
Dual Laplacian Editing for Meshes
Oscar Kin-Chung Au, Chiew-Lan Tai, Ligang Liu, and Hongbo Fu

Abstract—Recently, differential information as local intrinsic feature descriptors has been used for mesh editing. Given certain user

input as constraints, a deformed mesh is reconstructed by minimizing the changes in the differential information. Since the differential

information is encoded in a global coordinate system, it must somehow be transformed to fit the orientations of details in the deformed

surface, otherwise distortion will appear. We observe that visually pleasing deformed meshes should preserve both local

parameterization and geometry details. We propose to encode these two types of information in the dual mesh domain due to the

simplicity of the neighborhood structure of dual mesh vertices. Both sets of information are nondirectional and nonlinearly dependent

on the vertex positions. Thus, we present a novel editing framework that iteratively updates both the primal vertex positions and the

dual Laplacian coordinates to progressively reduce distortion in parametrization and geometry. Unlike previous related work, our

method can produce visually pleasing deformations with simple user interaction, requiring only the handle positions, not local frames at

the handles.

Index Terms—Interaction techniques, surface representations, geometric algorithms.

�

1 INTRODUCTION

MESH editing systems based on differential coordinates
(e.g., Laplacian coordinates and gradient field) have

been proposed recently [1], [2], [3], [4], [5], [6], [7]. As these
editing systems represent local features using differential
coordinates defined in a global coordinate system, they face
a common transformation problem: The original differential
coordinates of a mesh need to be appropriately transformed
to accommodate the changes in the local features of the
deformed mesh. Existing solutions either use heuristic
methods to transform the differential coordinates or require
the user to specify the transformations at handles to be
propagated. These systems either cannot handle large angle
deformation [1], [2], [3] or cannot handle distortion caused
by translations of handles [4], [5], [6], [7].

We propose a novel iterative editing framework based
on Laplacian coordinates to solve the transformation
problem. Our examination of this transformation problem
led us to observe that a visually pleasing deformed mesh
should have small deviation from the original mesh in both
local parameterization and local geometry. To achieve this, we
decompose the global geometry into two sets of scalar data
representing local parametrization and local geometry
information. The local parametrization information is
captured by the coefficients of the Laplace operator defined
on the mesh, and the local geometry information is
captured by the magnitudes of the Laplacian coordinates.
Noting that both sets of information nonlinearly depend on
the vertex positions, we believe that the transformation
problem cannot be solved satisfactorily using only linear
systems as direct solvers. Our framework iteratively
updates both the vertex positions and the Laplacian

coordinates during editing to minimize distortion in local
geometry and parametrization.

In order to avoid tangential drifting during editing, the
local geometry should be represented in the directions of
surface normals. We first attempted to use the curvature
flow Laplace operator since these Laplacian coordinates
approximate the curvature normals. However, as each
vertex can have an arbitrary number of neighbors and its
one-ring neighbors are usually not coplanar, any weighting
scheme would produce Laplacian coordinates with tangen-
tial components at vertices with extreme connectivity and
geometry (e.g., the one-ring structure forms a saddle). This
causes an instability problem in the iterative framework. To
resolve the instability problem, we propose to edit in the
dual domain of the input mesh. As the dual vertices of a
triangular mesh always have valence three, there is a
unique definition of normal and tangent space at each
vertex in terms of its one-ring neighbors.

Our framework has several advantages over existing
related frameworks. Previous frameworks only considered
how to propagate the rotations of the handles to the entire
model, but did not address distortion caused by translations
of handles [4], [5], [6], [7]. Our system can produce visually
pleasing results when the handles undergo large transla-
tions and/or large rotations. Our iterative framework
automatically updates the nonconstrained vertices to
produce a surface with well-oriented global and local
details (Fig. 1).

Previous methods require the user to specify the
orientations or local frames of handles. Our method can
produce naturally deformed shape solely from the positions
of handles (being translated or rotated); the user does not
need to input the local frames. We provide two choices of
user-interfaces: using a region handle if the user wants to
directly control the orientation of the handle, or using a
point handle if the user wants the system to automatically
find the orientation around the handle. The latter interface
makes editing process easier since editing 3D models
becomes a sequence of simple click-and-drag operations.

Since our system allows users to freely move the handles,
the distances between handles may be changed drastically,
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causing distortions like anisotropic stretching or squashing.
We provide an option to rescale the geometry details in
order to reduce such distortions.

The paper is organized as follows: After reviewing
related work in Section 2, we present our iterative editing
framework based on the curvature flow Laplace operator in
Section 3. Section 4 discusses editing in the dual domain
and Section 5 presents the option of rescaling the dual
Laplacian coordinates. In Section 6, we introduce two new
error metrics to measure mesh distortion in the editing
results, in terms of parameterization error and geometry
error. We describe implementation details and limitations
in Section 7 and present the conclusion in Section 8.

