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(a) Input segmented video (b) Model segmented video “Transformers” (c) Our result

Figure 1: Color grading is the process of adjusting the color and tonal balance of a movie to achieve a specific look. This is a critical step of
the movie editing pipeline. However, even with dedicated software, it remains a painstaking task that can be done only by skilled artists. We
propose a new model-based approach that automatically transfers the look of a professionally edited sequence to another video. To produce
sophisticated effects like the contrasted orange-teal look of this example, we use a user-provided foreground-background segmentation. This
allows us to process the input sequence (a) to reproduce the characteristic visual style of “Transformers” (b) to convey a similar tense mood (c).
Our approach produces results that are free from artifacts and temporally coherent, as can be seen in the companion video. Video credits:
Mike Lerner (input), “Transformers”(2007) c©Paramount Pictures (model).

Abstract

In most professional cinema productions, the color palette of the
movie is painstakingly adjusted by a team of skilled colorists –
through a process referred to as color grading – to achieve a certain
visual look. The time and expertise required to grade a video makes
it difficult for amateurs to manipulate the colors of their own video
clips. In this work, we present a method that allows a user to transfer
the color palette of a model video clip to their own video sequence.
We estimate a per-frame color transform that maps the color dis-
tributions in the input video sequence to that of the model video
clip. Applying this transformation naively leads to artifacts such as
bleeding and flickering. Instead, we propose a novel differential-
geometry-based scheme that interpolates these transformations in a
manner that minimizes their curvature, similarly to curvature flows.
In addition, we automatically determine a set of keyframes that best
represent this interpolated transformation curve, and can be used
subsequently, to manually refine the color grade. We show how our
method can successfully transfer color palettes between videos for a
range of visual styles and a number of input video clips.
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1 Introduction

The color palette used in a movie often plays a critical role in estab-
lishing its visual look. It can be used to locate a movie in place and
time – for example, the Coen Brothers’ 2000 film, O’ Brother, Where
Art Thou? uses a sepia-tinted color scheme to evoke its setting of
rural Mississippi during the time of the Great Depression1. In other
instances, the color scheme is manipulated to evoke certain emotions
or reinforce a certain mood (as demonstrated by Jean-Pierre Jeunet’s
use of rich, warm colors to reinforce the vibrant, happy mood of his
2001 film, Amélie). Over time, certain looks have come to represent
entire genres of movies – Film Noir’s use of low-key lighting and
contrast between light and shadows is one such iconic visual style.

This relationship between visual styles and the process of story-
telling [Oldenborg 2006] makes color management a critical part
of film production. The visual style of a movie is often carefully
devised by the cinematographer, and executed by a team of skilled
colorists who manipulate the colors of the movie footage – through a
process known as color grading – to match his or her vision. While
in the past color grading was done using photo-chemical processing,
most modern post-production pipelines digitize the movie footage
and use a combination of hardware and software tools to digitally
color grade the movie [Selan 2012]. Today, color grading tools are
even part of popular video processing software such as After Effects
and Final Cut Pro.

However, in spite of the range of tools available today, color grading
is still a tedious process that requires a skill level and time budget
that puts it out of the reach of amateur video enthusiasts. The goal
of our work is to make it possible for amateur users to apply popular
color grading styles to their own home videos with minimal user
interaction. We achieve this using an example-based approach; users
are asked to specify a model video (or image) that represents the
color grading style they like, and our technique transfers the color
palette of this model video to their clip. This approach offers two
advantages; first, it allows users to specify the visual style they would
like in an intuitive manner, and second, it allows us to leverage the

1The short documentary Painting with Pixels: O’ Brother, Where Art
Thou? offers a fascinating perspective into this process.
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Figure 2: (a) We evaluate the temporal consistency of several color transfer options on four frames. The first three frames are nearly
consecutive and the last one is more distant. Computing the color transform once at the beginning and applying it to the entire sequence yields
results that degrade as time passes (e.g., the bluish face on the last frame). (b) Evaluating the transform at each frame produces temporally
inconsistent results when the content changes (e.g., when the man appears in the second frame). (c) In comparison, our result is stable and
does not drift. Video credits: Greg Henkel.

skill and time that went into the grading of the model video clip.

By posing video color grading as the problem of transferring color
distributions between video sequences, we can leverage an exten-
sive body of work on color matching in images [Reinhard et al.
2001; Pitié et al. 2005]. However, these methods cannot be eas-
ily extended to video sequences – applying color matching naively
to every frame of video sequences leads to artifacts such as color
bleeding and temporal incoherence (see Fig. 2). Instead, in our
work, we estimate per-frame color transformations, and filter these
transformations using a novel temporal filtering technique based on
new approximate curvature flow and differential geometry principles.
This filtering technique considers the sequence of transformations as
a high-dimensional curve in a manifold, and replaces pieces of this
curve that vary at a high frequency by a geodesic interpolation. This
allows us to preserve the video content faithfully while simultane-
ously handling temporal consistency issues at both short scales (for
example, high-frequency flickering) and longer scales (for example,
changes in the scene or lighting). In addition, our filtering technique
also allows us to automatically determine a small set of keyframes
that can be used to further artistically manipulate the color palette.
As we show in our results, our technique is able to handle a number
of visual styles (including Film Noir, bleach bypass, orange-teal)
and a wide range of input video sequences.

