
HAL Id: hal-01596553
https://hal.inria.fr/hal-01596553

Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surface reconstruction by computing restricted Voronoi
cells in parallel

Dobrina Boltcheva, Bruno Levy

To cite this version:
Dobrina Boltcheva, Bruno Levy. Surface reconstruction by computing restricted Voronoi cells in
parallel. Computer-Aided Design, Elsevier, 2017, 90, pp.123 - 134. <10.1016/j.cad.2017.05.011>.
<hal-01596553>

https://hal.inria.fr/hal-01596553
https://hal.archives-ouvertes.fr


Surface reconstruction by computing restricted Voronoi cells in parallel

Dobrina Boltchevaa,b,∗, Bruno Lévyb,a
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Abstract

We present a method for reconstructing a 3D surface triangulation from an input point set. The main component of
the method is an algorithm that computes the restricted Voronoi diagram. In our specific case, it corresponds to the
intersection between the 3D Voronoi diagram of the input points and a set of disks centered at the points and orthogonal
to the estimated normal directions. The method does not require coherent normal orientations (just directions). Our
algorithm is based on a property of the restricted Voronoi cells that leads to an embarrassingly parallel implementation.
We experimented our algorithm with scanned point sets with up to 100 million vertices that were processed within few
minutes on a standard computer. The complete implementation is provided.
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1. Introduction

This article deals with surface reconstruction, a prob-
lem that may be formulated as follows: given a set of
points sampled from a surface, recover the original sur-
face from which those points were sampled. This general
problem is motivated by numerous applications in reverse-
engineering, prototyping, visualization, or computer vision
since a growing variety of scanning devices nowadays pro-
vides measurements of objects in the form of point sets.

In practice, the common surface reconstruction pipeline
usually involves several steps: After the acquisition with
a laser scanner, for instance, the scans from the different
views are first aligned into a common global coordinate
system. Then they are filtered to reduce the input noise
and remove some outliers. Then the surface normals at the
points are estimated (and possibly oriented) and finally, a
surface reconstruction algorithm builds a triangular mesh
approximating the underlying surface.

Contribution: We propose a reconstruction method
that is intended to be a part of the global reconstruction
pipeline. It is designed to take as input an already filtered
point set and connect the input points with triangles by
computing their restricted Voronoi diagram.

The algorithm is similar in spirit to Localized Cocone
[1] and Tangential Delaunay Complex [2]. As in these local
algorithms, it does not compute any 3D data structure like
a grid or a triangulation of the ambient space. The main
difference is that our algorithm computes the intersection
between the 3D Voronoi diagram of the points and a set
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of disks centered at the points and orthogonal to the es-
timated normal directions. We perform an iterative disk
clipping in parallel for every point. As a consequence, our
algorithm is both embarrassing parallel and memory effi-
cient. It can handle large point sets, with up to 100 million
points, in few minutes on an off-the-shelf PC.

Moreover, our algorithm dose not require consistent nor-
mal orientations, like in the Poisson methods [3], nor a
scale value for every input sample, like in the Floating
Scale Surface method [4]. It solely relies on estimated nor-
mal directions.

In addition, we also propose a manifold extraction algo-
rithm and a set of post-processing heuristics to recover a
clean mesh, specifically a 2-pseudo-manifold with or with-
out boundaries [5].

Main limitations: Although our reconstruction algo-
rithm is designed for already filtered point sets (where the
points are assumed to be located exactly on the underly-
ing surface), it is also useful in practice for real datasets
(produced as unions of range maps where the points create
some sort of ”solid/thick surface”). For such datasets, the
filtering becomes a mandatory pre-processing step which
is a difficult issue and is beyond our current scope. Here,
we use one or two iterations of a standard smoothing ap-
proach (projection onto the average plane of neighbors) to
smooth the raw datasets which is often sufficient as con-
firmed by our experiments, see Figures 13, 12, 19 and 20.
Note however that this smoothing is very moderate and
does not wash out the small details, as shown on Fig. 16.

2. Related work

There are two classes of approaches which differ as to
whether they approximate or interpolate the input points.
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Approximation methods. They aim at fitting a smooth
surface to the input point set. These methods are well-
equipped to handle various imperfections in the data such
as noise, occlusion and registration errors. A recent state-
of-the-art and a benchmark can be found in [6, 7]. Many of
these algorithms [8, 9] compute a distance field by estimat-
ing the tangent plane at every point and computing closest
distances using these tangent planes. The method of VRIP
[10] takes advantage of the range scans acquired through
laser triangulation to construct a volumetric signed dis-
tance field which merges the scans in a least-squares sense.
The other approaches range from computing an indicator
function [11, 3, 12, 13, 4], to locally fitting functions and
moving least-squares methods [14, 15, 16]. In particular,
the Poisson surface reconstruction method [11] solves for
an approximate indicator function of the inferred solid,
whose gradient best matches the input normals. The re-
sulting scalar function is represented in an adaptive oc-
tree and is iso-contoured using a variant of the marching
cubes algorithm [17]. Later, a Screened Poisson algorithm
[3] has been introduced which resolves the over-smoothing
problem and offers the ability to reconstruct meshes with
boundaries. Recently, a Floating Scale Surface reconstruc-
tion method [4] has been proposed for multi-video-stereo
applications that operates on large, redundant and noisy
point sets but relies on a scale value for every input point
which is estimated from the depth maps. Most of these
methods require point sets with consistently oriented nor-
mals to estimated the signed-distance function. However,
normal estimation in the presence of imperfect data re-
mains an open problem [18, 19].

