supplementary
material. They show the same pattern as Table 5 and demonstrate
the generalizability of our method. We show visual results in Fig-
ure 12, with more provided in the supplementary material. Many
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observations in Section 4.3 still apply here: our method is signifi-
cantly faster than NMC* and NMC-lite* (Inference time), produces
significantly less vertices and triangles (#V, #7T), has better normal
quality (NC), and can better preserve sharp edges and corners (ECD,
EF1). Moreover, since binary voxels are more challenging than SDF
grids, NMC* and NMC-lite* are underfitting, with reconstruction
accuracy worse than NDC and UNDC, as reflected by CD and F1.

4.6 Reconstruction from point clouds

We test UNDC on the task of reconstructing meshes from point
clouds. UNDC does not require normals as input, while most other
methods do, making direct comparisons difficult to perform. To
give competing methods a slight advantage, we provide normals to
methods that require them, and re-iterate that our method does not
leverage this additional information.

Baselines. We compare against five methods, including classical
Ball-pivoting [Bernardini et al. 1999] and screened Poisson [Kazh-
dan and Hoppe 2013]) surface reconstruction, as well as three deep
learning methods like SIREN [Sitzmann et al. 2020], Local Implicit
Grids (LIG) [Jiang et al. 2020], and Convolutional Occupancy Net-
works (ConvONet) [Peng et al. 2020]. The latter is the only method
that does not require point normals, and we test its two variations
proposed in the original paper: ConvONet-3plane which uses the
3-plane (xy, yz, xz) setting, and ConvONet-grid that uses the 3D grid
setting. Note that we compare with SIREN rather than SAL [Atzmon
and Lipman 2020] since SIREN is built upon SAL and has shown
better performance in their paper. We test all methods with 4,096
input points. The output grid size of UNDC is 643. We train all data-
driven methods on the ABC training set for a fair comparison. More
detailed discussions of each method can be found in the supplemen-
tary material. We illustrate these results in Figure 13. Quantitative
results on the ABC test set are provided in Table 6, while results
on Thingil0K and FAUST, which reveal a similar pattern and trend,
can be found in the supplementary material.

Analysis. As shown in Table 6, UNDC outperforms all other meth-
ods in all reconstruction quality metrics. SIREN has the closest re-
sults to ours in terms of reconstruction accuracy, but it has to be
trained for, i.e., “overfit to”, each input shape. ConvONet, whose
networks are not local, does not generalize well even within the
ABC dataset. LIG is local and therefore expected to generalize better.
However, its algorithm only considers the space around the input
points and ignores the empty space. As a result, LIG generates many
artifacts in the empty space, which are called “back-faces” in their
paper, and a post-processing step is required to remove them. The
post-processing step is not perfect, as shown in the first and fourth
columns in Figure 13. UNDC and Ball-pivoting are the only two
methods that directly output a mesh without iso-surface extrac-
tion, therefore they have the least numbers of vertices and triangles,
and are the only two methods that can generate sharp features, as
shown by ECD and EF1 in Table 6. As for inference time, UNDC is
the fastest and significantly faster than all other methods compared,
even the classical Ball-pivoting and Poisson.

Table 6. Quantitative results on ABC test set with point cloud input. (+n)
indicates that the method additionally requires point normals as input.

point cloud CDJ| F1T NCT ECD| EF17 #V #T  Inference
(4,096) (x10°) (x10?) time

Ball-pivoting (+n) 3.080 0.791 0.944 0.556  0.269 4,096 7,439 1.292s
Poisson (+n) 4.705 0.727  0.939 4.138  0.067 11,241 22,496 1.476s
SIREN (+n) 1.340 0.814 0.969 2.636  0.152 97,219 194,543  168.595s
LIG (+n) 3413 0.721 0947 11.868 0.022 149,860 299,166 66.866s
ConvONet 3plane  18.073  0.536  0.935 4.113  0.105 75,342 150,689 2.692s
ConvONet grid 8.844 0.488 0.939 9.701  0.036 74,171 148,337 2.404s
UNDC 0.893 0.873 0.974 0.289 0.757 5,578 11,261 0.194s
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Fig. 13. Results of reconstructing 3D meshes from point cloud inputs of
4,096 points. Please zoom in to observe the surface details. The shapes in
the first two columns are from ABC test set, and the last three columns
from Thingi10K.

4.7 Reconstruction from noisy real scans

We test UNDC on reconstructing meshes from raw scan data in
Matterport3D [Chang et al. 2017]. The raw scan data contains depth
images and camera parameters — we convert them into noisy point
clouds as the input to our network. Since the point clouds represent
large scenes, we first crop the scene into overlapping patches, and
then run our network to obtain grids of edge intersection flags and
vertex locations. Finally, we put together the predicted grids to form



a large grid of the scene, and then run the meshing algorithm in
Figure 4 to obtain the output mesh. Our network is larger than that
of the previous experiment to accommodate for point cloud noise.
Specifically, we replace the three 3* conv3d layers with 8 residual
blocks [He et al. 2016]. During training, we also augment the input
with Gaussian noise, with o = 0.5, assuming that each cell of the
output grid is a unit cube, to simulate noise present in the raw scans;
see supplementary material for more details.

Baselines. We compare UNDC with ConvONet, since it does not
require ground truth point normals and is designed to reconstruct
large scenes. We use the pre-trained weights provided by the authors
for synthetic scenes with objects from ShapeNet [Chang et al. 2015],
denoted as ConvONet (P). Additionally, we compare to Poisson with
estimated point normals. We show visual comparisons in Figure 14.
Note that different from the experiments in most other works on
deep learning scene reconstruction, which test their methods on
sampled points from the “ground truth” meshes, we test on raw
scan data, which is a more realistic setting. We do not report quan-
titative results since the “ground truth” meshes provided with the
dataset were reconstructed by Poisson, one of the methods we are
comparing against.