Contributions We describe a technique to transfer the look of pro-
fessionally color graded footage onto amateur videos. We rely on a
robust, low-dimensional representation of the visual style of each
frame that can handle a wide variety of looks and contents. The core
of our technique is based on a new filtering approach to temporal
consistency. We explain how to extend the concept of curvature-flow
smoothing often used on 3D meshes to higher-dimensional function
spaces. In our context, we apply this smoothing scheme in the space
of color transformations and we demonstrate that it successfully
produces temporally consistent results without degrading the video
content. Further, our final result is defined by a small number of pa-

rameters stored at a few sparse keyframes that can be easily edited by
artists, thereby preserving their full artistic control over the output.

2 Previous work

Color transfer for images Matching colors in images has attracted
much attention since the pioneering work of Reinhard et al. [2001].
These methods have either tried to match the entire color distribu-
tion of the model image [Pitié et al. 2005] or focused on low order
statistics so as to avoid artifacts such as overly high contrasts [Rein-
hard et al. 2001; Pitié and Kokaram 2007]. Accounting for spatial
knowledge has shown to improve results when the content of the two
images differs, by transferring colors locally between corresponding
segments or using user specified strokes [Reinhard et al. 2001; Tai
et al. 2005; An and Pellacini 2010; Pouli and Reinhard 2011], or
spatially matching [HaCohen et al. 2011] or aligning [Kagarlitsky
et al. 2009] the images. Color transfer is important to a number of
applications; it has been used to mimic the style of a specific cam-
era [Wang et al. 2011], to convey semantic concepts [Murray et al.
2011], and to increase the realism of composite images [Xue et al.
2012; Johnson et al. 2011]. In addition to color, other aspects of
appearance also effect the visual look of an image. Bae et al. [2006]
transfer tonal balance and detail across images using a non linear
two-scale decomposition.

In our work, we adapt features of these previous techniques to cap-
ture a large range of color palettes. We use a color transfer model
inspired by color grading software used by artists, e.g., Da Vinci
Resolve and SpeedGrade. It consists of a nonlinear luminance curve
and affine remapping of the chrominance values. These transforma-
tions are applied in three luminance bands and for each user-defined
segment of the video.

Temporally consistent video processing Extending image-based
algorithms to video sequences is non-trivial, and is especially diffi-
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Figure 3: Our color grading method works in two stages. In the first stage, we match each frame of the input video to one image out of a set of
representative model video frames. We estimate color transformations between these matching frames. In the second stage, we filter these
transformations using a novel approximate curvature flow technique. The basic idea behind this technique is to treat the set of transformations
as a curve in high-dimensional space and detect points of low curvature (i.e., keyframes). Interpolating the color transformations at these
keyframes produces a temporally coherent set of transformations, that when applied to the input video, results in a high-quality color graded
result. Video credits: “Transformers” (2007) c©Paramount Pictures (model).

cult for the kind of videos we are targeting – clips captured by am-
ateurs under largely uncontrolled conditions, and characterized by
complex scenes, arbitrary motion, and changes in illumination and
camera parameters. If these effects are not accounted for properly,
the color graded results often exhibit artifacts such as high-frequency
flickering or low-frequency color drifts (Fig. 2).

Paris [2008] analyzed an extension of Gaussian convolution to video
streams, and used it to devise temporally-consistent video filter-
ing techniques (including edge-preserving smoothing). Lang et
al. [2012] used efficient edge preserving filtering techniques to esti-
mate temporally coherent optical flow and used it to make graphics
applications such as colorization temporally coherent. Farbman and
Lischinski [2011] stabilize tonal fluctuations in videos by using opti-
cal flow estimated at sparse locations to propagate tonal differences
across frames. Oskam et al. [2012] employ spatio-temporally consis-
tent radial basis functions to color balance sequences for augmented
reality. However, all these methods directly filter the pixel colors and
would generate overly smooth results, which would be undesirable
in our context. We address this issue by working in the space of
color transforms. Our scheme preserves the frame details while
ensuring temporal smoothness.

Kiser et al. [2012] devise a temporally stable tone mapping system
that relies on a leaky integrator to smooth out the parameters esti-
mated at every frame. Similarly, Chang et al. [2007] use anisotropic
diffusion to ensure that subtle color transformations are temporally
coherent. In our context, low-pass filtering the color transformations
computed at every frame might smooth out noisy transformations,
but does so at the cost of corrupting the transformations at neigh-
boring frames, i.e., large variations in color distributions over short
periods of time become smaller variations that are extended over
a longer period. In our work, we aim at explicitly detecting and
removing the outlier color transformations; this ensures that the
results are temporally consistent and also accurately model the true
scene content.