Interpolation methods. They elaborate upon Voronoi-
Delaunay concepts and produce an interpolating surface
in the form of a triangulation which uses a subset of the
input points as vertices [20]. Often these algorithms ex-
tract this triangulation from the Delaunay triangulation
of the input point set. The theory of ε-sampling [21] pro-
vides a solid background to study the properties of these
algorithms. Extensive research effort has built on this the-
ory, producing several Restricted Delaunay based methods
such as Cocone [22], Super Cocone [1] and Power Crust
[23] algorithms. Many other extensions have been com-
piled in a survey [24] and a monograph [25]. Among the
Delaunay-based methods, there are the greedy approaches
([26], [27]), the Natural Neighbors ([9]), the “convection”
algorithm [28], the sampling theorems introduced in [29],
and the WRAP algorithm together with its analysis in
[30, 31].

To avoid the high computational cost associated with
computing the 3D Delaunay triangulation of the point set,
several local computation methods were proposed. For
example, The Ball Pivoting algorithms (BPA) [32, 33] are
local, optimized variants of the Alpha Shapes [34]. These
algorithms can be parallelized to handle large datasets [35].
The method introduced by Digne et al. [36] improves the
noise-resilience of the BPA by applying it to a scale-space

version of the input point set.

Some local variants of the Cocone algorithm were also
developed to mitigate the scalability problem. These algo-
rithms are local in the sense that no 3D data structure like
a grid or a triangulation of the ambient space is computed
and the final triangulation is obtained by gluing local tri-
angulations around each sample point. Funke and Ramos
[37] demonstrated that the Cocone algorithm can be mod-
ified so that no global computation of the 3D Delaunay tri-
angulation of the entire point set is required. They showed
that with a locally uniform ε-sampling the Cocone of each
point is a local object and it is completely determined by
nearby samples. Dumitriu et al. [38] used this frame-
work to design a surface reconstruction algorithm with
correctness guarantees. Although the algorithm is quite
complicated, they have produced an implementation [39].
Amenta and Kil [40] employed similar techniques and de-
signed a parallel algorithm operating on the GPU.

Alternatively, Dey et al. [1] developed an octree-based
version of the Cocone algorithm such that the 3D Delau-
nay triangulation is only computed on small clusters of
the initial point set. By adopting the assumption that the
local sampling density is bounded by a constant [41], they
showed that the theoretical guarantees of the original Co-
cone algorithm are maintained. However, when the input
point set does not meet the sampling requirements, it is
necessary to use some heuristics in the manifold extraction
step.

Another promising idea to deal with the scalability prob-
lem is to restrict the computations to planes [42, 43] or
to the tangent space [2]. The tangential complex is ob-
tained by gluing local (Delaunay) triangulations around
each sample point and the neighborhoods are “reconciled”
with a “Star-Splaying” approach [44]. Although, this has
been the first theoretical algorithm able to reconstruct a
smooth closed manifold in a time depending only linearly
on the dimension of the ambient space, to the best of our
knowledge, there is no existing implementation.

3. Computing the restricted Voronoi diagram in
parallel

The general work-flow of our algorithm is summarized
in Figure 1. The input is a set of 3D points, with
normals or not. Note that no consistent orientation of the
normals is required but only directions. The output of
the algorithm is a triangular mesh connecting the input
points which approximates the surface. Specifically, the
output triangulation is a compact 2-pseudo-manifold (see
Section 3.5), it is orientable (no Moebius strip) and may
contain several connected components and boundaries.

The next sections describe each step in detail, as well
as the parameters they depend on. The first three steps,
kd-tree construction §3.1, point set smoothing §3.2 and
normals estimation §3.3 use classical methods.
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Figure 1: Overview of the algorithm.

Our main contribution is the candidate triangles step
(§3.4), that computes the intersection between the Voronoi
cells of the input points with a set of disks centered on the
input points. It shares some similarities with the theo-
retical method of Funke and Ramos [37], the Localized
Cocone algorithm [1], the Tangential Delaunay Complex
[2] and the Star Splaying [44]. Instead of computing the
Delaunay triangulation then restricting it, we directly com-
pute the restricted Voronoi cells (intersections between the
Voronoi cells and the disks), and deduce the restricted De-
launay triangles from the combinatorial information of the
restricted Voronoi vertices (see Section 3.4, Figure 2, Fig-
ure 4 below). This results in an algorithm which is simple
and easily parallelizable.

