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Fig. 1. Cross-sections through the solutions to a Poisson problem on polyhedral hex-dominant meshes (left). Shape functions for irregular convex and concave
polyhedra as well as for a cube (right). The shape functions are variationally optimized with respect to a smoothness criterion, leading to piecewise quadratic
local bases that are almost𝐶1 within elements. The𝐶1 discontinuities appear as non-smooth iso-lines in the plots. Red colors indicate positive values and blue
colors indicate negative values

Solving partial differential equations (PDEs) on geometric domains is an
important component of computer graphics, geometry processing, and many
other fields. Typically, the given discrete mesh is the geometric representa-
tion and should not be altered for simulation purposes. Hence, accurately
solving PDEs on general meshes is a central goal and has been considered
for various differential operators over the last years. While it is known that
using higher-order basis functions on simplicial meshes can substantially
improve accuracy and convergence, extending these benefits to general sur-
face or volume tessellations in an efficient fashion remains an open problem.
Our work proposes variationally optimized piecewise quadratic shape func-
tions for polygons and polyhedra, which generalize quadratic 𝑃2 elements,
exactly reproduce them on simplices, and inherit their beneficial numer-
ical properties. To mitigate the associated cost of increased computation
time, particularly for volumetric meshes, we introduce a custom two-level
multigrid solver which significantly improves computational performance.
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1 INTRODUCTION
Solving partial differential equations (PDEs) on geometric domains
is an important component of computer graphics, geometry pro-
cessing, and many other fields. Outside of computer graphics the
geometric representation is usually a continuous CAD model, from
which a discrete simulation mesh is generated specifically to support
the numerical solution of the involved PDE – adapting the mesh-
ing resolution and element type to the requirements of the PDE
solver. In computer graphics, however, the discrete mesh typically
is the geometric representation, which should not be altered for
simulation purposes. Hence, support for accurately solving PDEs
on general meshes is a central goal.

The Laplace operator is ubiquitous in computer graphics and
is typically discretized on triangle surface meshes and tetrahedral
volume meshes using linear hat basis functions (a.k.a. 𝑃1 elements),
leading to the well-known cotangent formulation [Desbrun et al.
1999; Dziuk 1988; Pinkall and Polthier 1993]. To handle arbitrary
meshes, several recent approaches extend the discrete Laplacian to
general polygon meshes [Alexa and Wardetzky 2011; Bunge et al.
2020; de Goes et al. 2020] and polyhedral meshes [Bunge et al. 2021].

In computer animation, elasticity simulations have been extended
to polyhedral meshes by using generalized barycentric coordinates
as finite element shape functions [Martin et al. 2008; Wicke et al.
2007]. Most such methods can be considered direct generalizations
of standard 𝑃1 elements, as they reproduce them on triangles and
tetrahedra. As a consequence, these methods provide a similar level
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of numerical accuracy for a given mesh resolution and inherit the
quadratic convergence rate under element refinement.

It is known that higher-order shape functions can offer improved
accuracy and faster convergence at the price of higher computa-
tional cost. Quadratic shape functions have been proposed as a good
compromise in several previous works (see, e.g., [Mezger et al. 2008;
Schneider et al. 2019, 2022]), but they are currently restricted to
simplicial or hexahedral meshes. We generalize quadratic shape
functions to arbitrary polygonal/polyhedral meshes and demon-
strate their superior numerical behavior on a range of experiments.

Inspired by the virtual refinement approach of Bunge et al. [2021;
2020], we split each cell (polygon or polyhedron) into simplices by
inserting virtual vertices and then employing quadratic 𝑃2 elements
on the refined mesh. This virtual refinement is not performed explic-
itly, but hidden from the user through special prolongation matrices
that distribute the virtual degrees of freedom (DoFs) to the original
DoFs of the input polyhedral mesh. While the construction of this
prolongation is understood for linear shape functions (see [Bunge
et al. 2020]), care has to be taken to attain the beneficial numeri-
cal properties of quadratic shape functions. We derive a localized
per-element variational optimization that minimizes gradient dis-
continuities across virtual simplices within the cell. This results in
variational piecewise quadratic shape functions for polygons
and polyhedra, which generalize quadratic 𝑃2 elements, exactly
reproduce them on simplices, and inherit their beneficial numerical
properties.

Compared to computations on surface meshes, solving PDEs
on volumetric meshes is considerably more expensive – an effect
that is accentuated for higher-order shape functions. Our second
contribution is a simple two-level multigrid solver which is again
hidden from the user and offers superior computational performance
compared to a sparse direct supernodal solver.

We will make an implementation of our method available to
facilitate further research.

In the following, we review related work (Section 2) and describe
the virtual refinement method (Section 3), before proposing our vari-
ational quadratic shape functions and multigrid scheme for polyg-
onal/polyhedral meshes (Section 4). In Section 5 we evaluate the
numerical performance of our method for a variety of experiments
on surface and volume meshes, demonstrating that our method
compares favorably to existing approaches.

2 RELATED WORK

2.1 Polygon/Polyhedral Meshes
Most geometry processing applications require one essential step
– a reasonable discretization of the spatial domain into a suitable
tessellation. Only then is it possible to solve partial differential
equations with the help of numerical approaches like the Finite
Element Method (FEM) or Discrete Exterior Calculus (DEC).

To this end, triangle and quadrilateral elements have been well-
studied in numerical analysis for many years. However, several
applications have sparked interest in more general polygonal and
polyhedral shapes. Complex geometries are not always easy to
represent with only triangles/tetrahedra or quads/hexahedra and,
especially in fields like solid mechanics or bio mechanics, general

polyhedral elements can give a more natural representation of the
domain [Tabarraei and Sukumar 2011]. Additionally, artist and ar-
chitects often use polygons like hexagonal shapes to achieve desired
properties within their models [Wang and Liu 2010].

For volume meshes, despite the increased interest in this topic
over the last decade, automatically generating pure hexahedral
meshes with prescribed properties has proven to be difficult. Relax-
ing the requirement of exclusively using hexahedral elements for
tessellation motivates hex-dominant mesh generation algorithms,
which are able to robustly and automatically create polyhedral
meshes consisting mostly of well-shaped hexahedra at the cost of
a small number of general polyhedral elements [Gao et al. 2017;
Sokolov et al. 2016]. However, despite their prevalence, the previ-
ously described meshes are not directly supported in most standard
geometry processing code bases. We address this problem by pro-
viding a new perspective on quadratic polygonal and polyhedral
basis functions through which we are able to extend established
techniques in computer graphics to various types of tessellations.

2.2 Polygon/Polyhedral Laplacians
In computer graphics and geometry processing, discretizations of
differential operators are often needed and typically based on the
Finite Elements Method or on Discrete Exterior Calculus. In re-
cent years, several approaches for discretizing the Laplace operator
over general polygonal and polyhedral meshes have been proposed.
A principal challenge arising in this field is that non-planar poly-
gons, either in the case of surface meshes or as separating faces
between volumetric cells, do not bound a canonical surface in three-
dimensional space. For two-manifolds, Alexa and Wardetzky [2011]
handle the problem by projecting every polygon onto the plane that
yields its largest projected area, combined with an inner product sta-
bilization influenced by works on mimetic finite differences [Brezzi
et al. 2005]. Following the goal of efficiently computing parallel
transport of tangent vectors on curved surfaces, Sharp et al. [2019]
define a discrete connection Laplacian, which is given by the trace
of the second covariant derivative.