Analysis. ConvONet is seen to significantly underperform com-
pared to Poisson and UNDC, especially falling short in terms of
surface quality and detail preservation. Therefore, we mainly com-
pare UNDC with Poisson. Generally, UNDC produces less surface
noise, which is especially obvious in the first row of Figure 14. The
improvements are also observable in the other two rows, but they
are less obvious due to the zoom-out to reveal the entire scenes.
Since UNDC is trained on data with noise augmentation, it learns,
to some extent, to remove noise.

Also, UNDC only reconstructs what is given in the input point
cloud. In contrast, Poisson creates an implicit field of the scene,
which could potentially inpaint the missing regions. However, such
inpainting is not always desirable, and Poisson needs to trim the
output mesh to remove surfaces that are generated in empty regions
using a post-process (SurfaceTrimmer) that depends on careful tun-
ing of parameters. If the trimming density threshold is too small, it
may leave “bubble” artifacts as indicated by red arrows in Figure 14.
If it is too large, it may accidentally trim the objects, as indicated
by purple arrows in Figure 14. At the default setting shown, UNDC
tends to produce more holes in the output, but avoids creating bub-
ble artifacts, see the last row of Figure 14.

While water-tightness can be beneficial as a prior, it can lead
to poor reconstruction of thin surfaces; this can be observed from
the blue arrows in Figure 14. One thing worth special attention
is the bottom-most red arrow in the last row of Figure 14. The
umbrella surface is thinner than a voxel. However, Poisson forces
inside-outside by creating a bubble on top of the umbrella, so that
the bottom of the bubble can form the surface of the umbrella. This
creates an odd boundary after trimming.

Robustness to varying point density and noise. We use synthetic
data to study the robustness of UNDC on point clouds with varying
density and noise. We train our network with point clouds whose
point counts were randomly selected between 2,048 and 32,768,
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(a) ConvONet (P) (b) Poisson

(c) UNDC

Fig. 14. Qualitative comparison between ConvONet, Poisson, and UNDC on
reconstructing rooms in Matterport3D from raw scan data, where some
walls and roofs are removed for better visualization. Colored arrows bring
attention to regions where Poisson should be contrasted against UNDC.
Red arrows: “bubble” artifacts caused by the water-tightness prior to Pois-
son; purple arrows: objects or parts incorrectly trimmed; blue arrows: poor
reconstruction of thin surfaces. Green arrow in the bottom row points out
an instance of better preservation of surface details by Poisson (the strip pat-
terns are not noise or reconstruction artifacts); the flip side of this, however,
is surface noise, as seen over Poisson reconstruction in the first row.

Table 7. Comparing reconstruction results of UNDC (output grid size at
64%) and Poisson on point cloud inputs from ABC test set, with varying
point counts and noise levels to test the robustness of our method.

Number of Gaussian CD| (x10%) F17 NCT
input points noise levels | Poisson UNDC | Poisson UNDC | Poisson UNDC

1,024 None 34.872  2.510 0.248  0.806 0.799  0.944
2,048 None 16.406  1.226 0.387  0.850 0.847  0.962
4,096 None 8.653  0.987 0.539  0.867 0.879  0.970
4,096 =02 9.814 1.179 0.480  0.840 0.863  0.962
4,096 =05 14.017  2.061 0331 0.717 0.821  0.935
16,384 0=0.2 5.286  0.936 0.636  0.866 0.889  0.971
16,384 =05 8.738  1.236 0.444 0.813 0.840  0.955
65,536 =02 2.299  0.905 0.741  0.872 0.930 0.973
65,536 =05 4.567  1.079 0.552  0.836 0.880  0.962

where each point cloud is augmented with Gaussian noise whose
o is randomly sampled from [0, 0.5]. We then evaluate the trained
network on point clouds of varying density and noise, and compare
it to Poisson reconstruction with estimated point normals.

Some quantitative results are shown in Table 7, where UNDC
evidently outperforms Poisson. In Figure 15, we show visual results
where the point density or noise varies within each input point
cloud. Note that UNDC at 1283 output resolution tends to produce
worse results than at 64> output resolution. This is because relatively,
point sparsity and noise level are both more significant at higher-
resolution grids, due to the smaller cell sizes.
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(b) Poisson (c) UNDC@64* (d) UNDC@128°
Fig. 15. Qualitative comparison between Poisson and UNDC on mesh re-
construction from point clouds with density or noise variations across the
same shape, from its left to its right, as shown. The input point clouds in
the first three rows have decreasing point density from left to right, while
the inputs in the last three rows have increasing noise. UNDC@64° and
UNDC@128° produce output grid sizes of 64> and 1283, respectively.

(a) Input points

5 CONCLUSIONS

We introduce neural dual contouring, a new data-driven approach
to mesh reconstruction based on dual contouring. The volumetric
version of our approach, NDC, takes the same input as MC and NMC,
and it can better preserve sharp features while using approximately
the same number of vertices and triangles as classical MC, which is
3-7 times reduction compared to NMC. The surface version of our
approach, UNDC, is sign agnostic; it is therefore able to reconstruct
open surfaces and thin structures from unsigned distance fields or
unoriented point clouds. Both NDC and UNDC are designed as local
networks using limited receptive fields, thus can generalize well
to new datasets. Extensive experiments demonstrate the superior
performance of our approach on multiple datasets over state-of-the-
art methods, whether learned (e.g., NMC, SIREN, LIG, ConvONet)
or traditional (e.g., MC33, Poisson, Ball-Pivoting).