We also introduce a new manifold mesh extraction
method (§3.5) which avoids the trimming step used in pre-
vious work (the most critical because it can end up with
an empty mesh) [22]. Starting from a subset of candidate
triangles which forms a clean and orientable 2-manifold
with boundaries, we add the remaining triangles, one by
one, in an arbitrary order, only if they do not break the
topological properties of the initial mesh. The algorithm
terminates with the largest possible non-empty manifold
mesh.

3.1. Kd-tree construction

The basic geometric operation in our algorithm is find-
ing the nearest neighbors of a point. To optimize this
operation, we organize the input points in a kd-tree [45].
To do this, one may use the Approximate Nearest Neigh-
bors (ANN) library [46] which, with ε set to 0, computes
the exact nearest neighbors for every point. But the mem-
ory consumption can be significantly reduced by replacing
the kd-tree used in ANN with a balanced binary tree, with
links that are completely implicit. This makes it possible
to process large point sets (up to 50 million points) on

Figure 2: We compute the Voronoi diagram of the input point set
restricted to a union of disks centered on the points and orthogonal
to the estimated normals. From A to C: the radius of the disks is
increased from 0.2% to 4% of the bounding box diagonal. All the
restricted Voronoi cells (colored polygons) are computed in parallel.

a desktop PC with 16 Gb RAM. Our implementation is
given in the supplemental material.

3.2. Smoothing

Since our algorithm interpolates the input points, it re-
quires a clean and accurately registered point set. Thus,
if the input set is noisy such as raw scanning data, it has
to be smoothed before the reconstruction. Note however
that any point cloud smoothing technique can be used at
this step.

Our current implementation uses the projection onto
the best approximating plane of the k-nearest neighbors,
[8]. Specifically, for a point p and its k nearest neighbors
{pi}ki=1, we find the fitting plane nTx = c for p by min-

imizing the error term e(n, c) =
∑k

i=1(nT pi − c)2 under
the constraint nTn = 1. Then, the point p is projected
onto this plane. We compute the best fitting plane for
each point in parallel. Once all the points are projected,
we update the kd-tree.

Parameters. This step uses two parameters: the num-
ber of nearest neighbors nb neighbors and the number of
smoothing iterations smooth iter. We used 30 neighbors
for all datasets, and 1 or 2 smoothing iterations for the
raw scanned data.

3.3. Normal estimation

If the input points come without normals, our algorithm
estimates them locally with the best fitting plane as in the
smoothing step. Note however that the algorithm does
not need to orient the normals, it only needs a normal
direction at every point which is used to create a disk in
the subsequent step of the algorithm.
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3.4. Candidate Triangles

Given a point set {pi}ni=1 with estimated normals
{ni}ni=1 and a radius r, our algorithm computes the in-
tersection between the Voronoi cells of the points V (pi)
and the disks Dr

i of radius r centered on the points and
orthogonal to the normals.

During this step, we fist build a disk Dr
i at every point

pi in the input point set P orthogonal to ni and with user-
given radius r. In our implementation, we use a polygon
(with 10 vertices) that approximates the disk. In con-
trast with previous algorithms, we explicitly build the re-
striction of the Voronoi cell V (pi) to the disk Dr

i at pi,
V (pi) ∩ Dr

i , as shown on Fig. 2 and Fig. 4. Thus we
collect a set of restricted Voronoi vertices. The set T of
candidate triangles is then defined by the triangles which
are dual to the restricted Voronoi vertices (more on this
below).

Note that the disk radius has to be chosen in function
of the sampling rate and it entails a trade-off between ac-
curacy and computation speed. A very small radius leads
to uncovered holes in the final mesh (2(A) and (B)), while
a very large one increases the computation time (since the
algorithm looks for neighbors in a larger space).

The basic operation in this step of the algorithm con-
sists of clipping the disk Dr

i with the Voronoi cell V (pi) of
every point pi. Here we use ideas that are similar to those
presented in the Localized Cocone algorithm [1] which al-
lows us to build locally the candidates triangles by us-
ing only the k-nearest neighbors. More precisely, we use
the clipping algorithm and the local characterization of
the restricted Voronoi cells introduced in [47] which we
recall in the following in order to make the explanation
self-contained.

Computing Voronoi cells through iterative clipping

Let us recall that the Voronoi cell V (pi) corresponds to
the intersection of the halfspaces : V (pi) =

⋂
j 6=i Π+(i, j),

where Π+(i, j) denotes the halfspace bounded by the bi-
sector of (pi, pj) that contains pi. Note that the bisec-
tors between pi and all the other points are involved in
the definition above, whereas only a small subset of them
corresponds to actual Voronoi edges (see Figure 3). We
can classify the bisectors Π+(i, j) into two sets: con-
tributing and non-contributing. Clipping a Voronoi cell
by a non-contributing bisector does not change the re-
sult. Therefore, the intersection of any superset of the
contributing bisectors corresponds to the Voronoi cell. Let
pj1 , pj2 , . . . pjn−1

denote the vertices sorted by increasing
distance from pi. Let Vk denote the intersection of the k
first halfspaces and let Rk denote its pi-centered radius:

Vk(pi) =
k⋂

l=1

Π+(i, jl)

Rk = max{d(pi, x)|x ∈ Vk(pi)}.