The approach introduced by de Goes et al. [2020] allows for a
variety of discrete differential operators to be extended to polygon
meshes. They base their idea on the work of [Alexa and Wardetzky
2011] and generalize the mimetic differences [Brezzi et al. 2005]
and virtual element method [Beirão da Veiga et al. 2013a] to define
a new gradient operator, circumventing the usage of non-planar
polygons.

A variety of discretizations are based on the use of special pro-
longation and restriction operators, creating hierarchies of virtual
tessellations depending on the chosen weights within the matrices.
De Goes et al. [2016] propose Subdivison Exterior Calculus, using
Alexa and Wardetzky’s [2011] polygon Laplacian in combination
with prolongation matrices whose weights align with Catmull-Clark
or Loop subdivison rules. Bunge et al. [2020] define a polygon Lapla-
cian motivated by the virtual node method [Tang et al. 2009]. They
split each polygon into a triangle fan by inserting a virtual vertex
and compute the cotangent Laplacian on the refined mesh, where
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this virtual refinement is hidden from the user by special prolonga-
tion/restriction matrices. By also inserting virtual vertices in poly-
hedral cells, this approach can be extended to polyhedral meshes,
as discussed in [Bunge et al. 2021]. The latter paper introduces the
Diamond Laplacian for polygon/polyhedral meshes, which uses the
the Discrete Duality Finite Volume method [Coudière and Hubert
2011; Hermeline 2009] to define an alternate Laplacian operator
based on the Finite Volume Method on the virtually refined mesh.
The diamond construction assigns a larger neighborhood to each
virtual vertex, thererby increasing its accuracy but also yielding
system matrices that are less sparse.

Although the discretization of a Laplacian is a valuable tool in
geometry processing, our explicit construction of finite element
shape functions further extends the possible set of applications we
are a able to address.

2.3 Shape Functions for Polygons and Polyhedra
A displacement-based finite element method for polygons and poly-
hedra was presented by [Rashid and Selimotic 2006]. They omit the
typical transformation to a reference element and instead define
basis functions on the physical coordinates of the mesh. However,
since strict continuity between the elements cannot be satisfied,
this method is a non-conforming approach, generally leading to a
more complex formulation. From another perspective, generalized
barycentric coordinates can also be used to define shape functions
for both polygons and polyhedra [Hormann and Sukumar 2017].
The central idea is to express each point inside a cell as a weighted
average of cell vertices analogously to barycentric coordinates for
simplices. Popular examples are Wachspress coordinates [Wachs-
press 1975], Mean Value Coordinates [Floater 2003; Ju et al. 2005],
Harmonic coordinates [Joshi et al. 2007], or Maximum Entropy
Coordinate [Hormann and Sukumar 2008; Sukumar 2004].

These coordinates have been mainly used for cage-based defor-
mation, which is also the motivation for higher-order constructions
[Langer and Seidel 2008]. Recently Longva et al. [2020] introduced
a higher-order cage based simulation algorithm, which through the
virtual element method (VEM) can handle polygons and polyhe-
dra. However, unlike our method, they do not construct explicit
basis functions, since the VEM [Beirão da Veiga et al. 2013b] is
based on the construction of virtual bases that follow clear defini-
tions but are not computed in practice. The connection between
this approach and polygonal/polyhedral finite elements was ana-
lyzed by Manzini et al. [2014]. The work of Gilette et al. [2016] uses
generalized barycentric coordinates to define conforming scalar-
valued and vector-valued basis functions of differential form order
𝑘 = 0, . . . , 2 for polygons and 𝑘 = 0, . . . , 3 for polyhedra, inspired
by Whitney differential forms. Wicke et al. [2007] employed mean
value coordinates as shape functions for convex polyhedra in a fi-
nite element elasticity simulation. Their approach was generalized
to non-convex polyhedra by Martin et al. [2008] through the use
of harmonic coordinates. Schneider et al. [2019] adapt the latter
harmonic elements to define shape functions for general polyhedra
in otherwise hex-dominant meshes. This allows them to extend
spline-based approaches from pure hex meshes to hex-dominant
mixed meshes. However, their basis construction expects special

mesh configurations (general polyhedra are always separated by
hexahedra), typically requiring an initial mesh refinement step. Ad-
ditionally they need to explicitly enforce PDE-dependent conditions
to guarantee higher-order convergence. Our method generally uses
more degrees of freedom to attain the same convergence order,
but it works for arbitrary polyhedral meshes and does not need
PDE-dependent modifications. Bishop et al. [2014] also worked with
harmonic coordinates to define shape functions on star-shaped poly-
gons and polyhedra. Similar to Rashid and Selimotic [2006], they
solve the harmonic system directly on the polyhedron instead of on
the reference element. However, their integration scheme requires
correcting the shape functions’ derivatives in order to satisfy the
divergence theorem and obtain necessary consistency properties.

Compared to the basis functions in this section, our shape func-
tions for polygons/polyhedra are considerably simpler, since they
are piecewise quadratic, and therefore can more easily and efficiently
be constructed, differentiated, and integrated.

2.4 Higher order basis functions
In the context of more restricted tessellations (triangles/tetrahedra
or quads/hexahedra), linear basis functions are commonly used for
geometry processing. However, recent studies [Schneider et al. 2022]
have pointed out that using higher order basis functions, especially
the quadratic Lagrange basis, yields more accurate results than lin-
ear elements in several settings. For example, Mezger et al. [2008]
pointed out that using quadratic finite element shape functions in
the context of shape editing offers not only increased numerical
accuracy, but also allows for superior geometric approximation in
the sense of smooth mesh interpolation. Schneider et al. [2018]
leverage the accuracy of higher order elements by selectively in-
creasing the degree of the shape functions for individual elements,
based on their quality, allowing the authors to efficiently obtain
weak solutions to a PDE that do not depend on mesh quality. In
[Beirão da Veiga et al. 2017], higher order polynomial degrees were
investigated for the virtual element method and analyzed for three
dimensional problems. While also achieving higher accuracy and
faster convergence, the VEM, as stated before, does not construct
explicit basis functions. With our method, we are not bound to
simplicial or quadrilateral elements and can extend the numerical
benefits of quadratic basis functions to any kind of tessellation. The
2D polygonal finite element basis defined by Aurojyoti et al. [2019]
achieves global 𝐶1 smoothness by elevating the degree of general-
ized barycentric coordinates through Bernstein-Bezier functions.
While global𝐶1 smoothness is crucial for solving their fourth-order
thin plate problem, it comes at the costs of more complex shape
function that require careful numerical integration, especially for
non-convex elements. In contrast, our resulting shape functions
can be integrated analytically and does not require a canonical base
domain, which is hard to define, especially for arbitrary polyhedra.

3 BACKGROUND
In this section we introduce the notion of Lagrange basis functions
and revisit the approach of Bunge et al. [2020] for the linear case.
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Fig. 2. Lagrange basis functions restricted to a single triangle. Linear basis
(left) and two quadratic basis functions, one associated with a vertex and
another one with an edge midpoint. The functions are plotted as height
fields over their domain (gray triangle). Gold and blue regions indicate
negative and positive values respectively.