3 Overview

Fig. 3 shows an overview of our process. Given a user-specified
model video M and an input clip I, we seek to transfer the color

palette of M to I to create the color graded result O. Optionally,
a segmentation of the two videos into foreground and background
regions can be used for improved matching results. There are two
simple approaches to this problem that seem viable at the outset.
One is to estimate a single global color transfer function T that
best matches the colors of the input video to those of the output
video, and apply that transfer function to every input video frame,
i.e., Ot = T (It). The other approach is to estimate a color transfer
function Tt for every input video frame It that maps its colors
to those of a corresponding model video frame, and apply it to
produce the result, i.e., Ot = Tt(It) . While these approaches
would work for some videos, they do not generalize well to the
range of videos that we would like to handle – videos captured with
arbitrary scene content, complex motion, and changes in lighting and
camera settings that lead to changes in pixel values over time. This is
illustrated in Fig. 2, where using a single global color transform leads
to drift in the colors over time (due to changes in the pose and the
camera exposure and white balance of the input video over time). On
the other hand, color-matching every frame leads to high-frequency
flickering (due to sudden changes in scene content).

Instead, we propose a novel two-stage approach, shown in Fig. 3,
that is designed to handle these color inconsistencies. In the first step,
we compute per-frame transformations Tt (Sec. 4) that match the
color palette of each input video frame to a corresponding represen-
tative model frame (Sec. 4.2). By estimating color transformations
at every frame, we capture the changes in the scene content of both
the input and model videos. Representative model frames summa-
rize the important aspects of the content in the model video, and
are chosen automatically so as to span the appearance space of
the model. However, applying these transformations naively to the
input video leads to temporal artifacts. To avoid this, in the sec-
ond step (Sec. 5), we filter the per-frame transformations to make
them temporally coherent. We achieve this filtering through a novel
differential-geometry analysis of the series of color transformations
T as a curve in a higher-dimensional transform space. We show that
points at which this curve has a high curvature directly correspond
to instants where directly applying the transformations Tt to the
input video It would produce artifacts such as temporal flickering.
Instead, we detect points on this curve that have a low curvature
(called keyframes) and interpolate the transformations at these points
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Figure 4: Our set of transformations consists of a nonlinear lu-
minance function and a set of affine chrominance transformations.
These transformations can be computed for each segment of a seg-
mented video if a segmentation is available. Video credits: “Trans-
formers” (2007) c©Paramount Pictures (model).

to build a set of temporally coherent color transformations T′. By
temporally smoothing out these color transformations, we filter out
high-frequency noise while still adapting to low-frequency changes
in the input video. Performing this analysis in a space of color trans-
formations rather than at the pixel levels makes it computationally
efficient since we only filter a small number of numerical values.
Applying the interpolated transformations T′t to the input video
frames It produces the final color graded output video frames Ot

(Fig. 2, bottom).

4 Single-frame Color Matching

Our method first computes per-frame color transformations Tt to
match each input frame It to a desired image or model frame Mt. In
this section, we first describe how we model color transformations
and then describe how we pair each input frame with a model frame
and actually estimate a per-frame color transform.

4.1 Color Transfer Model

We seek to transfer the color distribution of a model video frame
Mt to an input video frame It. A color transfer method that is
too flexible such as full color histogram matching would be highly
dependent on the footage content, e.g., for an outdoor scene, the
proportion of sky between the input and the model would need to be
exactly the same for the transfer to be successful. Such sensitivity
is undesirable in our context since we are unlikely to get such good
input-model matches. On the other hand, a transfer model without
enough flexibility such as matching only the mean color would not
be expressive enough to handle the visual looks that we are interested
in. We strike a balance by first transferring the luminance values
using a smooth remapping curve and then matching the chrominance
values using three affine transforms, one for each of shadows, mid-
tones, and highlights (see Fig. 4). In cases where a segmentation
into foreground and background objects is provided, we do this
transformation for foreground and background, respectively, for a
total of six transformations per frame. We finalize the per-frame
transfer with an edge-aware smoothing filter that ensures clean edges
with no halos. For the color space, we follow the recommendation
of Reinhard and Pouli [2011] and work in CIE-Lab and the D65
illuminant. We describe the details of this model below.

Luminance We represent the tonal aspect of a frame by its intensity
histogram. To transfer the tonal properties of the model onto the
input, we use standard histogram matching, i.e., we use the transfer
function T` = H−1(I)

(
H(M)

)
, where H denotes the cumulative

luminance histogram operator, respectively applied to I and M. The
generalized inverse [Villani 2003] (p.73) of H is used to account for
non-invertible cumulative distribution functions. To prevent extreme
histogram stretching in the cases where the two frames are widely
different or are noisy (as in the case of low-quality video input), we
regularize the transfer function by convolving it with a boundary-
preserving Gaussian kernel of standard deviation σ = 10%.

Chrominance Our chrominance model is inspired by standard color
grading tools that let users control the color transform separately for
the shadows, midtones, and highlights. To allow for this, we separate
each frame into three luminance bands with an equal number of
pixels. To avoid discontinuities, we make these bands overlap and
smoothly transition from one to the other. We achieve this by making
bands overlap by 10%, and setting pixels weights to 1 inside their
corresponding band with a cubic fallof outside. Finally, the per-pixel
weights across all the bands are normalized to 1.