Limitations. One limitation of our approach is that it can produce
non-manifold meshes. Specifically, since DC and its descendants
produce only one vertex per grid cell, they may create meshes with
vertices and edges shared by multiple surface patches in cases where

Table 8. Statistics on non-manifold and boundary edges produced by NDC
and UNDC. The methods are tested on ABC test set with 64> output reso-
lution. Non-manifold-3 denotes non-manifold edges with 3 adjacent faces,
and Non-manifold-4 denotes those with 4 adjacent faces. Boundary-1 refers
to boundary edges, defined as edges with only one adjacent face.

Input 64° SDF 643 SDF 64% SDF 4,096 points 4,096 points
Method NDC UNDC UNDC UNDC UNDC
Post-processing No No Yes No Yes

Non-manifold-3 0.0 (0.000%) 125.3 (1.116%) 135.4 (1.206%) 139.4 (1.242%)  168.0 (1.496%)
Non-manifold-4 20.1(0.183%)  31.2(0.278%) 317 (0.282%)  28.8(0.257%)  30.4 (0.271%)
Boundary-1 0.0 (0.000%)  56.7 (0.505%)  29.6 (0.264%) 116.4 (1.037%)  41.1(0.366%)
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(b) The discontinuity causes the artifact

(a) Artifact on an edge

Fig. 16. The edge artifacts and the cause. The quad faces are colored differ-
ently to show that the artifacts are not caused by random quad splitting.

MC would output multiple disconnected components within one
cell; see the second column of Figure 8 where the green arrows in-
dicate non-manifold edges created by NDC and UNDC. These cases
happen fairly rarely (see statistics in Table 8) and are easily detected
and fixed by splitting vertices/edges or “tunnelling” through them,
using the techniques described in [Nielson 2004] or [Schaefer et al.
2007], for manifold dual contouring.

However, UNDC can also produce open surfaces (with edges
connected to one face) or non-manifold fins (where edges are shared
by three faces). Creating open surfaces is generally good, as it allows
reconstruction of thin features and partial inputs (e.g., note the thin
sheets indicated by the blue arrows in the row of UNDC results in
Figure 8 better approximate the ground truth). However, boundaries
and fins may cause problems for downstream tasks that assume
manifoldness as a pre-condition. Hence, UNDC may not be the best
meshing solution for all applications.

Another limitation is that the output of NDC is not completely
invariant to orientation. Although NDC is empirically less sensitive
to rotations than NMC (see supplementary video), we still see that
NDC occasionally generates coherence artifacts on sharp edges as
an object rotates. One example is shown in Figure 16 (a). The artifact
occurs when one or more vertices of the cube have SDF values very
close to 0. It cannot be easily avoided since it is due to the continuity
of neural networks. See the illustration in Figure 16 (b). When the
SDF value of the vertex gradually moves from positive (outside) to
negative (inside), the input to the network (the SDF values) changes
smoothly, but the output needs to change in a discontinuous way in
order to produce the ground truth. Since most neural networks are
continuous, the output of the network will be continuous. Therefore
the network will generate artifacts when such transitions occur.

Future works. Besides fixing the issues above, it would be interest-
ing to incorporate the NDC framework into an end-to-end system
for recovering surfaces from neural representations inferred from
multiple images, possibly using Neural Radiance Fields [Mildenhall



et al. 2020]. Or, UNDC could potentially be used with differentiable
rendering to reconstruct one-sided surfaces from a sparse set of
images acquired from cameras inside a scene. These and other NDC
extensions are promising topics for future work.
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Neural Dual Contouring

Supplementary Material

This document provides supplemental material for “Neural Dual
Contouring” It contains details regarding network architectures,
mask definitions, training protocols, and experimental methods. It
also has additional qualitative and quantitative results that would
not fit in the main paper.

1 POINT CLOUD NETWORK ARCHITECTURE DETAILS

Our network for processing point clouds is shown in Figure 6. The
local PointNet in Figure 6 is similar to the set abstraction layer in
PointNet++, with the number of local clusters being the same to the
number of input points. For each point p; in the input point cloud,
we find a local cluster with K points, and then apply PointNet [Qi
etal. 2017a] using relative coordinates of those K points with respect
to p;. In PointNet++, the local cluster is found by setting a radius
r, so that any points whose distances to p; are smaller than r will
be selected into the cluster. This may bring issues such as setting
appropriate r values and handling situations when a cluster has too
many or too few points. Therefore, we use a simpler approach to
avoid the issues. We find the K nearest neighbors (K = 8 in our
experiments) of p; to form the cluster, by using a KD-tree for efficient
computation. Afterwards, we concatenate the relative coordinates
of each point with its features, apply two fully-connected layers
with leaky ReLU activation, and use max-pooling to aggregate the
features of all K points into the feature of p;. The residual block
in Figure 6 is a standard residual block [He et al. 2016] for fully
connected layers. The “Pooling into grid” module in Figure 6 is
essentially a local PointNet as described above. The difference is
that it uses the centers of the cells in the grid as query points to find
the local clusters in the input point cloud via KNN. Since obtaining
the features for all cell centers in a 3D gird is very expensive (O(N?)),
we only compute features for the cells that are close to the input
point cloud, i.e., the cells that are within 3 units (manhattan distance)
to the closest point in the point cloud, assuming the size of each cell
is 1 unit. All hidden layers in our network has 128 channels. We use
the same loss functions as UNDC for training the networks.