3.1 Lagrange Basis Functions
Consider a simplicial mesh (V,S) with verticesV = {v1, . . . , v𝑚}
and simplex set S. The linear Lagrange basis function at vertex v𝑖 is
defined as the unique 𝐶0 continuous and piecewise linear function
𝜓𝑖 with the Lagrange interpolation property

𝜓𝑖 (v𝑗 ) = 𝛿𝑖 𝑗 :=
{

1 if 𝑖 = 𝑗,

0 otherwise. (1)

A function is piecewise linear on a mesh if it is linear on each
simplex 𝜎 ∈ S. Considering a single triangle, for example, we obtain
functions as depicted in Figure 2 (left). Degrees of freedom 𝑢𝑖 are
associated to vertices v𝑖 , spanning the space of continuous and
piecewise linear functions

𝑓 (x) =
∑
𝑖

𝑢𝑖𝜓𝑖 (x) .

Quadratic Lagrange basis functions (Figure 2 center and right) ad-
ditionally provide degrees of freedom at edge midpoints and are
defined analogously to the linear case: the basis function is the
unique piecewise quadratic function per simplex that takes on the
value 1 at a specific node (vertex or edge midpoint) and the value
0 at all others. Note that the above definition of linear/quadratic
shape functions (respective 𝑃1/𝑃2 elements) holds equivalently for
3D tetrahedral meshes.

By construction, linear and quadratic Lagrange basis functions
have the property that their sum is pointwise equal to one inside the
element (partition of unity). Following the interpolation property
of Lagrange functions, the sum has to be equal to one at all nodes,
and the only linear/quadratic function satisfying this property is
the constant function 𝑓 (x) ≡ 1.

3.2 The Linear Virtual Refinement Method
The concept of Lagrange basis functions does not readily carry over
to polyhedral meshes. First, polygons in 3D are not necessarily pla-
nar, making it hard to define a parameter domain for the shape func-
tions. But even if a polygon is planar, there are insufficient degrees
of freedom to meet the interpolation constraints in equation (1).
For example, the space of linear functions is three-dimensional, but
each shape function would be constrained to interpolate more than
three values, one value at each vertex.

The idea proposed by Bunge et al. [2020] is to introduce a new
virtual vertex inside of each polygon, to use the virtual vertices

Fig. 3. Linear shape functions𝜓 𝑗 on a refined quad element (top row) are
combined to form a basis 𝜑𝑖 on the original polygon (bottom row).

to define a triangulation of the domain (see Figure 3), and then
to construct the Lagrange basis functions on the triangulation as
discussed above. For a polygon mesh with verticesV and polygons
P, this gives a basis for piecewise linear functions on the refined
mesh with |V| + |P| vertices. However, the goal is to construct
a basis function for each of the |V| vertices of the original mesh.
Therefore, the shape functions associated to the virtual vertices
are distributed to the vertices of the original 𝑛-gon using weights
𝑤1, . . . ,𝑤𝑛 with

∑
𝑖 𝑤𝑖 = 1. In other words, if 𝜓𝑖 are the (𝑛 + 1)

linear Lagrange basis functions on the refined polygon (Figure 3,
top row), the 𝑛 functions at the original vertices are 𝜑𝑖 = 𝜓𝑖 +𝑤𝑖𝜓0
for 𝑖 = 1, . . . , 𝑛 (Figure 3, bottom row), with 𝜓0 the basis function
associated to the virtual vertex. This construction guarantees that
the piecewise linear polygon shape functions 𝜑𝑖 obey the Lagrange
interpolation and partition of unity property.

In theory, any point can be chosen as the virtual vertex for tri-
angulating the polygon. However, for the resulting systems to be
well-behaved, it is reasonable to require the virtual vertex to lie close
to the surface implied by the polygon’s edges. Bunge et al. [2020]
argue that for a polygon (v1, . . . , v𝑛), the position of the virtual
vertex v0 ∈ R3 should be defined as the minimizer of the sum of
squared triangle areas. The virtual vertex is then expressed as an
affine combination of polygon vertices v0 =

∑
𝑖 𝑤𝑖v𝑖 , since choosing

a set of weights with this property guarantees linear precision for
the shape functions. Usually, there is more than one set of weights
that is able to represent the virtual vertex. The authors therefore add
an 𝐿2 regularization and solve the linearly constrained quadratic
optimization problem

{𝑤1, . . . ,𝑤𝑛} = arg min
{𝑤1,...,𝑤𝑛 }

𝑛∑
𝑖=1

𝑤2
𝑖 (2)

𝑠 .𝑡 .

𝑛∑
𝑖=1

area(v𝑖 , v𝑖+1, v0)2 is minimized (3)

to determine the weights for each polygon. Using these weights
they express shape functions 𝜑𝑖 as linear combination of the shape
functions𝜓𝑖 . This mapping can be conveniently performed using
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prolongation matrices [Bunge et al. 2020]. For a single polygonal
face 𝑓 the prolongation matrix is

P𝑓𝑖 𝑗 =

{
𝑤 𝑗 𝑖 = 0
𝛿𝑖 𝑗 otherwise.

Assembling the per-face matrices P𝑓 into a global prolongation ma-
trix P ∈ R(V |+|P |)×|V | makes it straight-forward to construct the
system matrices. For example, to construct the stiffness matrix S′ as-
sociated with the basis {𝜑𝑖 }, first construct the (standard cotangent)
stiffness matrix S on the simplicial refinement and then multiply
with P from both sides [Bunge et al. 2020]

S′ = P⊤SP.

Following this methodology, [Bunge et al. 2021] introduce a two-
step prolongation process to extend the approach to polyhedral
domains. They first assign a virtual vertex to each polygonal face of
the polyhedra and solve for the the prolongation matrix distributing
the shape functions at these virtual vertices to the original vertices.
Then, given the triangulation of the polygonal faces, they further
introduce a virtual vertex in the interior of each polyhedron to con-
struct a tetrahedralization of the domain. They then solve for the
prolongation matrix distributing the new virtual shape functions to
the shape functions at the original vertices and the polygonal virtual
vertices. Similar to the polygonal case, the weights are obtained by
replacing the squared area with the the squared volume in Equa-
tion (3), while still maintaining the 𝐿2 regularization. Composing
the two prolongation matrices describes how shape functions at all
virtual vertices (polygonal and polyhedral) are distributed to the
original vertices.

Unfortunately, these ideas do not directly extend to higher order
basis functions, as we detail in the next section. Our main con-
tribution is a generalization of the method to quadratic Lagrange
elements on polygonal and polyhedral meshes.

4 METHOD
We first extend the method of Bunge et al. [2020] to quadratic ba-
sis functions on polygon meshes, followed by a generalization to
polyhedral domains.