Data: the index i of the point xi, the disk Dr

centered on it, the number of neighbors n and
the set of points P

Result: Restricted Voronoi Facet at pi:
RV (pi) = V (pi) ∩Dr

i

RV ← Dr
i

Rk ← max{d(p, pi)|p ∈ RV }
k ← 1
while d(xi, xjk) < 2Rk f and k < n do

RV ← RV ∩Π+(i, jk)
Rk ← max{d(p, pi)|p ∈ RV }
k ← k + 1

end
Algorithm 1: Computes a restricted Voronoi cell as the
intersection between a tangential disk and the Voronoi
cell of a point.

The configuration in Figure 3 suggests that for all j
such that d(pi, pj) > 2Rk, the bisector Π+(i, j) is non-
contributing, i.e. Vk(pi) ⊂ Π+(i, j). This observation
can be formally proven as follows: Consider p ∈ Vk(pi)
and pj such that d(pi, pj) > 2Rk. By definition of Rk,
d(p, pi) < Rk. We have d(pi, p) + d(p, pj) ≥ (pi, pj) (trian-
gular inequality) and d(pi, pj) > 2Rk, therefore d(p, pj) >
Rk > d(p, pi) and p ∈ Π+(i, j).

As a direct consequence:

d(pi, pjk+1
) > 2Rk ⇒ Vk = V (pi).

We call radius of security the first value of Rk that sat-
isfies this condition. Note however that this observation
does not have a practical value in the case of the unre-
stricted Voronoi diagram, since some cells are unbounded
and have infinite Rk (for an infinite cell, all the bisectors
are considered, leading to prohibitive computation time).
However, the observation can be clearly used to compute
the restricted Voronoi cells RV (pi) = V (pi)∩Dr

i ,∀pi ∈ P ,
since they are finite (thay are contained in Dr

i ).
We use Algorithm 1 to build the restricted Voronoi cell

for every point, which is the intersection between the disk
Dr

i , centered on it and orthogonal to the estimated normal
and the Voronoi cell of the point.

Figure 3: The Voronoi cell V (pi) is the intersection of the halfspaces
defined by the bisectors of the segments [pi, pj ]. Once a point (here
pj8 ) is further away twice than the current Voronoi cell at pi, it no
longer contributes to the cell.
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Figure 4: The Delaunay triangles (pi, pj1 , pj2 ) are deduced from
the indices of the bisectors that generate the Voronoi vertices q.

Note that every restricted Voronoi vertex q is the inter-
section between the disk Dr

i and the bisectors Πi,j1 and
Πi,j2 . We deduce from the indices j1 and j2 the Delaunay
triangle i, j1, j2 associated with each restricted Voronoi
vertex, see Fig. 4. We denote by T the so-defined set
of candidate triangles.

Parameters. This step uses one parameter: the disk radius
(in % of the bounding box diagonal). Note that when the
radius r is larger than the width of the Voronoi cells, the
disks Dr touch all the sides of their Voronoi cells (like on
Figure 2 (C)), and increasing the radius no longer changes
the result. Thus, in our experimental results, we set the ra-
dius to a large value, r=5% of the bounding box diagonal.
For very large datasets (> 10M vertices), since Voronoi
cells are smaller, we decrease the size (r=0.5% bbox diag-
onal) to make computations faster because the algorithm
looks for the neighbors within a smaller space.

Structure of the set of candidate triangles

For applications that just need to visualize the surface,
providing the set of candidate triangles may be sufficient.
However, most of the applications in Geometry Processing
require clean manifold meshes with coherent orientations
for further processing. This is why we present hereafter a
manifold extraction method which uses a set of heuristics
to build a valid mesh from the soup of triangles T .

We first need to take a closer look on the structure of
T . The set T of candidate triangles is composed of the
restricted Delaunay triangles T3 plus some other triangles,
as explained below.

The set T3 of restricted Delaunay triangles is defined as:

T3 = {(i, j, k) |(Dr
i ∩ V (pj) ∩ V (pk) 6= ∅)and

(Dr
j ∩ V (pi) ∩ V (pk) 6= ∅)and
(Dr

k ∩ V (pi) ∩ V (pj) 6= ∅)}.
(1)

In other words, they correspond to triples of restricted
Voronoi cells (RV (pi), RV (pj), RV (pk) that are mutually
in contact (see Figures 2 and 4). These triangles can be
easily found, by generating all the index triples that cor-
respond to the restricted Voronoi vertices, sorting them

Figure 5: A: the set of triangles seen from three restricted Voronoi
cells (T3), with some holes (yellow). B: the set of triangles seen
from one or two Voronoi cells (T1,2, in red) fills some holes, but
have non-manifold configurations (four red triangles in the right).
C: result after carefully inserting the T1,2 triangles one by one. D:
suppressing the remaining holes.