For each band, we model chrominance properties by the weighted
mean and covariance [Galassi et al. 2011] of the a and b chrominance
channels – a 2x1 vector and a 2x2 matrix, respectively. Given these
two properties, we estimate an affine transform from the model
video frame to the input video frame. The translation component
(a 2x1 vector) of this transform corresponds to the difference of
the means. The mapping between the covariances (a 2x2 scaling
matrix) is computed in closed form using the technique of Pitié
and Kokaram [2007]. The advantage of this representation is that
it is low-dimensional enough not to overly dependent on the scene
content, while still being flexible enough to capture a wide range of
effects, including color filters that are represented by the translation
component and sophisticated saturation variations represented by a
full 2x2 linear transformation in the ab plane.

Since the bands have smooth transitions, a pixel can be affected by
more than one chrominance transforms. To handle this, we cross-
fade the individual matrices using the pixel weights for each band to
obtain the final pixel’s transformation matrix. Fig. 5 illustrates the
advantage of using our color transfer model.

Foreground-background segmentation Some color grades rely
on a specific treatment of the foreground and the background. For
instance, Fig. 1b shows an example of a orange-teal look that em-
phasizes the tension of the scene. Professional movie makers can
achieve this effect by carefully setting up the shoot (props, costumes,
lighting) and fine-tuning it in post-processing using global adjust-
ments. However, amateur videos are taken under uncontrolled light-
ing environments and global edits cannot produce such foreground-
vs-background effects (Fig. 6). We enable these visual styles by
letting users specify a segmentation of the scene into foreground and
background, and estimating the color transforms for these regions
separately. In practice, we use the Snapcut tool [Bai et al. 2009] to
create a mask for the foreground. To reduce segmentation artifacts,
we further refine this binary mask to produce an alpha matte. For
each frame, we erode and dilate the provided mask to determine
an area of uncertainty around edges. This produces a tri-map that
is used to build a soft mask for each frame [Levin et al. 2008].
We then process these masks with the edge-aware spatio-temporal
filter of Lang et al. [Lang et al. 2012]. This creates a temporally
consistent matte that we use to adjust the luminance band weights
multiplicatively. We apply the color transform estimation technique
described above to construct luminance and chrominance transforms
separately for the foreground and background.

Spatial filtering Although refining the segmentation greatly con-
tributes to having clean edges, halos may still appear in some cases
(Fig. 7, left). We follow an approach inspired by Rabin et al. [2010]
and Pouli and Reinhard [2011]. We compute the difference between



(a) Model video frame (b) Input video frame (c) Naive histogram (d) Our color transfer
“Transformers” “Amélie” matching model

Figure 5: We would like to transfer the color palette of the model video frame (a) to an input video frame (b). (c) The simplest way to do this
would be to apply histogram matching in each color channel (and the foreground and background) independently. While this might match the
color styles, it often produces artifacts (note, the color artifacts on Amélie’s face). (d) Our color transfer model is able to produce an equivalent
result without any artifacts. Video credits: “Transformers”(2007) c©Paramount Pictures (model), “Amélie”(2001) c©Miramax Films (input).

(a) Model video frame (b) Input video frame (c) Color transfer (d) Color transfer
“D.O.A” without segmentation with segmentation

Figure 6: Some color styles have spatially-varying characteristics that cannot be replicated with global color adjustments. (a) For e.g., in this
example of the Film Noir style, the face is bright, while the background is darker, but the input frame (b) does not match this. Transferring this
look to the input video frame using global color adjustments does not replicate this style. (d) By using a user-specified segmentation (shown in
a and b), we can produce a rendering that is more faithful to this style. Video credits: “D.O.A”(1950) (model), Tilke Judd (input).

the original and transformed images, apply an edge-aware smooth-
ing filter to this difference, and add this filtered difference back to
the original image. However, we observed color bleeding when we
processed all three color channels and found that processing only
the luminance produced better results. In practice, we chose the Do-
main Transform filter [Gastal and Oliveira 2011] over the bilateral
filter [Pouli and Reinhard 2011] and the Yaroslavsky filter [Rabin
et al. 2010] because of its speed.

4.2 Representative model frames

Our approach supports several options for specifying the model data.
Users can provide a single model image, or for more control, specify
model images for several hand-picked input video frames. That said,
we believe that most amateur users would find it burdensome to
painstakingly specify these correspondences. Instead, we present a
technique that only requires users to provide an input and a model
video, and automatically pairs each input video frame with a model
video frame.