4.1 Quadratic basis functions for polygons
Suppose we are given a polygon (v1, . . . , v𝑛) ⊂ R3. As in [Bunge
et al. 2020] we first introduce the minimizer of the sum of squared
triangle areas as virtual vertex v0 ∈ R3, split-
ting the polygon into 𝑛 triangles. For visual-
ization purposes we commonly resort to pla-
nar polygons embedded in R2, however, our
method generalizes to arbitrary polygons inR3.
Similar to the linear case we are interested in ba-
sis functions associated with nodes on the poly-
gon boundary that obey the Lagrange property.
However, a direct generalization of the method
of Bunge et al. [2020] to quadratic basis functions is not obvious
due to the additional degrees of freedom at the edge midpoints. The
inset illustrates the situation: We have 2𝑛 degrees of freedom on the
polygon boundary (green) which we call coarse nodes C and 𝑛 + 1

Fig. 4. Prolongation weights computed using a regularizer on their norm
lead to very local basis functions at the cost of smoothness (left). Our
proposed energy explicitly leads to basis functions that prioritize smoothness
across internal edges (right).

virtual degrees of freedom K (red). We call the union of both sets
the set of fine nodes F = C⋃K . The location of the fine nodes are
denoted by p𝑖 . On the virtual triangulation we can easily construct
the unique quadratic Lagrange basis𝜓𝑖 for each fine node. We need
to find weights 𝑤𝑖 𝑗 that redistribute virtual degrees of freedom 𝑗 to
coarse nodes 𝑖 , forming a shape functions 𝜑𝑖 of the form

𝜑𝑖 = 𝜓𝑖 +
∑
𝑗 ∈K

𝑤𝑖 𝑗𝜓 𝑗 for 𝑖 ∈ C. (4)

Interpolation. The shape functions constructed according to (4)
obey the Lagrange interpolation property 𝜑𝑖 (p𝑗 ) = 𝛿𝑖 𝑗 at all coarse
nodes 𝑗 ∈ C by construction, because the fine basis obeys𝜓𝑖 (p𝑗 ) = 0
for all 𝑖 ∈ K and 𝑗 ∈ C. As a consequence we have 𝐶0 continuity
across polygon edges: the function values for each shape function
are either zero at the polygon edge or the unique quadratic function
satisfying the Lagrange interpolating conditions at the three nodes
along that edge. Consequently, we can choose prolongation weights
𝑤𝑖 𝑗 independently for each polygon, which is crucial for a linear-
time, parallelizable implementation. Within each polygon the shape
functions 𝜑𝑖 are trivially𝐶0 because they are linear combinations of
𝐶0 functions𝜓𝑖 . However, the functions are not𝐶1 along the virtual
edges (connecting the polygon vertices to the virtual vertex). This
does not come as a surprise since quadratic shape functions are
generally not 𝐶1 across element edges.

Prolongation matrix. The construction of the prolongation matrix
is analogous to the linear case described in Section 3.2. The only
difference is that we have more than one virtual vertex. For a face 𝑓

the local prolongation matrix is

P𝑓𝑖 𝑗 =

{
𝛿𝑖 𝑗 𝑖 ∈ C
𝑤 𝑗𝑖 𝑖 ∈ K

and the per-face prolongation matrices are assembled into a global
prolongation matrix P.

Naive extension. The challenge is choosing weights so that the
resulting coarse basis is ‘nice’ – resulting in favorable numerical be-
haviour. A direct generalization of the method by Bunge et al. [2020],
introduced in Section 3.2, could look as follows: For a polygon with
𝑛 vertices we have 2𝑛 coarse and 𝑛 + 1 virtual degrees of freedom.
Find the |C| · |K | = 2𝑛 · (𝑛 + 1) weights 𝑤𝑖 𝑗 such that:
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(1) The partition of unity property holds:∑
𝑖∈C

𝑤𝑖 𝑗 = 1 for 𝑗 ∈ K . (5)

(2) The virtual node positions can be expressed as affine combi-
nation of coarse nodes using the weights:

p𝑗 =
∑
𝑖∈C

𝑤𝑖 𝑗p𝑖 for 𝑗 ∈ K . (6)

(3) The sum of squared weights is minimized while satisfying
the first two constraints

{𝑤𝑖 𝑗 } = arg min
{𝑤𝑖 𝑗 }

∑
𝑖, 𝑗

𝑤2
𝑖 𝑗 . (7)

The solution to this linearly constrained quadratic optimization
problem defines a prolongation matrix P𝑓 whose entries define
the basis functions 𝜑𝑖 . (Figure 4 (left) shows one such function at
an edge node.) However, this construction has several shortcom-
ings. Most importantly, it does not reproduce the desired cubic
convergence rate of 𝑃2 elements due to its lack of smoothness.

102

10−3

10−5

linear
naive
ours

1
3

1
2

While slightly more accurate than
the linear construction by virtue of
the additional degrees of freedom,
the naive approach converges at
the same rate as linear basis func-
tions. The inset demonstrates this
convergence behavior on a set of
2D Voronoi meshes, comparing the
naive approach to our quadratic ba-
sis construction proposed below. As expected from quadratic shape
functions, our approach converges cubically. Another issue with the
naive approach is that it fails to reproduce the standard quadratic La-
grange basis for triangles and yields shape functions with distinctly
visible 𝐶1 discontinuities, exposing the underlying virtual triangu-
lation. These observations motivate our design of a 𝐶1-favoring
quadratic objective.

Variational energy minimization. Since the fine shape functions𝜓𝑖
are generally not𝐶1 across virtual edges, their linear combination is
not guaranteed to be either. To define ‘nice’ prolongation weights we
replace objective (7) of the naive approach with the squared gradient
difference integrated along all virtual edges, summed over all coarse
basis functions. Figure 4 (right) demonstrates that optimizing this
objective subject to constraints (5) and (6) produces shape functions
that are significantly smoother compared to the naive approach.
Specifically, we solve the following quadratic optimization problem

𝑊 = arg min
𝑊

∑
𝑖∈C

∑
𝜎 ∈E∗

∫
𝜎
∥∇+𝜎𝜑𝑖 − ∇−𝜎𝜑𝑖 ∥2 𝑑𝜎

s.t. constraints (5) and (6) are satisified
(8)

with respect to the set of prolongation weights𝑊 = {𝑤𝑖 𝑗 }. Here E∗

𝑖

∇−𝜑𝑖 (x) ∇+𝜑𝑖 (x)

v

x

v0

is the subset of edges in the vir-
tual triangulation that are inci-
dent to the virtual vertex (E∗ =

{(v0, v𝑖 )}1≤𝑖≤𝑛). The operator∇+𝜎
represents the gradient with re-
spect to the right triangle of the

Fig. 5. Quadratic shape functions on a refined triangle mesh (top row) are
combined to form shape functions on the original polygon. Regions colored
in gold have negative function values. The functions are 𝐶∞ everywhere
except at the edges where they only have𝐶0 continuity (like the standard
quadratic Lagrange basis).

edge and the operator ∇−𝜎 with
respect to the left one. The inset
visualizes the two differing gradi-
ents of the basis function 𝜑𝑖 at x.
The𝐶1 discontinuities can also be seen as derivative discontinuities
in the function’s isolines at virtual edges. If the energy vanishes for
a set of weights, all basis functions, restricted to the polygon, are
𝐶1.

Figure 5 shows a set of quadratic Lagrange shape functions on
the refined triangle mesh (top row). Minimizing the cross-edge
gradient difference (8) leads to a set of piecewise quadratic polygonal
shape functions for the coarse nodes (bottom row). While we try to
construct shape functions that are, with respect to our energy, as
𝐶1 as possible inside the polygons, they are generally not 𝐶1 across
the polygon edges, just like quadratic Lagrange basis functions (see
Figure 4, right).

Partition of unity. As in the linear case, satisfying equation (5)
ensures a partition of unity for the quadratic basis. Specifically, since
the Lagrange basis𝜓𝑖 sums to one, we have

∑
𝑖∈C

𝜑𝑖 =
∑
𝑖∈C

©«𝜓𝑖 +
∑
𝑗 ∈K

𝑤𝑖 𝑗𝜓 𝑗
ª®¬ =

∑
𝑖∈C

𝜓𝑖 +
∑
𝑖∈C
𝑗 ∈K

𝑤𝑖 𝑗𝜓 𝑗 =
∑
𝑖∈F

𝜓𝑖 ≡ 1.