2 MASKS DEFINITIONS

In this section, we provide definitions of Mg, M«, and Mg We
assume the size of each cell is 1 unit.

My - NDC. For a grid cell, if its corner vertices have different
signs in the ground truth SDF, we set its corresponding entry in
My to 1. The other entries in My are left 0. The definition applies
for all kinds of inputs.

My - UNDC. For a grid cell, if any of its edges intersects the
ground truth shape, we set its corresponding entry in M« to 1. The
other entries in M« are left 0. The definition applies for all kinds
of inputs.

SDF grid input - Mg - NDC. NDC directly use the signs of the
input as S, therefore it does not need Mg.

SDF and UDF grid input - Mg - UNDC. For an edge in a grid cell,
if both of its end vertices have signed distances less than 1, we set
its corresponding entry in Mg to 1. The other entries in M are
left 0.

Binary voxel input - Mg - NDC. For an occupied grid cell, if it is
adjacent to an unoccupied cell (in its 3 local neighborhood), we set
the corresponding entries for all its 8 vertices to 1. The other entries
in Mg are left 0.

Binary voxel input - Mg - UNDC. For an edge in a grid cell, if
all of its four adjacent cells are occupied, we set its corresponding
entry in Mg to 1. The other entries in My are left 0.

Point cloud input - Mg - UNDC. In the point cloud networks, we
only compute features for the cells that are close to the input point
cloud, i.e., the cells that are within 3 units (manhattan distance) to
the closest point in the point cloud. Therefore, the corresponding
edges stored in those cells are set to 1 in M. The other entries in
Mg are left 0.

3 TRAINING DETAILS

Each network is trained for 400 epochs (for SDF/voxel inputs) or
250 epochs (for point cloud inputs) with a batch size of 1 (shape).
We use Adam optimizer [Kingma and Ba 2015] with a learning
rate of 0.0001, betal= 0.9 and beta2= 0.999 for optimization. The
learning rate is halved every 100 epochs. For the last experiment
“Reconstruction from noisy real scans”, we use a large point cloud
network by replacing the 3 33 conv3d layers in Figure 6 with 8
residual blocks [He et al. 2016]. We train the network on the same
ABC training set but with heavy data augmentation (random scaling
and translation, in addition to the augmentations mentioned in the
paper). During training, we also augment the input point clouds
with Gaussian noise (¢ = 0.5, assuming each cell of the output grid
is a unit cube) to simulate the real noise from scan data.

4 DETAILS OF THE METHODS IN EXPERIMENT
“RECONSTRUCTION FROM POINT CLOUDS”

Ball-pivoting [Bernardini et al. 1999] and Screened Poisson surface
reconstruction (Poisson) [Kazhdan and Hoppe 2013]. These are
classic methods for reconstructing meshes from point clouds, and
they require point normals as part of the input. Ball-pivoting does
not create new vertices - it only connects the existing vertices into
consistently oriented triangles. Poisson constructs an implicit field
according to the points and normals, then extract the surface with
an octree structure. In our experiments, we use the implementation
in Open3D [Zhou et al. 2018] for these two methods, and use a
maximum depth of 8 for the octrees in Poisson.



(a) ConvONet (P)

(b) ConvONet* (c) UNDC (= ground truth)

Fig. 17. Pre-trained ConvONet vs. ConvONet with our local backbone.

SIREN [Sitzmann et al. 2020] is a method that overfits an neural
implicit function to a given shape, therefore it takes much longer
to process a shape than all other methods, since each time it needs
to train a neural network from scratch. It requires point normals
as part of the input. In our experiments, we use the official code
released by the authors. We find that after training SIREN, there is
a 10% possibility that the output shape is covered by a shell, which
cannot be easily removed since it is close to the actual shape and
connected to it in many pieces. Therefore, for those shapes we have
to re-train the network for several times. Nonetheless, we report
the inference time in the tables assuming all shapes are successfully
trained in the first go.

Local implicit grid (LIG) [Jiang et al. 2020] is a method that first
divides the input point cloud into small overlapping blocks, and
then reconstruct the part in each block by optimizing a neural im-
plicit field, and finally put the implicit fields together to reconstruct
the entire shape. It requires point normals as part of the input.
In our experiments, we use the official code released by the au-
thors. The authors have released pre-trained network weights on
ShapeNet [Chang et al. 2015], therefore we denote this method with
pre-trained weights as LIG (P). We also train this method on ABC
training net for a fair comparison, denoted as LIG. We use 3203
output resolution for both models.

Convolutional occupancy networks (ConvONet) [Peng et al.
2020] is a method to reconstruct an implicit field from point clouds.
It does not require point normals as input, therefore is the only
method that takes the exact same input as our method. In our exper-
iments, we use the official code released by the authors. The authors
have introduced many network configurations in their paper, and we
choose two representative ones in our experiments. In ConvONet
3plane, we use the 3-plane (xy, yz, xz) setting with the resolution of
each plane 128%. In ConvONet grid, we use the 3D grid setting with
the grid resolution 643. We train both networks on ABC training
net for a fair comparison. We also use the network weights released
by the authors, pre-trained on synthetic scenes with objects from
ShapeNet [Chang et al. 2015], denoted as ConvONet (P). We use
256° output resolution for all three models.

It is worth noting that unfortunately, all the networks in Con-
vONet are non-local, that is, their receptive fields need to cover
the entire shape in order to properly decide which side is inside
and which side is outside in the output implicit field. We tried to
directly apply our backbone network in ConvONet, denoted as Con-
vONet*, but as expected, the training has failed. This is because our
network is local, and ConvONet cannot decide inside/outside for
a local patch, therefore generates many artifacts in the featureless
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regions, as shown in Figure 17. Note also that the pre-trained Con-
vONet tends to turn single-face walls into thin volumetric plates in
Figure 17.