First, to avoid doing a computationally expensive exhaustive search
among all the model frames for each input frame, we summarize
the model sequence with a few representative frames whose color
distribution is representative of that of the entire video. We perform
this clustering using the K-medoids clustering technique of Park and
Jun [2009]. We chose K-medoids over standard K-means because
medoids are constrained to be one of the input samples, which fulfills
our goal of selecting frames from a video sequence. In practice, we
run the K-medoids algorithm on the frames of the model video to
produce one representative model frame for every 30 frames of the
model video, i.e., one for every second of a model video sampled at
30fps. We refer to the original K-medoids article for the details of
the algorithm. To compare frames, we use the metric proposed by

Ferradans et al. [2012] that relies on the means, µ, and covariances,
Σ, of the color distributions to estimate the distance d(p, q)2 between
frames tp and tq as:∑

k

tr(Σk
p + Σk

q )− 2(Σk
p

1
2 Σk

q Σk
p

1
2 )

1
2 + ‖µk

p − µk
q‖2, (1)

where the summation is over the three luminance bands. We remove
outliers by ignoring medoids with less than 30 samples, which repre-
sent less than a second at 30fps. Given the representative frames, we
match each input frame to the representative frames using the same
metric, and estimate the corresponding color transformation. This
process is illustrated in Fig. 8, where using an arbitrary model video
frame produces a bad color transfer, but using our automatically
estimated match improves the quality of the result substantially.

5 Differential Color Transform Filtering

After the previous stage, we have a color transform Tt for each
frame. Each of these transformations has been computed in isolation
and applying them directly to the video frames produces a temporally
inconsistent result. For instance, in Fig. 2, the colors of the wall
and of the person in the foreground change when a passer-by briefly
walks across the background, even though this is an momentary
event that ideally should not affect the result. One could apply
a spatio-temporal filter to the video pixels to average this out but
this would produce a smooth result in which high-frequency details
are lost. We address this issue by temporally filtering the color
transforms applied to video frames. This ensures that both the
temporal coherence observed in the input sequence and the spatial
details in the video frames are preserved. However, this poses a
major challenge: the space of color transforms is high-dimensional,
and extending the notion of a filter to this domain is nontrivial. An



(a) Input video frame (b) Color transfer without (c) Color transfer with
spatial filtering spatial filtering

Figure 7: Applying color transformations to the foreground and background independently can lead to artifacts. (b) This is illustrated for this
example, where applying the Film Noir style (Fig. 6a) to the input video frame (a) produces haloing artifacts at segment boundaries. (c) Using
an edge aware filter to smooth the difference improves the quality of the result. Video credits: Markus Wills (input).

(a) Input video frame (b) Bad model frame (c) Color transfer with (d) Good model frame (e) Color transfer with
“The Dark Knight” bad model match “The Dark Knight” good model match

Figure 8: To ensure that the per-frame color transforms computed are meaningful, it is important that input video frames are matched to
meaningful model video frames. When an input video frame (a) is color graded with a bad model frame (b), the results are often bad (c).
Instead, in our work, we pre-cluster the model video into a small number of representative model frames and match each video frame to the
most similar representative frame (d). This matching produces a meaningful color graded result (e). Video credits: Akash Viren Prasad (input),

“The Dark Knight” (2008) c©Warner Bros. (model).

Tb

Ta=T’a Tc=T’c
T’b

T’a(Ia) T’b(Ib) T’c(Ic)

Tb(Ib)

Figure 9: The per-frame color transformations Tt can be analyzed
as points on a curve in a high-dimensional space (blue curve, green
dots). Points on this curve with a high curvature correspond to trans-
formations that cause temporal artifacts in the output video (for e.g.,
the background in the top right image brightens when a person walks
across the back). Our color transform filtering technique detects
keyframes (purple circles) by sampling regions of low curvature and
computes a smooth transform curve by interpolating the original
transformations at the keyframes (red dashed curve, green dots).
Applying the interpolated transforms to the input frames produces a
temporally consistent result (bottom middle).

important contribution of this work is to introduce a smoothing
filter that operates on color transforms. Our approach relies on
existing tools developed in the field of high-dimensional differential
geometry. A comprehensive review of this field is beyond the scope
of this paper. Below, we provide an intuitive presentation of the
concepts involved as well as a short technical discussion. We refer
the reader to the supplemental material for additional information

and a C++ implementation. For a detailed presentation of differential
geometry please see books such as do Carmo [1992] and Amari and
Nagaoka [2000].

A curvature-based filter Our filter is inspired by the curvature flow
filter defined on surfaces in 3D [Ilmanen 1995]. The observation
behind this work is that adding noise to an otherwise smooth surface
generates points with a high local curvature. The curvature-flow filter
moves these points in a direction that reduces their local curvature,
which effectively smooths the surface. In our context, we analyze
the color transforms, T estimated in the previous section, as a 1D
curve in the space of color transforms. Rapid changes of colors
resulting from sudden changes in the scene (for e.g., when the
passer-by enters the frame in Fig. 2) correspond to frames where the
estimated transforms vary sharply, and consequently the curvature
of the transformation curve is high at these points. Conversely,
frames with a low curvature correspond to time instants when the
transforms are stable making these frames good candidates to be
keyframes for estimating a smooth color transformation curve. Our
approach builds upon this observation. First, we extend the notion of
curvature to the color transforms previously computed. Second, we
find points of low curvature and select them as keyframes. Finally,
we interpolate the color transforms at the detected keyframes to
compute a temporally smooth set of color transformations for the
entire sequence; this effectively replaces the high-curvature points
that lie between the keyframes with transforms interpolated from
the neighboring keyframes. Fig. 9 illustrates our approach.