Linear precision. Our shape functions are linearly precise, which
is a direct consequence of the reproduction property enforced as
constraint (6). To be linearly precise the restriction of any linear
function to the virtual triangulation must be in the span of the basis.
To see that this is the case, consider a linear function 𝑢 : R3 → R,
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Level 1

Level 2

Level 3

Fig. 6. Node positions for a refined cube. Parts of the mesh are detached
for visualization purposes. All 2-faces are split into triangles using a virtual
vertices. The volume is decomposed into tetrahedra by introducing a central
virtual vertex which is connected to all face triangles. The nodes are colored
according to their type.

let 𝑢𝑖 = 𝑢 (p𝑖 ) be the evaluation of 𝑢 at node p𝑖 , and consider the
sum

∑
𝑖∈C 𝑢𝑖𝜑𝑖 . By the reproduction property we have∑
𝑖∈C

𝑢𝑖𝜑𝑖 =
∑
𝑖∈C

𝑢𝑖
©«𝜓𝑖 +

∑
𝑗 ∈K

𝑤𝑖 𝑗𝜓 𝑗
ª®¬

=
∑
𝑖∈C

𝑢𝑖𝜓𝑖 +
∑
𝑗 ∈K

(∑
𝑖∈C

𝑢𝑖𝑤𝑖 𝑗

)
︸        ︷︷        ︸

𝑢 𝑗

𝜓 𝑗 =
∑
𝑗 ∈F

𝑢 𝑗𝜓 𝑗 = 𝑢,

because the reproduction property (6) extends to arbitrary linear
functions. On the one hand, the sum is in the span of the 𝜑𝑖 . On the
other, it can be expressed as the sum of the Lagrange basis functions
𝜓 𝑗 , weighted by the values of𝑢 at nodes p𝑗 . Since the Lagrange basis
has linear precision, it follows that the latter sum equals 𝑢 within
the triangulation and hence that 𝑢 is in the span of the 𝜑𝑖 .

Reproduction of quadratic shape functions. Although quadratic
Lagrange shape functions are readily available for triangles, we can
still apply our method to a triangle, virtually refining it into three
triangles. In this case we obtain the coarse triangle’s Lagrange shape
functions as the unique solution. Consequently our method can be
considered a generalization of quadratic 𝑃2 elements from triangles
to polygons. We provide a proof in the supplementary material.

4.2 Quadratic basis functions for polyhedra
The extension of our method to volumes does not change the de-
mands we make on the prolonged basis, but involves a virtual re-
finement similar to that of [Bunge et al. 2021]. We introduce new
virtual vertices within the polyhedron’s boundary faces as well as
a virtual polyhedral vertex. For the virtual face vertices we choose
the point that minimizes the sum of squared triangle areas; for the
virtual polyhedral vertex we use the minimizer of squared tetrahe-
dra volumes of the resulting tessellation. Figure 6 demonstrates the
procedure on a cube: each face is split into four triangles which are
connected to the central virtual vertex forming 24 virtual tetrahedra.
Each edge of this tesselation is once again equipped with midpoint
nodes corresponding to the 3D quadratic Lagrange basis. We dis-
tinguish three types of nodes, as indicated by the colors in Figure 6.

Fig. 7. Direct prolongation of all virtual degrees of freedom will result in
shape functions that are not𝐶0 across shared faces (left). The values of the
shape functions computed for each cell individually differ on the interface
between both cells. To remedy this problem we compute the prolongation
in two steps which guarantees consistent values across the interface while
still allowing the shape functions to be computed per-element without
knowledge of neighbouring cells. See Section 4.2 for details.

Level 1 nodes (green) are degrees of freedom that are defined with
respect to the polyhedron itself, while level 2 (red) and level 3 (blue)
nodes depend on virtual vertices. The prolongation weights will,
as in the polygonal case, distribute basis functions 𝜓 𝑗 at virtual
nodes (red and blue) to coarse nodes (green). To obtain the weights
we minimize the volumetric equivalent to the quadratic energy (8).
Instead of integrating along virtual edges shared by two triangles
we now integrate over virtual triangles shared by two tetrahedra.
Four such triangles for the cube are depicted in Figure 6 in light
blue. We again integrate the squared gradient difference of the shape
functions, this time over triangles of the virtual tetrahedra that do
not tessellate the boundary of the polyhedron:

𝑊 = arg min
𝑊

∑
𝑖∈C

∑
𝜎 ∈T∗

∫
𝜎
∥∇+𝜎𝜑𝑖 − ∇−𝜎𝜑𝑖 ∥2𝑑𝜎

s.t. constraints (5) and (6) are satisified,
(9)

where T ∗ is the subset of triangles in the virtual tetrahedralization
of the polyhedron that are incident to the virtual polyhedral vertex.
For the cube, there are 36 such triangles: 12 joining the cube’s edges
to the interior virtual vertex and 24 connecting the four virtual edges
on each of the six faces to the virtual cell vertex. In this context, the
symbols ∇+𝜎 and ∇−𝜎 denote the gradients of 𝜑𝑖 on the tetrahedron
to the right and to the left of the shared face 𝜎 , respectively. Figure 8
shows several polyhedra, with associated shape functions 𝜑𝑖 at
vertices and edge midpoints. Though the functions are piecewise
quadratic and can exhibit gradient discontinuities across virtual
triangles in general, they reproduce the Lagrange shape functions
for tetrahedra and are strictly quadratic in that case.

There is, however, a caveat that we have to address in the volu-
metric case. If we directly construct a prolongation matrix P1

2,3 to

ACM Trans. Graph., Vol. 41, No. 4, Article 54. Publication date: July 2022.



54:8 • Astrid Bunge, Philipp Herholz, Olga Sorkine-Hornung, Mario Botsch, and Michael Kazhdan

redistribute level 2 and 3 nodes to level 1 nodes, we fail to preserve
𝐶0 continuity between neighboring polyhedral cells. This is because
direct prolongation solves for the contribution of virtual nodes to
coarse nodes by integrating gradient mismatch over triangles inte-
rior to a cell. As a result, the contribution of a level 2 node to a coarse
node will depend on the cell over which the prolongation weights
are computed. This is not a problem for polygons since in that case
every fine basis functions associated with a virtual node is supported
within a single polygon and not shared through a common edge.

Figure 7 (left) demonstrates the problem for the coarse shape
function associated to the top left corner of a quad shared by two
polyhedra. If we compute the prolongation weights by distributing
all virtual nodes to level 1 nodes in a single step, the shape functions
defined by the two polyhedra sharing the quad do not agree on the
quad (Figure 7 top left). The problem can be solved by splitting the
prolongation into two steps:

(1) For each boundary face we first compute prolongation weights
satisfying Equation (8), distributing level 2 nodes to level 1
nodes.

(2) Then, we solve for the prolongation matrix P, distributing
level 2 and level 3 nodes to level 1 nodes, solving Equation (9).
For this second solve we fix the prolongation weights already
computed in the first step as hard constraints.