5 ROBUSTNESS TO TRANSLATION AND ROTATION

See https://youtu.be/HwKMpeKgYcc. We test all methods on a shape
while moving and rotating the shape inside the sampling grid.

6 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results via visualizations of re-
constructing 3D meshes from SDF grid, binary occpuancy grid, and
point cloud inputs in Figures 18, 19, 20, respectively. The input im-
plicit fields are at 64 resolution, and the input point clouds have
4,096 points each. Since the FAUST human body meshes are all very
similar to the one shown in the paper, we omit FAUST results.

7 ADDITIONAL QUANTITATIVE RESULTS

We provide additional tables showing quantitative results for all
combinations of input types and datasets (a subset of these tables
appear in the paper due to space limitations). For SDF and UDF
grid inputs, results for the ABC test set are in Table 9, Thingi10K
in Table 10, and FAUST in Table 11. For binary occpuancy grid
inputs, the results for the ABC test set are in Table 12, Thingi10K in
Table 13, and FAUST in Table 14. For point cloud input, results for
the ABC test set are in Table 15, Thingi1l0K in Table 16, and FAUST
in Table 17. In these tables, UNDC @ 64> means that the output grid
size of UNDC is 64°.


https://youtu.be/HwKMpeKgYcc
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(a) MC33

(b) NMC*

(c) NMC-lite*

e

(e) NDC

(f) UNDC

(g) Ground truth

Fig. 18. Results of reconstructing 3D meshes from SDF grid inputs at 64° resolution. The shapes in the first three columns are from ABC test set, and the last
two columns from Thingi10K. Zoom in to see the surface artifacts in NMC-lite* and NMC™.
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(b) NMC*

(c) NMC-lite*

(e) NDC

(f) UNDC

(g) Ground
truth

Fig. 19. Results of reconstructing 3D meshes from binary voxel/occupancy inputs at 64> resolution. The shapes in the first three columns are from ABC test
set, and the last two columns from Thingi10K. Zoom in to see the surface artifacts in NMC-lite* and NMC*.
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(b) Poisson
(c) SIREN
(d) LIG

(e) ConvONet

3plane

(f) ConvONet
grid

(g) UNDC

B ;
(h) Ground truth 4 W / 7

Fig. 20. Results of reconstructing 3D meshes from point clouds of 4,096 points. The shapes in the first three columns are from ABC test set, and the last two
columns from Thingi10K.
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Table 9. Quantitative comparison results on ABC test set with SDF and UDF grid input.

643 resolution CD| F1T NCT ECD| EF17 #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles

SDF grid input (x10%) (x10?) time >80° > 30° >5  >80° >30° >5  <10° <20° <30°
NMC 4365 0.878 0.976 0.340 0.766 42,767 85,544 1.148s 215  3.79 1211 1.28 250 1071 0.74 209 494
NMC-lite 4.356 0.878 0.975 0.338 0.767 21,933 43,877 1.135s 2.16 3.78 11.61 1.33 2.56 10.31 1.51 3.64 6.74
DC-est 4.673 0.827 0.958 3.810 0.167 5,459 10,969 0.421s 1.68 9.32  30.17 0.64 6.62 27.12 2.29 6.08 15.24
MC33 4.873  0.788 0.950 5.759  0.103 5473 10,954 0.005s 1.05 13.48 3150 040 9.72 27.03 195 409 6.53
NMC* 4.400 0.874 0972 0.409 0.715 42,767 85,544 0.158s 2.01 4.39  22.03 1.17 2.98 20.68 0.57 1.81 4.63
NMC-lite* 438 0.875 0973 0416 0.725 21,933 43,877 0.153s  2.05 432 1892 123 297 1756 135 344 634
NDC 4.463 0.867 0.970 0.338 0.745 5,459 10,969 0.027s 2.45 4.66  16.20 1.48 352 15.03 033 0.76 4.16
UNDC 0.930 0.873 0.974 0.328 0.746 5,584 11,295 0.051s  1.65 3.71 15.75 152 3.69 15.61 044 093 441
UNDC (UDF) 0.960 0.868 0.971 0.379 0.735 5,692 11,420 0.053s 180 393 1610 170 4.08 16.21 036 0.89 421
1283 resolution  CDJ F1T NCT ECD| EF17 #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles

SDF grid input (x10°%) (x10%) time >80° > 30° >5°  >80° >30° >5  <10° <20° <30°
NMC 4.129 0.882 0.979 0.204 0.806 175,926 351,867 8.991s 2.10 2.98 8.25 1.26 1.82 6.97 0.72 1.84 4.17
NMC-lite 4117 0.882 0.979 0.231 0.808 88,419 176,853 8.984s 212 297 7.76 128  1.84 6.53 146 335 599
DC-est 4132  0.879 0.977 2215 0.266 22,088 44,213 1.765s 140 510 17.11 034 285 1454 1.62 436 13.10
MC33 4.144 0.870 0.972 4.247 0.193 22,048 44,107 0.030s 0.88 7.81 18.73 0.18 4.95 15.42 1.75 3.63 5.77
NMC* 4116 0.882 0.978 0.257 0.779 175,926 351,867 1.126s 190 322 1525 114 200 1399 060 1.68 4.01
NMC-lite* 4114 0.882 0.979 0.283 0.785 88,419 176,853 1.112s 191 315 1260 118 197 1135 137 326 5.77
NDC 4.131 0.881 0.978 0.214 0.802 22,088 44,213 0.207s 2.20 3.11 9.62 1.31 1.99 843 023 049 349
UNDC 0.789 0.890 0.983 0.149 0.813 22,578 45411 0.410s 132 2.06 890 130 2.04 877 034 065 3.74

UNDC (UDF) 0.792 0.889 0.983 0.227 0.810 22,874 45,715 0.409s 1.36 2.11 8.93 1.31 2.09 8.88 0.23 0.55 3.51

Table 10. Quantitative comparison results on Thingi10K with SDF and UDF grid input.