(using, for instance, the lexicographic order) and keeping
the triples that appear three times in the sorted sequence.
The so-computed T3 triangles are displayed in Figure 5-A.
Note that in the sorted sequence, there are also triples that
appear once or twice. The corresponding set of triangles
is referred to as T1,2 and is defined by:

T12 = {(i, j, k) | Dr
i ∩ V (pj) ∩ V (pk) 6= ∅} − T3. (2)

This means that a triangle (i, j, k) is in T12 whenever
the restricted Voronoi cell of pi ”sees” pj and pk but not
both conversely. Some configurations are shown in Figure
6 that correspond to nearly co-spherical points. Since the
restricted Voronoi vertices are computed independantelly
for every sample point, the numerical computations lead
to vertices whose cooridantes differ slightly du to the finite
computer precision. Therfore, there are restricted Voronoi
vertices with different cardianlities - the majority are com-
puted for exactly three neighoring samples, but there are
also restricted vertices obtained only from 1 or 2 sample
points.

The so-defined T12 triangles are displayed in red in Fig-
ure 5-B. As expected, they are not as ”reliable” as the
T3 triangles, in the sense that they are likely to generate
non-manifold configurations (see for instance the four in-
terconnected red triangles that form a ”sliver” in the top
right part of the neck in Figure 5-B). However, one can ob-
serve that they contain interesting information, and could
be used to fill the holes in the T3 triangles (Figure 5-A).
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Figure 6: Configurations of 4 co-circular sample points (black dots)
with their partial restricted Voronoi facets (sketched with black seg-
ments). The dual T12 triangles are shown with different colors cor-
responding to their cardianlities.

Thus, the idea is to start from the T3 triangles, then
carefully insert the triangles from the T12 set, one triangle
at a time, making sure that the updated mesh remains
manifold. If it is not the case, the triangle is rejected. The
associated algorithm is detailed in the next section.

3.5. Manifold mesh extraction

We first build a clean orientable 2-manifold mesh with a
subset of the T3 triangles. Then we fill the holes iteratively,
with the remaining triangles, if they do not jeopardize the
topological properties of the output.

The mesh structure that we build incrementally is a
manifold mesh where every edge can only be adjacent to
two facets, edges with only one incident triangle are al-
lowed, as well as triangles adjacent only by one vertex
(this is a non-manifold vertex whose neighborhood is not
a topological 2-sphere). The output mesh (also known as a
2-pseudo-manifold [5]) is orientable and may have bound-
aries and several connected components.

We initialize the output mesh with all T3 triangles. Then
we remove all the triangles incident to non-manifold edges
and non-manifold vertices by excess. Recall that a non-
manifold edge is incident to more than 2 triangles, while a
’by-excess’ non-manifold vertex has a closed loop of trian-
gles (clean umbrella) in its neighborhood plus additional
triangles. At this point, we also orient the initial mesh
and check that there are no Moebius strips within it. If
the algorithm finds a Moebius strip, it removes the last
triangle that closes the loop. Note that the initial mesh
can however exhibit triangles incident to each other only
by a vertex.

We then fill the holes of the initial mesh with the remain-
ing triangles from T12. The T12 triangles are tested against
the following criteria, from the simplest to the most time
consuming. Only the triangles that pass all the tests are
inserted in the final surface.

• Geometric test: ensures that the normals of the
neighboring triangles agree, meaning that they do not
make a sharp angle (less than π/3).

• Combinatorial test I: ensures that the triangle is
properly connected to the current mesh. Every new
triangle should be either incident to two edges of ex-
isting triangles, or to one edge of an existing triangles
and one isolated point.

• Combinatorial test II: checks for non-manifold
edges and tests whether the three candidate edges are
manifold.

• Combinatorial test III: checks that inserting the
new triangle do not generate ’by-excess’ non-manifold
vertices.

• Combinatorial test IV: checks if in the neighbor-
hood of the triangle the same connected component
appears with two opposite orientations, then connect-
ing the triangle would create a Moebius strip. The tri-
angle is rejected if it is incident to the same connected
component with two different orientations.

The output of the algorithm is the largest possible trian-
gular mesh that connects the input points. It is orientable
2-manifold (without non-manifold edges) but it can have
non-manifold vertices, such as a pinched torus. It possibly
has several connected components and boundaries.

Parameters. This step uses one parameter which is the
maximum deviation angle between the triangle normals
max N angle. We always use the default value set to π/3.

3.6. Post-processing

At this point, after the manifold extraction step, the
resulting mesh may still contain a number of isolated holes,
caused mainly by insufficiently sampled sharp features (see
e.g. the top of the ears of the horse in Figure 11 C). To
eliminate these, we add an extra post-processing step, that
fills some of the holes.

The algorithm takes an user-defined maximum hole size
parameter, in terms of number of edges. Then it looks
for simply connected holes and fills them using a classical

(a) (b)

Figure 7: (a) Simple bridge. (b) Double bridge.
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Figure 8: Comparison of processing times for the methods. Tim-
ings are in seconds and model sizes in million vertices. We used
implementations written by the authors of the cited methods, and
the same computer for all the tests. For Poisson and Wavelets we
used an octree with depth 10. ScaleSpace and SuperCocone adapt
the depth of their octrees (from 6 to 10). KO means that the re-
sult has too many holes or is mostly unrelated with the data or the
computation time explodes as compared to data of similar size.

loop-split algorithm [48]. This algorithm splits the hole
recursively until it gets holes composed of exactly 3 edges
and fills them with the corresponding triangle.