This amounts to first solving for a variational basis on the bound-
ary of the polyhedron, and then adjusting the values of the basis
functions in the interior of the polyhedron so as to minimize the cross-
edge gradient difference there as well. By construction, the per-face
prolongation weights, computed in the first step, are defined by
optimizing for𝐶1 continuity within boundary faces. Thus, two-face
adjacent polyhedra necessarily distribute a level 2 node in the same
way and the derived basis is guaranteed to be continuous. Figure 7
(right) shows the values of a shape function restricted to a face.
The same values can be computed using the 2-step prolongation in
either of the two cells.

As in the 2D case, we reproduce the quadratic Lagrange basis
functions when computed on arbitrary tetrahedra, independent of
the choice of virtual vertex. (See supplementary material).

4.3 Implementation
Conceptually the implementation of our method is quite simple and
can be easily parallelized over the mesh cells. The central task is to
minimize quadratic energies of the form (8) and (9). For each cell,
we begin by computing the |F | × |F | matrix giving the ‘gradient
discontinuity mass’ of the finer Lagrange basis functions

K𝑖 𝑗 =
∑
𝜎 ∈S∗

∫
𝜎

〈∇+𝜎𝜓𝑖 − ∇−𝜎𝜓𝑖 ,∇+𝜎𝜓 𝑗 − ∇−𝜎𝜓 𝑗
〉
𝑑𝜎

where S∗ is the set of edges E∗ or triangles T ∗ connected to the in-
terior virtual vertex. This energy is computed in an intrinsic fashion
using the metric tensor defined by the embedding of the (original
and virtual) vertices, and reduces to the integration of a quadratic
polynomial over a simplex. Then, the (Dirichlet-regularized) energy
associated with a prolongation matrix P is

𝐸 (P) = Tr
(
P⊤ (K + YS)P)

Fig. 8. Cross-sections showing our quadratic shape functions, for different
polyhedra: While the shape functions are optimized for smoothness, they
may exhibit small gradient discontinuities across virtual faces, visible as
sharp corners along iso-curves. For tetrahedra (top), where we reproduce
quadratic Lagrange shape functions, the functions are𝐶1 inside the simplex.

where S is the stiffness matrix defined on the cell (S𝑖 𝑗 =
∫
⟨∇𝜓𝑖 ,∇𝜓 𝑗 ⟩,

integrated over the triangles/tets in the cell), added to act as a regu-
larizer since K can be singular for non-simplicial cells. In principle,
the regularizer should only be added when a cell is non-simplicial,
in order to guarantee quadratic reproduction. However, as Y is taken
to be very small (10−8 in our implementation) the effect of always
including the regularizer is negligible in practice. In the supplemen-
tary material we show that the choice of a Dirichlet regularizer in
particular guarantees nice properties for our system. (Specifically, it
ensures that the 𝜑𝑖 are uniquely defined, that the partition of unity
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Restriction Prolongation

Relaxation

Direct solve
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Fig. 9. A V-cycle of our multigrid implementation. The fine level relaxes the
linear system using degrees of freedom at the vertices and edge-midpoints
(top). The restriction/prolongation operators distribute information from/to
edge-midpoints to/from vertices (middle). At the coarse level, we use a direct
solve to solve the system discretized over the vertices (bottom).

property is automatically satisfied, without requiring explicit con-
straints, and that the linear precision property is automatically satis-
fied whenever the cell is flat – that is, whenever the 𝑑-dimensional
cell has the property that the vertices of the cell as well as the virtual
vertices all lie within a 𝑑-dimensional plane.)

As the entries in P are linear in the weights {𝑤𝑖 𝑗 }, this gives a
quadratic energy in the prolongation weights. We add the partition
of unity (5) and linear reproduction (6) constraints using Lagrange
multipliers and solve the resulting KKT system.

4.4 Multigrid
Unfortunately, the transition from polygons to polyhedra reveals
the ‘curse of dimensionality’. For both polygonal and polyhedral
meshes, the total number of nodes is equal to the number of ver-
tices plus the number of edges in the mesh. Additionally, a function
associated with a node is supported on all cells sharing that node.
However, since the system matrix will typically have a non-zero
entry for every pair of nodes whose associated functions have over-
lapping support, we get significantly denser system matrices for
polyhedral meshes. For example, the local stiffness matrix of a single
hexahedron contains 400 non-zero entries while the stiffness matrix
of a single quad contains only 64.

An approach to improve the sparsity of the system matrix would
be to use the refined tetrahedral mesh explicitly and forego the
polyhedral basis approach. Though this would reduce the number of
non-zero entries per row, it would come at the cost of a significantly

higher-dimensional system matrix, resulting in a similar problem
of computational complexity. We propose a solution to this issue
which consists of a custom multigrid approach tailored to our virtual
vertex setting which provides a significant performance boost while
still still generating an accurate solution.

Our multigrid hierarchy consists of two levels: The coarse level
contains nodes at vertices (Figure 9, bottom row), the fine level also
contains nodes at the edges of the input polyhedron (top row). Note
that these levels are not directly related to the notion of level used
in Section 4. We perform multiple V-cycles as depicted in Figure 9
to solve linear systems Ax = b represented in our basis. A single
V-cycle consists of four steps.

Relaxation. This step performs 𝑛it Gauss-Seidel iterations. We im-
plemented a parallel version using greedy graph coloring to identify
maximally independent sets of nodes.

Restriction. The restriction operation can be expressed using the
matrix R ∈ R |V |×( |V |+|E |) for a polyhedral mesh with |V| vertices
and |E | edges:

R𝑖 𝑗 =


1 𝑗 is vertex node and 𝑖 = 𝑗
1
2 𝑗 is edge node and 𝑖 indicent 𝑗
0 otherwise.

(10)

Given an approximate (fine) solution x the restriction computes the
coarse level residual as b𝐶 = R(b − Ax).

Direct Solve. At the coarse level we employ the sparse supernodal
Cholesky solver implemented in Cholmod [2008] to solve

RAR⊤x𝐶 = b𝐶 . (11)

The modified system is not only smaller but also significantly sparser
compared to the original one and is solved more efficiently.

Prolongation. The prolongation operation uses the coarse solution
to correct the estimated fine solution. Using the Galerkin formula-
tion, this can be expressed in terms of the transpose of the restriction
operation: x← x + R⊤x𝐶 .

The multigrid implementation has two parameters: the number of
relaxation iterations 𝑛it and the number of V-cycles 𝑛cy. We found
𝑛it = 3 to be optimal in terms of total convergence time, which we
evaluate empirically in the next section.

5 EVALUATION
We evaluate the proposed variational quadratic shape functions in
a variety of geometry processing applications for both polyhedral
and polygonal meshes. Example tessellations can be found in Fig-
ure 10 (3D) and Figure 17 (2D). We use a variety of quantitative
tests discussed by Bunge et al. [2021], focusing on problems solved
with existing polygon Laplacians as well as other basis functions
designed for general volume and surface meshes. Additionally, qual-
itative examples highlight visible benefits of using quadratic basis
functions as compared to the more common linear elements.
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Fig. 10. Polyhedral meshes used in our experiments. From left to right:
Pyramids, Truncated, Voronoi.