64> resolution CD| F17 NCT ECD| EF17 #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles

SDF grid input (x10%) (x102) >80° > 30° >5°  >80° > 30° >5  <10° <20° <30°
NMC 2434 0895 0974 0.284 0.735 40,952 81,911 1.58 3.95 17.57 1.34 3.40 16.92 0.96 2.78 6.59
NMC-lite 2.485 0.895 0.974 0.308 0.738 22,051 44,109 1.57 3.94 16.51 1.38 3.48 15.97 1.89  4.77 9.12
MC33 3.192  0.795 0.945 3.918 0.099 5,518 11,044 0.76 1430 3741 0.55 11.14 33.54 2.63 5.45 8.70
NMC* 2777 0.890 0.969 0.391 0.662 40,952 81,911 1.47 492 31.21 1.21 4.23 30.53 0.75 2.37 6.12
NMC-lite* 2.760 0.890 0.969 0.404 0.674 22,051 44,109 1.52 4.82 27.10 1.28 4.21 26.42 1.68 4.47 8.49
NDC 2.481 0877 0.966 0.390 0.695 5,473 11,027 1.88 539 2359 1.57 504 23.14 035 112 5.87
UNDC 0.899 0.878 0.967 0.369 0.693 5,529 11,175 1.62 5.00 23.52 1.57 5.17 23.56 0.41 1.24  6.08
UNDC (UDF) 0.938 0.870 0.962 0.407 0.669 5,640 11,297 1.89 5.53 24.38 1.87 5.93 24.67 0.39 1.30 5.92
1283 resolution CDJ F17 NCT ECD] EF17 #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles

SDF grid input (x10%) (x10%) >80° > 30° >5  >80° >30° >5  <10° <20° <30°
NMC 2340 0902 0.980 0.170 0.805 169,210 338,426 1.48 2.65 10.90 1.29 2.28 10.46 0.92 2.50 5.76
NMC-lite 2398 0.902 0980 0.163 0.810 89,260 178,527 1.48 2.63 9.98 1.32 2.30 9.59 1.83 4.46 8.26
MC33 2.421 0.890 0.972 2.657 0.197 22,324 44,656 0.48 7.47  21.65 0.27 5.46 19.08 2.43 504  7.92
NMC* 2.613 0902 0978 0.269 0.760 169,211 338,427 1.34 3.00 21.42 1.15 2.57 20.99 0.77 2.25 5.50
NMC-lite* 2.651 0902 0979 0.254 0.772 89,260 178,527 1.37 294 17.49 1.20 2.54 17.04 1.74  4.35 7.91
NDC 2300 0901 0979 0.215 0.792 22,295 44,631 1.53 2.81 12.88 1.36 250 12.52 0.24 0.75 5.07
UNDC 0.757 0.904 0.981 0.189 0.795 22,478 45,043 1.31  2.50 12.71 1.29 248 12.66 0.29 085 5.28

UNDC (UDF) 0.748 0903 0980 0.222 0.785 22,784 45,395 1.35 2.63 13.23 1.30  2.61 13.19  0.28  0.90 5.08
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Table 11. Quantitative comparison results on FAUST with SDF and UDF grid input.

1283 resolution CDJ F17 NCT ECD| EF17 #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles

SDF grid input (x10%) (x10%) >80° > 30° >5  >80° > 30° >5  <10° <20° <30°
NMC 0.376  0.991 0989 0.041 0.645 83,023 166,034  0.18 1.86 2545 0.13 1.52 25.15 137  4.28 10.11
NMC-lite 0374 0.991 0.989 0.038 0.639 50,207 100,402  0.17 1.83 2536 014 157 2516 263 7.22 1391
MC33 0.453 0.985 0984 0.086 0.387 12,551 25,076 033 297 35.52 0.15 173 34.28 4.23 883 13.92
NMC* 0.385 0.990 0.983 0.146 0.552 83,024 166,038  0.25 245 4467 0.16 2.02  44.58 1.18 3.78 9.49
NMC-lite* 0.381 0.991 0984 0.119 0.567 50,207 100,404 0.22 232 38.51 0.16 2.00 3833 2.63 7.25 13.60
NDC 0.397 0.989 0.985 0.044 0.530 12,538 25,100 0.21 233 3856 0.15 192 3838 0.11 1.18 8.81
UNDC 0.362 0.992 0.985 0.038 0.574 12,609 25258 0.18 2.11 3735 0.19 210 3738 0.16 1.27 891
UNDC (UDF) 0.365 0.991 0984 0.045 0.549 12,682 25,293  0.21 225 3857 025 237 3872 021 147  9.14

Table 12. Quantitative comparison results on ABC test set with binary occpuancy grid input.