In order to ensure that the holes are simple loops, we
first search and remove the configurations where the holes
contain ”bridges”(see Fig.7). We call bridge triangles
those that are visited more than once when we walk around
the border edges of a hole. Note that this definition dose
not capture bridges wider than two triangles but we did
not encounter any, in practice.

During this last post-processing step, we can also remove
some remaining small components, in function of their size
(in number of facets).

Parameters. This step uses the following two parameters
which give the size of the holes to be filled and the con-
nected components to be removed. In our experiments, we
have always used:

• max hole edges (=500) : Fill holes with a smaller number
of edges

• min comp facets (=10) : Remove small components (in
facet number)

4. Experimental results and Discussion

This section details our empirical results and gives
comparisons with four state-of-the-art approaches imple-
mented by their authors (ScaleSpace reconstruction [51],
Screened Poisson [3], SuperCocone [1] and Wavelet recon-
struction [12]). We evaluated the methods both in an ar-
tificial scenario with point sets sampled from a known ref-
erence surface (§4.1) and with a database of models with
sizes ranging from a few thousand to 100 million points
(§4.2).

4.1. Comparison - Hausdorff distance to reference surface

We first evaluate experimentally whether our method
reconstructs the same surface as previous work, under dif-
ferent sampling conditions. We created a point set by sam-
pling a given reference surface and measured the Hausdorff
distance between the reference surface and the output of
the reconstruction methods. The samplings are shown in
Figure 9. We tested our method both without and with
post-processing (holes filling). The results are reported in
Table 1. Our method gives an output with a deviation
from the reference surface similar to the state-of-the-art
methods.

4.2. Real-scale data

We experimented our algorithm with datasets from pub-
lic repositories [52, 53, 54, 55, 49, 50] and the data used
in the original articles of the four state-of-the-art methods
we compared with. We conducted different experiments,
to understand the behavior of our method and the pre-
vious work with point sets of different sizes (from a few
thousands to 100 million points) and with point sets with
different structures (non-uniform sampling, small details,
noise, overlapping scans).

The table shown on Figure 8 lists some of the models and
reports the timings for the algorithms. We used implemen-
tations written by the authors of the cited methods, and
the same computer for all the tests [Processor: Intel Core
i7-4900MQ CPU @ 2.80GHz, RAM:16Gb]. We measured
the timings by using the time function in Linux. Thus,
they indicate all computation steps (loading and saving in-
cluded) for all methods. In particular, they comprise the
pre- and post-processing steps of our method. Size-time

Figure 9: The used sampling patterns. A: homogeneous; B: homo-
geneous regularized; C: curvature adaptive
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homo 100K homo 1M homo reg 100K homo reg 1M adapt 100K adapt 1M

ours : M1 → M2 0.58 0.18 0.58 0.51 0.56 0.4

ours : M2 → M1 0.03 0.0002 0.08 0.03 0.015 0.008

ours-no post-proc: M1 → M2 0.5 0.17 0.58 0.31 0.35 0.18

ours-no post-proc: M2 → M1 0.027 0.0002 0.07 0.03 0.015 0.008

Screened Poisson : M1 → M2 0.6 0.35 0.6 0.56 0.58 0.40

Screened Poisson : M2 → M1 0.17 0.23 0.09 0.1 0.28 0.16

Scale Space : M1 → M2 0.8 0.3 0.9 0.51 4.2 0.7

Scale Space : M2 → M1 0.027 0.0002 0.07 0.03 0.01 0.008

Super Cocone : M1 → M2 0.58 0.18 0.58 0.51 1.22 0.4

Super Cocone : M2 → M1 0.027 0.0003 0.07 0.03 0.01 0.008

Wavelets : M1 → M2 0.52 0.50 0.57 0.57 3.6 2.8

Wavelets : M2 → M1 0.44 0.12 0.25 0.05 3.6 11

Table 1: For each algorithm, the table reports the two one-sided distances d(M1,M2) and d(M2,M1) between M1 (the reference mesh) and
M2 (the mesh built by the algorithm). Distances are expressed as percentages of the diagonal of the mesh bounding box.

Figure 10: Performance of the tested algorithms. Up, timings ob-
tained on the Small data. Bottom, timings obtained on the Large
data.

curves for all methods and datasets are shown in Figure
10.

To be able to analyze and compare qualitatively the be-
havior of the algorithm, we deactivated the post-processing
step (hole filling). In the following (unless specified other-
wise), we compare the output of our manifold extraction
step with the outputs of the four methods cited before.