5.1 Numerical Accuracy
On surface meshes, we compare the Laplacian operator obtained
through our basis functions to the existing discretizations of Alexa
and Wardetzky [2011], Bunge et al. [2020], de Goes et al. [2020]
and Bunge et al. [2021]. According to the recommendation of the
original authors, we set the hyper-parameters to be _ = 2 for [Alexa
and Wardetzky 2011] and _ = 1 for [de Goes et al. 2020] and the
virtual vertex for the works of [Bunge et al. 2020] and [Bunge et al.
2021] to be the squared triangle area minimizer. Additionally, Lapla-
cians discretized through polygon basis functions obtained with
harmonic basis functions [Martin et al. 2008] and the Poly-Spline fi-
nite element method [Schneider et al. 2019] are discussed. We forego
a quantitative comparison to the mean value coordinate basis func-
tions [Wicke et al. 2007] since they are only defined on meshes with
convex tessellations. In the case of polyhedral domains, we compare
to the volume extension of Bunge et al. [2020] introduced by [Bunge
et al. 2021] and their volumetric Diamond Laplacian with their sug-
gested choice for the virtual cell vertex. The harmonic bases from
Martin et al. [2008] and Schneider et al.’s [2019] Poly-Spline basis
functions are equally extendable to volume meshes and discussed
in the evaluation. To verify the quality of the results we used the
code published by the authors for the works of [Bunge et al. 2021,
2020; Schneider et al. 2019].

Poisson Equation. We analyze the convergence behavior of the
Laplacian under refinement by solving the Poisson equation Δ𝑢 = 𝑓

on different tessellations of the unit square and unit cube for the
Laplacian of the Franke test functions [Franke 1979] with Dirichlet
boundary conditions. We solve the discrete system Su = Mb where
the boundary values for the right-hand side b are fixed to the ana-
lytic values of the 2D or 3D Franke test function at the respective
vertex position. The formulas for the tests functions can be found
in the Appendix section of [Schneider et al. 2019]. Given a mesh
M = (V,P) with verticesV and faces P and a set of basis func-
tions {𝜑1, ..., 𝜑𝑛} defined on this tessellation, the mass and stiffness
matrices, M, S ∈ R𝑛×𝑛 , are discretized as

M𝑖 𝑗 =

∫
M

𝜑𝑖𝜑 𝑗 and S𝑖 𝑗 = −
∫
M
⟨∇𝜑𝑖 ,∇𝜑 𝑗 ⟩.

We measure the deviation of the solution𝑢 from the true function
values, displayed in Figure 11 and Figure 13 for surface meshes
and in Figure 12 and Figure 14 for volumetric meshes. The con-
vergence plots demonstrate that our method achieves the desired
cubic convergence rate for all tessellations, for both surfaces and

volumes, in contrast to the quadratic slope of the linear discretiza-
tions. Bi/triquadratic quadrilateral/hexahedral 𝑄2 elements and
Poly-Spline basis functions also provide cubic convergence. The
slightly lower error of the traditional 𝑄2 basis is to be expected,
since they impose more degrees of freedom per element. Regarding
the Poly-Spline basis [Schneider et al. 2019], a major advantage
of this method are the few degrees of freedom needed to obtain
their level of accuracy. Unfortunately, this feature only holds for
specific meshes with large regular quad/hex regions. Furthermore,
their basis construction requires an initial subdivision step when-
ever the input mesh does not meet their requirements. It ensures
that for any quad/hex only one edge/face is adjacent to a general
polygon/polyhedron. Additionally, they enforce that non-quad/non-
hex cells are not adjacent to each other or at the boundary of the
mesh. Even in the case of these constrained tessellations our basis
functions still give better results than the Poly-Spline method for
surface meshes. However, we yield slightly higher errors on the
volume meshes.
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Fig. 11. 𝐿2 error in log-log scale of the Poisson system solved for Franke’s
test function on planar meshes with quads (left), Voronoi cells (center), and
concave faces (right).

Eigenvalue Reproduction. The eigenfunctions of the Laplacian
form an orthonormal basis. In the case of a unit sphere, these are
the spherical harmonics 𝑌𝑚

𝑙
: 𝑆 → R with eigenvalues −𝑙 (𝑙 + 1).

We assess different finite elements and discrete exterior calculus
discretizations of the mass M and stiffness S matrices by comparing
the (generalized) eigenvalues of the system −Su = _Mu with the
analytic eigenvalues. Results for the hexagon sphere can be seen in
Figure 15, showing that our basis functions generate more accurate
eigenvalues, with significantly less deviation from the ground truth
than those produced by competing approaches.

As with spherical harmonics, the solutions to the Laplacian eigen-
value problem on the unit 3-ball B3 with zero Dirichlet boundary
conditions

−Δ𝑢 = _𝑢 in B3 with 𝑢 = 0 on 𝜕B3,

have analytical expressions. As above, these provide the ground
truth for comparing the generalized eigenvalues computed using
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Fig. 12. 𝐿2 error in log-log scale of the Poisson system solved for Franke’s
test function on different tessellations of the unit cube. The tesselations are
as follows: Pyramids (left), truncated cells (center) and Voronoi cells (right).
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Fig. 13. 𝐿2 error in log-log scale of the Poisson system solved for Franke’s
test function on planar grids with quads (left) and subdivided Voronoi cells
(center) in accordance to the needs of the Poly-Spline method (right).

discrete mass M and stiffness S. As in the 2D case, we solve the
generalized eigenvalue problem, this time locking the boundary
values to enforce the Dirichlet constraints. Figure 16 shows the 34
smallest nonzero eigenvalues obtained with the different polyhedral
Laplacians on a truncated unit ball. The Poly-Spline method is not
included in the comparison because the polygon/polyhedral meshes
do not meet their compatibility conditions (see description above).

Linear Elasticity. To go beyond Laplacian systems, we also evalu-
ate our method on a static linear elasticity simulation. The governing
PDE for the body Ω and a displacement vector field u are

∇ · 𝝈 = f in Ω,

with linear Cauchy strain 𝝐 = 1
2

(
∇u + ∇uT

)
and linear material

behavior 𝝈 = E : 𝝐 . The material matrix E is built from the Young’s
modulus 𝐸 and Poisson ratio a .
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Fig. 14. 𝐿2 error in log-log scale of the Poisson system solved for Franke’s
test function on different unit cubes with regular hexahedra (left) and
subdivided Voronoi cells (center) in accordance to the Poly-Spline refinement
(right).
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Fig. 15. The 48 smallest non-zero eigenvalues of the Laplacian, computed
on a unit sphere tessellated by hexagons. The top plot shows the eigenval-
ues, the bottom shows the deviation from the ground truth. Our method
outperforms all other discretizations, with results barely deviating from the
desired values.

A challenging issue is the locking phenomenon, which can be
observed for linear elements when setting a close to 0.5. This phe-
nomenon is shown for the rest state of a bar, acted on by gravity, in
the top row of Figure 17 and on the left of Figure 20. This problem
can be overcome by using higher order basis functions as shown in
the bottom rows and left column of the respective figures. For all
tessellations, our basis functions avoid locking artifacts.

Geodesics in Heat. Because our basis functions, and specifically
their gradients, can be evaluated at any point on the mesh, we can
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Fig. 16. The 34 smallest non-zero eigenvalues of the Laplacian, computed
on a truncated polyhedral tessellation of the unit ball. The top plot shows
the eigenvalues, the bottom shows the deviation from the ground truth. Our
method outperforms all other discretizations, with results barely deviating
from the desired values.

Fig. 17. Displacements due to gravity computed by linear elasticity with
Young’s modulus 1e+10 and Poisson’s ratio 0.4999 on different tessellated
2D meshes. The top row shows the results for linear elements [Bunge et al.
2020] and the bottom row for our quadratic basis functions.