643 resolution CD| F1T NCT ECD| EF17 #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles

Binary voxel input  (x10°) (x10%) time >80° > 30° >5°  >80° >30° >5°  <10° <20° <30°
NMC 9.327 0.440 0930 0.546 0373 42,044 84,088 0.715s 6.24 9.84  28.57 4.56 7.88 26.89 0.08 0.55 2.23
NMC-lite 9.285 0.440 0.929 0.562 0.373 21,457 42,916 0.729s 6.32 9.95  27.99 4.68 8.09 26.38 0.14 1.43 4.38
MC33 26.862 0.085 0.921 11.342 0.018 5,826 11,656 0.005s 4.51 17.42 40.09 1.47 16.07 40.27  0.00 0.00 1.21
NMC* 9.452  0.422 0.927 0.698 0.346 42,045 84,089 0.156s 6.25 10.53 33.14 4.47 8.45 31.44 0.02 0.21 1.52
NMC-lite* 9.428 0.420 0.927  0.604 0.356 21,431 42,862 0.154s 6.35 1046 31.08 4.58 8.43 29.38 0.11 1.09 4.13
NDC 9.387 0.428 0.930 0.567 0.360 5,345 10,726 0.055s 6.14 10.11 29.21 4.39 8.00 27.25 0.21 0.38 2.52
UNDC 9.139 0.428 0.931 0.564 0.359 5,365 10,772 0.055s 6.02 994 2951 4.36  7.98 27.65 0.21 0.39 2.53
1283 resolution CD| F1T NCT ECD| EF17 #V #T Inference % inaccurate normals (gt) % inaccurate normals (pred) % small angles

Binary voxel input  (x10%) (x10%) time >80° > 30° >5%° >80° > 30° >5%° <10° <20° <30°
NMC 5.447 0.663  0.959 0.410 0.692 174,257 348,519 5.405s 3.91 574 22.16 2.50 4.12 20.76 0.10 0.67 2.19
NMC-lite 5444 0.663 0.958 0.417 0.693 87,419 174,844 5.449s 3.96 581 21.69 2.56 4.25 20.36 0.20 1.69 4.60
MC33 9.800 0.212 0.944 11.690 0.023 22,775 45,557 0.030s 2.71 1252 3674 1.01 11.78 37.10 0.00 0.00 0.96
NMC* 5.465 0.659 0.956 0.652 0.664 174,255 348,515 1.129s 3.90 6.30  27.20 2.44 4.64 25.88 0.02 0.27 1.51
NMC-lite* 5.460 0.658 0.957 0.398  0.685 87,369 174,743 1.125s 3.93 6.20 25.23 2.48 4.56 23.87 0.15 1.31 4.40
NDC 5.451 0.661 0.960 0.316 0.686 21,848 43,715 0.403s 3.85 5.69 21.01 2.40 397  19.42 0.13 0.25 2.55
UNDC 5458 0.661 0.961 0.315 0.682 21,877 43,757 0.404s 380 5.63 2131 237  3.93 19.73 0.14 0.26 2.54

Table 13. Quantitative comparison results on Thingi10K with binary occpuancy grid input.

643 resolution CD| F17 NCT ECD| EF17 #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles

Binary voxel input  (x10°) (x10?) >80° > 30° >5  >80° >30° >5  <10° <20° <30°
NMC 6.081 0.491 0.922 0.573 0.342 40,431 80,862 542 1157 41.64 4.63 10.39  40.70 0.15 0.87 3.10
NMC-lite 6.056 0.490 0.920 0.604 0.341 21,635 43,272 554 11.71 4044 483 1071 3965 0.22 191 5.93
MC33 25.523  0.069 0907 7.542 0.017 5940 11,882 3.86 2140 5250 1.64 20.06 5299 0.00 0.00 2.30
NMC* 6.256 0471 0916 0.772 0.306 40,382 80,764 549 13.03 46.36 453 11.69 4536 0.03 0.34 2.13
NMC-lite* 6.226 0.471 0917 0.625 0.321 21,577 43,154 558 12.79 4413 4.64 11.53 43.18 0.17 146 551
NDC 6.185 0477 0921 0.681 0.322 5,373 10,808 529 12.03 42.19 444 10.80 41.00 0.19 049 3.78
UNDC 6.070 0.478 0.923 0.651 0.321 5401 10,855 5.08 11.78 4252 436 10.76 4150 0.20 051 3.81
1283 resolution CDJ] F17 NCT ECD| EF17 #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles

Binary voxel input  (x10°) (x10%) >80° > 30° >5  >80° >30° >5  <10° <20° <30°
NMC 3.162  0.726 0957 0.404 0.645 168,218 336,440  2.95 6.08 3264 253 537 3207 019 106 3.23
NMC-lite 3.163 0.726 0.956 0.414 0.650 88,499 177,003 2.99 6.17  31.55 2.59 5.55 31.07 0.32 2.33 6.33
MC33 8.473 0.169 0.934 7328 0.026 23,198 46,400 1.82 1534 48.95 1.09 15.21 4998 0.00 0.00 2.04
NMC* 3.184 0.721 0.951 0.654 0.604 168,118 336,240  2.95 7.25 3876  2.46 6.45 3822 0.04 044 228
NMC-lite* 3.197 0.721 0.953 0435 0.638 88,411 176,826 2.97 6.98 36.21 249 6.23  35.65 0.24 1.81 6.04
NDC 3.192 0.724 0959 0.427 0.643 22,109 44,246 2.85 594 30.72 239 512 29.90 0.14 037 3.88
UNDC 3.205 0.724 0.960 0.369 0.639 22,157 44,318 2.74 583 31.13 2.34 5.09 30.35 0.14 0.37 3.84
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Table 14. Quantitative comparison results on FAUST with binary occpuancy grid input.
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1283 resolution CD| F1T NCT ECD| EF17 #V #T % inaccurate normals (gt) % inaccurate normals (pred) % small angles