5.1 Estimating the curvature

We would like to define a notion of curvature for the 1D color
transformation curve, T, in the space of color transformations, and
this requires tools from differential geometry. Readers might be



more familiar with the definition of curvature in 2D or 3D; while the
exact form of the analysis in the higher-dimensional color transform
space differs from the corresponding analysis in 2D, the high-level
intuition remains the same. The curvature of the color transform
curve is defined as the rate of change of the tangent to the curve. In
order to compute this quantity, we need to define the gradient of the
color transform curve and a metric to estimate how fast the gradient
varies.

A simple approach to implement our strategy is to work in a Eu-
clidean space. This implies using a Euclidean metric, defining curva-
ture as the magnitude of the second derivative of the color transform
curve with respect to time, ||T̈||, and using linear interpolation to
interpolate the color transforms between keyframes. However, linear
interpolation does not accurately model the rotations of the color
wheel that are commonly used for color grading and looses correla-
tions between color channels. Therefore, we use a Euclidean space
only for the translational components of the color transformations.
We instead handle rotations and scalings via a Wasserstein space that
accounts for their properties [Takatsu 2011] more accurately; for
e.g., interpolation is modeled as a mass transport problem that blends
rotations and scalings appropriately. A challenge when working in
such a non-Euclidean space is that standard formulas for curvature
need to be adapted. While the tangent to the curve is still defined as
the first derivative Ṫ, the definition of its curvature is slightly more
involved since it needs to account for the curvature of the space
itself. That said, while the exact definitions are different, the high-
level intuition about curvature and interpolation remains the same;
interpolating transforms along a geodesic in this high-dimensional
space produces a “flat trajectory”, i.e., a zero curvature path in the
space of transforms generates a temporally coherent output that is
visually pleasing.

One notion of curvature of a curve is captured by the rate of change
of tangent vectors along the curve, and is evaluated using the covari-
ant derivative,∇ṪṪ [do Carmo 1992] that generalizes the notion
of a directional derivative in Euclidean spaces to manifolds. Stan-
dard curvature flow techniques operate on a modified version of the
covariant derivative – the second fundamental form [Ilmanen 1995]
– but this does not account for all the variations we are interested
in. For instance, a non-constant speed variation along a geodesic
results in a vanishing second fundamental form, and hence, zero
curvature. Instead, we compute the curvature at time instant t,Kt, as
the magnitude of the covariant derivative vector at that time instant,
i.e., Kt = ||∇ṪṪ||.

To compute the curvature, we need to define the covariant derivative
vector for the color transformation space. As described in Sec. 4.1,
our color transformation model consists of a non-linear luminance
mapping, and three rotations/scalings and translations for the chromi-
nances. A meaningful metric in the infinite-dimensional space of
nonlinear luminance transforms is out of reach. Instead, we approx-
imate the 1D luminance mapping by a 1D affine transformation
(i.e., a scale and a translation) only for the purpose of estimating
the transform curvature. As a result, the color transform space is
a finite-dimensional space of dimension 17 (or 34 when using a
segmentation) that is a Cartesian product of the multiple subspaces
corresponding to each transform component. These 17 dimensions
consist of two 1D spaces (luminance scaling and translation), three
2D spaces (chrominance translations for shadows, midtones and
highlights), and three 3D spaces (one 2× 2 symmetric matrix repre-
senting the chrominance rotation and scaling for shadows, midtones,
and highlights). We use the property that the squared curvature
of the color transform curve in the high-dimensional space can be
computed as the sum of the squared curvature for each individual
component in its appropriate subspace [do Carmo 1992]. This allows
us to define the appropriate formulas for the covariant derivative

vector for each subspace independently.

Each sub-component of the color transforms can be represented by
a matrix (for e.g., the luminance scaling and translations are 1× 1
matrices, the chrominance translations are 2× 1 matrices, and the
chrominance rotations are 2× 2 symmetric matrices). In the rest of
this section, we consider the case of a single sub-component that is
represented by a single matrix, and derive the form for its covariant
derivative vector. In addition, the subpace of the luminance and
chrominance translations is Euclidean, and the covariant derivative
corresponds exactly to the standard second derivative of each com-
ponent of the translation vector with respect to time. As such, we
will focus on the luminance scaling and the chrominance rotation
sub-components of the color transformations.

We first express the components of our matrix in a particular basis of
dimension d that gives us a parametrization of the space of transfor-
mations. For instance, for the 2×2 symmetric chrominance rotation
and scaling matrices, a natural basis consists of the basis matrices
{x1 = [ 1 0

0 0 ] ,x2 = [ 0 1
1 0 ] ,x3 = [ 0 0

0 1 ]}. Any 2 × 2 symmetric
matrix can be decomposed as the weighted sum of these d = 3 basis
matrices. We denote the ith components of the matrix Tt in this
basis as T i (i = 1 . . . d).