Non-uniform sampling

Figure 11 shows a horse sampled with 100K points with
a varying sampling density. ScreenedPoisson reconstructs
a perfect surface in 19 sec, while Wavelets fails to recon-
struct this type of data. ScaleSpace has difficulties finding
the correct scale in this dataset, and takes more than 3000
seconds. The result has holes when the triangles are larger
than the estimated scale. SuperCocone divides the input
points into several subsets using an octree. It sometimes
fails to recover triangles that cross octree cells bound-
aries. Our method misses some triangles resulting into
small holes that can be filled in with our post-processing
step.

Figure 11: Comparison of the algorithms with a small dataset (100K
vertices) with high variations of sampling density.

Small details

Figure 12 compares the results on a clean point set
having many small bumpy features (the feathers of the
eagle), [55]. Poisson faithfully reconstructs the features.
Wavelets performs similar to Poisson. ScaleSpace recon-
structs a continuous manifold mesh that also follows the
bumpy features. SuperCocone and our algorithm give sim-
ilar results, with more missing triangles than ScaleSpace.
However, the missing triangles in our reconstruction are
mostly small holes that can be efficiently removed by our
post-processing step.

Noise

Real datasets such as raw scans produced as unions of
range maps usually exhibit alignment errors. In this data,
the points are not located exactly on the underlying sur-
face and form some sort of ”solid surface”. As it has been
stressed previously, our method requires a clean point set
since it connects the input points with triangles. The
method typically fails when registration errors create two
layers of points in overlapping regions of different scans
(see Fig. 15). However, managing the over-sampling and
the noise of the dataset is an active research subject which
is beyond our scope. To accommodate the raw scans in
our database we have used 1 or 2 iterations of our sim-
ple pre-processing smoothing step which have worked in
most cases, as shown by our experiments. Note that the
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Figure 12: Comparison of the algorithms with a clean dataset with
small-scale bumpy features.

smoothing time is included in the timings given in Figure
8.

In Figure 13, we show the behavior of the algorithms for
a noisy point set (original registered dataset for the Stan-
ford bunny [53]). For this data, Poisson and Wavelets both
cancel the noise and recover the fine details. ScaleSpace
manages to extract a manifold mesh that exactly follows
the details of the data, even when it is very bumpy. Our
algorithm outputs a result that is very similar to that of
SuperCocone. The same dataset with one iteration of
pre-processing smoothing is shown in Figure 14. All al-
gorithms had the same smoothed input and gave similar
results. Notice the aligned missing triangles in SuperCo-
cone at boundaries between adjacent octree cells.

We stress, however, that our method needs a very mod-
erate smoothing which does not wash out the small details.
With the Tanagra model (see Fig.16), we reconstruct the
stamp with the same resolution as Screened Poisson and
Scale Space, after 2 iterations of smoothing.

Impact of pre and post-processing steps

Figures 17 and 18 show raw LiDAR scans with respec-
tively 14M and 12M input points (from [49]) and illustrate
the impact of the pre-processing smoothing and the post-
processing hole filling steps of our method.

The mesh in Fig. 17, built without pre-processing (in
200s), is quite noisy since it reconstructs the data noise
with 123 connected components and 7250 border edges.
The mesh generated with 1 iteration of pre-processing (in
123s) is smoother and has only 15 connected components
and 1585 border edges.

Figure 13: A noisy dataset (original scanner data of the Stanford
Bunny). Poisson both filters out the noise and recovers the fine
features. ScaleSpace successfully extracts a closed manifold mesh.
SuperCocone and our algorithm recover a smaller number of trian-
gles.

Figures 18 demonstrates the same behavior. Our
method manages to reconstruct the raw scans but the re-
sulting meshes have many holes that are left to be filled
in by the post-processing step. On this data the smooth-
ing step takes 10s and the post-processing step - 30s. The
raw candidate triangles generation is done in 30s while the
manifold extraction takes between 20s, if the points are
smoothed, and 100s otherwise. The total reconstruction
times range from 90s to 190s.

Large datasets

For the large datasets, existing Delaunay-based methods
(ScaleSpace and SuperCocone) start encountering memory
limitations. ScaleSpace crashes on all examples. SuperCo-
cone gives an incorrect result on one of them (’facade-val-
de-grace’) since many triangles are missing and crashes on
the others (’chateau-rives’ and ’rosetta’). The results are
displayed in Figures 19 and Figure 20. A rendering of
’rosetta’ is available in the supplemental material.

Results of the ’facade-val-de-grace’ are shown in Figure
19. For this dataset, Poisson has problems with some in-
coherent normals, causing bubbles to appear. Wavelets
have similar behavior. It may not be difficult to fix, but
the need for having consistent normal orientations is an is-
sue for using approximation based methods. SuperCocone
missed many triangles, probably because the implementa-
tion starts to encounter memory problems.

We also show, in Figure 20, the ’chateau-rives’ exam-
ple with 33M points. For this dataset, our algorithm
outputs a valid result with 65M facets in 361s. Among
the other methods, only Wavelets build an approximating
coarse mesh with 3M facets in 2050 seconds, with octree
depth=10 (See Fig.20).
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Figure 14: The same dataset as in Figure 13 with one iteration of
smoothing applied. The methods give similar results.