Binary voxel input ~ (x10°) (x10%) >80° > 30° >5  >80° >30° >5  <10° <20° <30°
NMC 0.760 0970 0965 0.328 0.347 82,406 164,806 0.69 547 7031 029 429 70.06 034 2.07 6.55
NMC-lite 0.754 0970 0964 0.296 0.334 49,699 99,393 0.70 579 69.04 032 479 6887 048 4.09 11.54
MC33 6.928 0.064 0905 0455 0.085 14,175 28348 0.52 2551 9540 0.10 2246 9546 0.00 0.00 5.23
NMC* 0.816 0967 0944 0.760 0.160 82,337 164,668 1.02 946 7988 055 849 80.00 0.07 082 4.44
NMC-lite* 0.801 0967 0953 0.345 0311 49,643 99,279 075 827 7580 029 726 7575 039 321 10.85
NDC 0.766 0.969 0.966 0.169 0.330 12,411 24,833 0.66 545 67.71 031 423 67.38 0.03 0.63 8.07
UNDC 0.760 0.969 0.966 0.177 0.353 12,467 24,930 059 5.30 6822 033 439 68.01 005 062 8.16

Table 15. Quantitative results on ABC test set with point cloud input. (+n) indicates that the method additionally requires point normals as input.

point cloud CD| F1T NCT ECD| EF17 #V #T Inference
(4,096) (x10%) (x10%) time

Ball-pivoting (+n) 3.080 0.791 0.944 0.556  0.269 4,096 7,439 1.292s
Poisson (+n) 4.705 0.727 0.939 4.138  0.067 11,241 22,496 1.476s
SIREN (+n) 1.340 0.814 0.969 2.636  0.152 97,219 194,543 168.595s
LIG (P) (+n) 4.747 0.709 0939 10.786 0.023 148,927 297,766 61.176s
LIG (+n) 3413 0.721 0947 11.868 0.022 149,860 299,166 66.866s
ConvONet (P) 38926 0.207 0.844 1.522 0.057 127,247 254,627 4.598s
ConvONet 3plane  18.073  0.536  0.935 4113  0.105 75,342 150,689 2.692s
ConvONet grid 8.844 0.488 0.939 9.701  0.036 74,171 148,337 2.404s
UNDC @ 643 0.893 0.873 0.974 0.289 0.757 5,578 11,261 0.194s

Table 16. Quantitative results on Thingi10K with point cloud input. (+n) indicates that the method additionally requires point normals as input.

point cloud CD| F1T NCT ECD| EF17 #V #T
(4,096) (x10°) (x10%)

Ball-pivoting (+n) 2329 0.787 0936 0.602 0.236 4,096 7,455
Poisson (+n) 12.799 0.744 0938 3.439 0.052 11,498 23,010
SIREN (+n) 1.419 0.834 0.962 2.059 0.144 94,797 189,637
LIG (P) (+n) 4453 0.691 0929 8471 0.019 146,554 292,847
LIG (+n) 5991 0.748 0.943 8.266 0.021 145,269 290,354
ConvONet (P) 39.822  0.209 0.826 1.306 0.051 120,475 241,068
ConvONet 3plane  18.272 0.484 0.903  3.222  0.090 74,514 149,033
ConvONet grid 6.032 0476 0928 8249 0.024 73,745 147,484
UNDC @ 643 0.927 0.873 0.965 0.400 0.686 5,543 11,159
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Table 17. Quantitative results on FAUST with point cloud input. (+n) indicates that the method additionally requires point normals as input.

point cloud CDJ F1T NCT ECD| EF17 #V #T
(4,096) (x10%) (x10%)

Ball-pivoting (+n) 0.906 0932 0.965 0.372 0.131 4,096 7,652
Poisson (+n) 0.724 0966 0975 0.467 0.246 11,330 22,646
SIREN (+n) 0.697 0.951 0.986 0.211 0.504 51,215 102,443
LIG (P) (+n) 1.449 0876 0.964 1307 0.107 79,337 158,605
LIG (+n) 2.533 0871 0962 1.772 0.077 80,845 161,226
ConvONet (P) 17.334 0312 0.849 1.244 0.027 47,716 95,424
ConvONet 3plane  23.809 0.389 0.868 1.046 0.053 46,211 92,427
ConvONet grid 3.506 0.574 0945 4.618 0.029 41,710 83,418
UNDC @ 643 0.532 0970 0.965 0.345 0.206 3,146 6,308
UNDC @ 1283 0.413 0.985 0.978 0.095 0.437 12,681 25,202
point cloud CDJ F1T NCT ECD| EF17 #V #T
(16,384) (x10°) (x10%)

Ball-pivoting (+n) 0.545 0977 0977 0.144 0316 16,384 31,767
Poisson (+n) 0.397 0987 0987 0.118 0.528 45,325 90,630
SIREN (+n) 0.707 0.953 0.988 0.263 0.562 51,132 102,270
LIG (P) (+n) 1.140 0902 0.969 1.170 0.160 78,821 157,622
LIG (+n) 2.215 0895 0966 1.792 0.120 80,399 160,445
ConvONet (P) 20.218 0.250 0.865 1.345 0.024 51,449 102,873
ConvONet 3plane  24.682 0.390 0.869 0.985 0.048 47,922 95,851
ConvONet grid 3.563 0.568 0947 5474 0.029 42,218 84,433

UNDC @ 1283 0.368 0.991 0983 0.050 0.566 12,665 25,387
UNDC @ 2563 0.353 0.993 0.989 0.020 0.767 51,043 101,733
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