Obtaining the covariant derivative then requires a set of real co-
efficients called the Christoffel symbols, Γi

k,`, of the Wasserstein
metric that account for the space curvature [Amari and Nagaoka
2000], where i, k and ` range from 1 to the dimension d of the space
(d = 1, 2 or 3), defined in Eq. 3 and 4. Using these Christoffel sym-
bols, we can compute the ith component of the covariant derivative
∇ṪṪ as:

∇i
ṪṪ = T̈ i +

∑
k,`

Γi
k,` Ṫ

k Ṫ `, i = 1 . . . d (2)

where Ṫ i and T̈ i are the first and second derivatives of the ith com-
ponent of the transformations T in the basis xk w.r.t. time and are
approximated with standard finite differences.

In the supplemental material, we show that for the 1D luminance
scaling:

Γ1
1,1 = − 1

2 s
, (3)

where s is the luminance scaling at the current point on the curve.

In the 3D space in which the chrominance rotations and scalings are
represented, the Christoffel symbols are expressed by:

Γi
k,` =

1

2

3∑
m=1

gim(
∂gmk

∂x`
+
∂gm`

∂xk
− ∂gk`
∂xm

), i, k, ` = 1 . . . d,

(4)
where the partial derivatives can be seen as derivatives along the basis
matrices xi. The coefficients gij are determined using Takatsu’s met-
ric [2011] – analogous to the Euclidean dot product of two vectors
– as gij = g(mi,mj) = tr (mi Tt mj) where tr denotes the stan-
dard matrix trace, Tt the current transformation, and mi (resp. mj)
is a 2× 2 matrix that solves the equation xi = Tmi Tt + TTt mi.
Once the coefficients gij have been computed, they define a 3× 3
matrix: inverting this matrix produces a new matrix whose coeffi-
cients are conventionally denoted by gij , as used in Eqn.4. More
details on the terms introduced, and a closed form derivation of these
coefficients and directional derivatives are provided in supplemental
material, as well as in a sample C++ code.

The curvature at time t, Kt, is finally computed as the square root
of the sum of the squared norms of the covariant derivatives in
the individual subspaces. The squared norm in one subspace is
computed as g(∇ṪṪ,∇ṪṪ).



5.2 Approximate curvature flow

Having computed a curvature value, Kt, for each frame of the input
video, we use this information to drive a decimation process leading
to smoother transformations over time. Our method can be regarded
as an approximate curvature flow. Curvature flow is a mathematical
method that advects a manifold locally with a speed proportional to
its local curvature, resulting in a smoother manifold, and is often
used to smooth 2D surfaces using the surface mean curvature (the
trace of its second fundamental form). We mimic this behavior with
an approximate, computationally simpler, method, that allows for
keyframe detection. We reduce the total curvature K of our curve
T by detecting segments of high curvature and replacing them by
(smoother) geodesics. To achieve this, we subsample the curve
by retaining transformations only in regions of low curvature, and
interpolating the transformations in-between.

We first generate a set of r keyframes in areas of low curvature of the
transform curve by sampling the probability function corresponding
to the inverse of the curvature, i.e.,

p(t) =
∑
i

Ki/Kt. (5)

This can done using inversion sampling [Devroye 1986], i.e., by
generating a uniform set of samples and warping these samples using
the cumulative density function of the probability function p(t). This
produces more samples in areas of low curvature. We further locally
optimize these samples by moving them to the location of lowest
curvature in their neighborhood (15 frames of either side of the
current sample). We use one sample for every 30 frames of the input
video. This typically results in r = 5 for a 5 second video at 30fps.

Once the keyframes have been detected, we interpolate the individ-
ual sub-components of T between each keyframe to produce the
desired smooth color transforms T′. In particular, the symmetric
positive definite matrices representing the chrominance scalings are
interpolated using a closed-form interpolation that appropriately
follows geodesics in this Wasserstein space [Ferradans et al. 2012].
The non-linear luminance mappings are linearly interpolated result-
ing in a displacement interpolation of the transformed luminance
histograms [Bonneel et al. 2011]. Finally, the interpolated color
transformations, T′, are applied to the input video frames to pro-
duce the color graded output video frames.

6 Results

We demonstrate color transfer results on a wide range of input
and model sequences. We show a subset of our results in Fig.10.
However, temporal consistency can not be evaluated on still images
and we encourage interested readers to refer to the supplemental
material and video for additional video color transfers results.

A typical 4-second (108 frames) HD segmented sequence can be
matched in approximately 3 minutes on an 8-core machine. This
consists in 1min 30s for colorspace conversions, 20 seconds for the
per-frame matching (first step), 6 milliseconds for the smoothing
step and 21 seconds for the spatial luminance smoothing. Obtaining
a spatio-temporally consistent matte from the user-provided binary
segmentation requires 1.5 additional minutes using our unoptimized
implementation of Lang et al. [2012] and 3 minutes for the authors’
implementation of Levin et al. [2008].