Figure 15: A: overlapping scans; B: our reconstruction without
smoothing; C: our reconstruction with one iteration of smoothing
(data from [4])

Figures 22 and 21 show reconstructions of raw scans
from the ”Large-Scale Point Cloud Classification Bench-
mark” repository [50], with respectively 14M and 10M of
points. The market place mesh in Fig.22 has 20M of trian-
gles that have been generated in 200s, with 1 iteration of
smoothing (done in 15s). The saint Gallen mesh in Fig.21
has 28M of triangles generated in 280s, with 1 iteration of
smoothing (done in 20s). These meshes are far from being
perfect but can be used as initial reconstructions for some
downstream geometry processing applications.

Finally, we tested our method with 100 million points
(sampled randomly on the Stanford bunny) which does
not fit in 16Gb of RAM. Using a 32Gb computer, our
method generates 600M candidate triangles in 90s, and
then takes 140s to output the raw manifold mesh. With
post-processing, the complete algorithm takes 533s and
the final mesh has 200M facets. Among the other methods
that we tested, only Poisson and Wavelets can also process
this dataset. With octree depth=10, Poisson takes 1531s
to output a mesh with 3M vertices and 6M facets and
Wavelets takes 387 seconds for a mesh with 10M vertices
and 5M facets. With octree depth=12, Poisson takes 5809s
to output a mesh with 48M vertices and 96M facets and
Wavelets takes 762 seconds to build a mesh with 162M

Figure 16: Reconstruction of the Tanagra sculpture (detail). Left:
Screened Poisson reconstruction (octree depth=12). Right: our re-
sult (with 2 iterations of smoothing) where the fine-scale details are
preserved.

Figure 17: A raw LiDAR scan (14M points) of a sandcastle (note
the shovel). Top, our mesh reconstructed with no pre-processing
(built in 200s) Bottom, our result reconstructed after 1 iteration of
smoothing (built in 123s).

vertices and 81M facets. With depth=13, both do not fit
in 32 Gb.

5. Conclusion and Discussion

In this paper, we have presented a surface reconstruc-
tion algorithm from a set of points in 3D based on a simple
observation about the restricted Voronoi cells. Our algo-
rithm has a trivial implementation, is embarrassingly par-
allel and economic in terms of memory resources. There-
fore it scales up very well to datasets with tens of millions
vertices while keeping computation times smaller than 5
minutes. Its simplicity makes it possible to embed it into
devices such as smart-phones and cameras with a CPU
(an Android ARMV7 implementation is provided in the
supplemental material).
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Figure 18: A raw LiDAR scan (12M points) from [49]. Ours results
in function of pre- and post-processing steps.

Compared with the state-of-the-art methods, it is not
as good as Poisson and Wavelets for filling the holes, as
expected since these two methods build smooth approx-
imation meshes. Concerning the interpolation methods,
our method has a behavior similar to the Cocone and
ScaleSpace even if the latter may have a better set of can-
didate triangles, when it can estimate the correct scale (see
e.g. the eagle dataset).

The algorithm outputs exactly the Delaunay triangula-
tion of the input points restricted to the union of the Dr

i

disks (Section 3.4). In the experiments, we observed that
the behavior of our algorithm is very similar to the Co-
cone algorithm (Table 1). because the disks that we use
do not deviate much from the co-cones. From a theoret-
ical point of view, it would be interesting to characterize
the configurations where the outputs of both algorithms
match exactly. This probably involves some variants of
ε-sampling conditions.

Regarding timings, our algorithm is the fastest, by two
order of magnitudes, in some cases. However, one needs to
take into account that the SuperCocone’s implementation
that we obtained from its authors is sequential, and could
probably be easily parallelized. We think that our algo-
rithm will still be faster since it does not need to compute
any 3D Delaunay triangulation (it directly computes the
Restricted 2D Delaunay triangulation).

Unlike Poisson reconstruction and its variants, our algo-
rithm does not need coherently oriented normals, it solely
uses normal directions. This can be interesting when such
information is not available or when the input point set
has a shape that is too complicated for greedy orientation
algorithms, such as in Fig. 19. Our algorithm requires
a moderate smoothing when the data presents alignment
errors, but it does not require a per-sample resolution es-

Figure 19: A raw scanned point set with 30M vertices. On this
dataset, some normals are not correct causing some bubbles in the
Poisson reconstruction (built in 856s). SuperCocone gives a result in
5011 seconds, but has many missing triangles (maybe it starts reach-
ing memory limits). Our algorithm (with 2 iterations of smoothing)
takes 340s

timate as in [4].

Observing the relative timings of the different steps of
our algorithm, manifold extraction and post-processing
clearly dominate the core of the algorithm. However, they
are needed by most geometry processing applications that
rely on a clean manifold mesh. For future work, there is
room for improvement in these steps. Our implementation
of hole filling is not well optimized, not parallel, and we
think it could probably be made two or three times faster.

The complete implementation in C++ is available in our
open source GEOGRAM library [56].
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