Fig. 18. Geodesics in heat [Crane et al. 2013] on a polygonal mesh.Quadratic
basis functions (left, center) lead to smoother results with less artifacts
compared to the linear version (right). All images have been rendered by
evaluating the result on triangulated and refined polygons.

Fig. 19. Line Integral Convolution visualization obtained by anisotropically
diffusing a random color signal along the principal curvature direction.

straightforwardly implement Geodesics in Heat [Crane et al. 2013]
for polygon meshes. In the original method a constant gradient per
face is normalized and integrated. With quadratic elements, we use
numerical quadrature to integrate the point-wise dot product of the
normalized gradient of the diffused delta function and the gradient
of the basis vectors. Figure 18 compares results for linear and qua-
dratic polygon basis functions. In addition to supporting shorter
diffusion time-steps (due to the effective refinement that comes from
adding degrees of freedom at edge midpoints) the quadratic basis
also produces smoother functions.

Anisotropic Smoothing. Typically, the metric tensor is defined by
the positions of the mesh vertices and the virtual vertices. How-
ever, our implementation allows us to to modify the tensor for each
triangle in the virtual refinement to support anisotropic diffusion
[Clarenz et al. 2000]. For example, this allows us to implement Line
Integral Convolution as in [Prada et al. 2018]. Starting with a vector
field, we scale the metric tensor so as to shrink distances in direc-
tions parallel to the vector field while preserving distances along
perpendicular directions. Using this metric, we anistotropically dif-
fuse a random signal on the mesh, smoothing the signal along the
vector field’s streamlines. Figure 19 shows the resulting visualiza-
tion of the maximal curvature directions field on the fertility model.

5.2 Multigrid and Timings
A specific choice of basis determines the structure of the stiffness
matrix and consequently the performance of a system solve. Here
we evaluate this relationship and assess the convergence behaviour
of our multigrid solver.

Multigrid vs. Direct Solve. Our multigrid approach, introduced
in Section 4.4, sidesteps the direct solution of the full system and
employs a direct solver at the coarse level only. In Figure 21 we
illustrate it’s convergence behavior using four polyhedral meshes
(all hex-dominant except for the first one which contains pyramids,
see Figure 10). We report timings of our multigrid approach for
the solution of a volumetric Poisson problem, relative to the time
needed to solve the direct system using the supernodal Cholesky
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Table 1. We compare statistics for the solution of a Poisson problem using different basis constructions. The timings include solving times using supernodal
Cholesky decomposition and back substitution. For our method we include timings for our multigrid approach and report the time it takes to reduce the
residual error to ∥x − xref ∥ /∥xref ∥ < 10−8 with respect to the direct solution.

Mesh |V| [Martin et al. 2008] [Bunge et al. 2020] [Bunge et al. 2021] ours

time dof nnz time dof nnz time dof nnz time MG time dof nnz
Voronoi 2D 200k 0.57s 200k 2.6M 0.73s 200k 2.6M 4.3s 200k 7.6M 7.7s 3.2s 507k 12.1M
Voronoi 2D 800k 9.4s 800k 10.4M 9.8s 800k 10.4M 21s 800k 29.6M 36.7s 24.2s 2M 48M
Bunny 3D 80k 1.8s 80k 2M 1.6s 80k 2M 6.2s 80k 5.9M 26s 3.6s 316k 17.6M
Kong 3D 160k 5.45s 167k 4.3M 4.44s 167k 4.3M 25.9s 167k 12M 97.6s 11.9s 662k 38M

Fig. 20. Displacements due to gravity by linear elasticity with Young’s
modulus 5e+10 and Poisson ratio 0.4999 on differently tessellated bars
consisting of tetrahedra, hexahedra and Voronoi cells. The left figure shows
the results for the volume extension of Bunge et al.’s linear basis functions
[Bunge et al. 2021] and the right figure is obtained through our quadratic
basis.
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Fig. 21. Multigrid convergence for four polyhedral meshes of different size.
Each point represents a V-cycle and we report time relative to a direct
solve of the full system for each mesh. The relative error is measured by
∥x − xref ∥ /∥xref ∥ where xref is the direct solution.

solver implemented in Cholmod [Chen et al. 2008]. The solver ex-
hibits the expected convergence rate, with relative errors reducing
exponentially until floating-point precision is reached. In addition, it
produces an accurate solution, e.g. with error smaller than 10−8 rel-
ative to the solution of the direct solve, but in a fraction of the time
needed by the direct solver. Setup times for the multigrid method
are included in the measurements, specifically the factorization of
the stiffness matrix at the coarse level.

Solving times. In Table 1 we compare statistics for the solution
of a Poisson problem using different basis constructions. The time
it takes to solve the system using a direct solver depends on the
degrees of freedom (which manifest as number of rows and columns)
and the number of non-zeros (nnz). To define our quadratic basis
functions we need to introduce additional nodes which leads to
larger and denser systems. The superior convergence behavior of
our method therefore comes at the price of a more costly Poisson
system solve compared to methods that only use vertex nodes [Alexa
and Wardetzky 2011; Bunge et al. 2020; Martin et al. 2008]. As we
use a Cholesky solver, discrete Laplacians with the same non-zero
structure give the same solve-times. The approach of Bunge et
al. [2021] introduces coefficients relating vertex nodes of adjacent
elements leading to denser matrices.

As expected, the solve-times of our quadratic method are higher
for all examples due to the larger number of degrees of freedom
and denser matrices. However, using the multigrid construction
significantly lowers the computational time. In Table 1 we report
the time it takes to achieve a relative accuracy of 10−8, typically
requiring between 5 and 10 V-cycles. Since we have already validated
that our method generally yields superior accuracy, and since the
multigrid solver only requires factoring a matrix whose sparsity
structure matches that of matrices defined using linear elements,
this leads towards an overall improvement in quality at negligible
increase in computation time.

6 CONCLUSION AND FUTURE WORK
We presented a new approach for defining finite elements shape
functions for general polygonal and polyhedral meshes. In contrast
to previous linear approaches, the basis we propose is quadratic
and exhibits the commensurate convergence properties. The key
is defining continuous basis functions that are linear combinations
of standard quadratic Lagrange functions on a virtual simplicial
refinement, with weights defined by solving a variational optimiza-
tion problem encouraging the basis functions to minimize gradient
discontinuities along virtual edges.. Leveraging the natural hier-
archical structure within our construction, we define a multigrid
solver that mitigates the loss of sparsity associated with higher order
shape functions. We demonstrate the efficacy of our approach com-
paring numerical performance for standard geometry processing
applications requiring a discretization of the Laplacian, applications
in simulation requiring a more general stiffness matrices, as well
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as applications that benefit from pointwise evaluation. Empirically,
our approach provides cubic convergence for general polygonal and
polyhedral meshes without the ensuing increase in computational
complexity.

By focusing on the general construction of finite element shape
functions our approach provides a general framework that can be
directly incorporated into many applications in geometry processing
and simulation.The source code is available at https://github.com/
mkazhdan/VariationalPolyShapeFunctions.

In the future, we will consider higher-order extensions of our
approach, with higher derivative continuity constraints across ele-
ments – enabling thin shell simulations on polygonal meshes. We
would also like to extend our approach to the construction of 1-form
bases, supporting the large body of work on vector field processing.
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