While hand-tuned naive methods occasionally work, this is not
always the case. For instance, Fig 2 shows that per-frame color
matching produces artifacts when scene content is changing at high
frequencies while a single-frame color matching applied to all frames

(a) Input (b) Model (c) Result

Figure 12: Failure cases. (Top) The black and white initial frame
makes the covariance matrices singular; no color information can
be recovered from the model frame apart from the mean. (Bottom)
Color grading using a non-relevant model frame produces a non-
meaningful result. Video credits: “Saving Private Ryan” (1998)
c©Paramount Pictures, “The Dark Knight” (2008) c©Warner Bros.

produces artifacts even when scene content is varying at low fre-
quencies. While our method does not always produce satisfactory
results (see Sec. 7), we show a variety of successful transfers on a
wide range of input and model sequences. In particular, our method
is able to color grade videos that have already been stylized (see
Fig. 11). We call this process “color re-grading”. Despite the strong
stylization of these input videos, our method is able to capture the
color grade of the model video.

All our results used a single set of parameters and required little
human intervention. Although a fine adjustment of our parameters
can yield improved results, a fixed parameter set benefits amateur
users.

7 Limitations and future work

The semi-automatic segmentation [Bai et al. 2009] that extracts fore-
ground and background – when necessary – still requires significant
user input. While out of the scope of our paper, our method would
benefit from future work in fully automated video segmentation and
matting. Similarly, our method would benefit from a multi-label
video segmentation, that would allow for better capturing spatial
variations in colors.

When either the chrominance matrices of the input videos are rank
deficient or luminance histograms are concentrated on a few bins,
our method can lead to visible artifacts. We show this behavior when
trying to match a grayscale sequence to a colored one in Fig. 12 (first
row). Such transfer cannot be achieved by our method: we refer the
reader to video colorization techniques [Yatziv and Sapiro 2006] for
such applications. In addition, if the content of the model sequence
differs significantly from the input sequence, our method lacks the
semantics that would be needed to yield a meaningful result. For
instance, Fig. 12 (second row) shows that matching the white joker’s
face to a neutral face without makeup results in color variations
on the resulting face that are not what would be expected from an
appropriate color grade. In this case, the resulting sequence does not
succeed in capturing the mood of the model.

Our curvature computation can be used to locally optimize user-
defined keyframes. While the benefits of a local optimization re-
mains to be demonstrated, it could lead to better user interfaces for
processing video sequences. We also believe that our approximate
curvature flow filtering technique could be used for a number of
other applications in video processing including tonal stabilization.



(a) Input Video Frame (b) Color graded to “D.O.A” (c) Color graded to “300” (d) Color graded to “Saving
(Film Noir) (sepia tones) Private Ryan” (bleach-bypass)

c©Warner Bros c©Paramount Pictures

Figure 10: Our color grading method can successfully transfer a variety of color styles to a range of input video sequences. Here we
demonstrate this for three such styles – sepia tones, Film Noir, and bleach-bypass – characterized by the films “300”, “D.O.A”, and “Saving
Private Ryan” respectively. In addition to capturing the color palette of the model videos, our color graded results are temporally consistent.
Please refer to the accompanying video and supplemental material to evaluate the temporal consistency and to see more results. Video credits:
Tilke Judd (third row), “Tears of Steel”/The Blender Foundation (fourth row), ““300” (2006) c©Warner Bros., “Saving Private Ryan” (1998)
c©Paramount Pictures.



(a) Color graded input (b) Re-graded to “D.O.A” (c) Re-graded to “300” (d) Re-graded to “Amélie”
video frame

Figure 11: Our technique can take stylized video clips and change their visual look. We call this process “color re-grading”. Here we show
results for re-grading (top to bottom) “Transformers” and “Saving Private Ryan” to the styles of the films (left to right) “D.O.A.”, “300”,
and “Amélie”. Our technique can handle transitions between subtle color grades (for e.g., “Saving Private Ryan”’to “300”) as well as more
dramatic color grades (for e.g., “Transformers” to “Amélie”). Please see the accompanying video and supplemental material for more results.
Video credits: “Saving Private Ryan” (1998) c©Paramount Pictures, “Transformers” (2007) c©Paramount Pictures, “300” (2006) c©Warner
Bros., “Amélie”(2001) c©Miramax Films.

8 Conclusion

Color grading is a fundamental color management process that is
used to alter or enhance the color palette of a movie to give it a
characteristic visual look. We have presented a semi-automatic tool
that allows even casual users to color grade amateur video clips
using existing example videos or images. Our tool is able to match
the color palette of the model videos while ensuring that the output
color graded results are temporally consistent. To achieve tractable
and principled temporal consistency, we have proposed an original
technique that casts the temporal filtering as curve simplification
problem using differential geometry techniques. While we inherit
the limitations discussed in Sec. 7 from statistically-based image
color transfer techniques, we show that reasonable results can be
obtained on a wide range of videos. We believe that our method
has the potential to benefit the increasingly large number of casual
videos shared by amateurs on the internet while paving the way to a
differential geometry analysis of colors in videos.
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