2 RELATED WORK

Mesh editing has received extensive attention in the last
decade as irregular triangular meshes become a popular
representation for 3D models with intricate details. One
indispensable property of mesh editing systems is to
preserve surface details after editing.

Multiresolution frameworks were first designed for
spline surfaces [8] and later applied to subdivision surfaces
and irregular meshes [9], [10], [11], [12]. These approaches
decompose the mesh into several levels—coarser or
smoother versions of the original mesh. The differences
between successive levels are defined as local features. They
are encoded with respect to the local frames of the lower
level mesh. During editing, the details are transformed
according to the changes in the local frames of the lower
level mesh. Thus, the definition of the local frames and the
accuracy of the detail reconstruction are critical in multi-
resolution editing frameworks.

Recently, differential coordinates have been used as local
features for designing mesh editing frameworks [1], [2], [3],
[4], [5], [6], [7]. These frameworks allow users to directly
specify the positions and/or normal directions of parts of a

mesh, called the handles, and the rest of the surface is
computed by solving a linear system to minimize shape
distortion. Similar to the detail vectors in multiresolution
surfaces, the differential coordinates have to be transformed
according to the deformed surface in order to produce
visually pleasing deformations. However, unlike the multi-
resolution representations, here there is no lower level
surface for defining the local frames for transformation.

Since our editing framework is based on the Laplacian
coordinates, we first review Laplacian editing and then
describe the limitations of existing differential-based editing
frameworks.

2.1 Laplacian Editing

We assume that the input model is a triangular mesh. Let
V ¼ ðv1;v2; . . . ;vnÞ be the mesh vertex positions and i� be
the index set of vertices adjacent to vi. The Laplacian
coordinate (LC) of a vertex vi is

li ¼
X
j2i�

wijðVj �ViÞ; ð1Þ

where wij is the weight of the edge ði; jÞ corresponding to
the vertex vi [13], [14]. Since li is the weighted average
difference vector of its adjacent vertices to the vertex vi, it
describes the local geometry at vi. In matrix form, all the
LCs can be written as l ¼ LV, where L is a 3n� 3n matrix
with elements derived from wij. We refer to L as the Laplace
operator and its elements as the Laplacian coefficients.

The basic idea of Laplacian editing is to minimize the
sum of the squared differences between the LCs before and
after editing. The positions V0 of the deformed mesh are
found by minimizing LV0 � lk k2

, constrained by the
positions of some selected vertices as the handles [1], [2].
This is equivalent to solving a sparse linear system

AV0 ¼ b ð2Þ

in the least squares sense.

2.2 Transformation Problem

As the original LCs cannot reflect the deformation of the
local features (especially the changes of orientation) during
editing, reconstructing the mesh from the original LCs with
the user-specified constraints would lead to undesired
distortion, specifically, shearing and stretching distortion
(see Fig. 2b and Fig. 6b).

To avoid distortion, any differential-coordinates-based
editing framework must somehow transform the differen-
tial coordinates appropriately. This transformation problem
is essentially a chicken-and-egg problem: On the one hand,
the reconstruction of the deformed surface requires the
properly transformed differential coordinates; on the other
hand, the transformations of the differential coordinates
depend on the unknown deformed mesh.

Several researchers have tried to solve the transforma-
tion problem. Lipman et al. [1] used an intermediate
reconstructed surface to guess the new orientations of the
LCs. Sorkine et al. [2] employed implicitly defined
transformations onto the LCs. However, the method is
untenable for large angle rotations and anisotropic scalings
(i.e., stretching or compressing).

Yu et al. [4] proposed an editing system based on a
gradient field, in which the main challenge is also the
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Fig. 1. A deformation example created with our system. (a) Input model.
(b) Edited model. (c) and (d) The corresponding dual models. The mesh
is edited in the dual domain, but the dual models are hidden from users.
Users are only required to specify the handle positions and the local
features are automatically rotated smoothly.



transformation problem. Their solution is to explicitly
propagate the transformations at the handles to all vertices
(weighted by geodesic distances). This idea is extended to
perform large mesh deformation using a volumetric graph
Laplacian in [7]. Instead of weighted by geodesic distances,
Zayer et al. [6] propagated the transformations along
harmonic fields. Lipman et al. [5] encoded the vertex
differences in local frames and minimize the least squares
error of the changes in the local frames. Since these
approaches need the orientations (or local frames) of the
handles as input, if the handles only undergo translations,
there is no change in orientation to be propagated or
minimized; thus, these approaches cannot avoid shearing
and stretching distortion caused by handle translation
(Fig. 2b).

Botsch and Kobbelt [12] built a multiresolution modeling
framework using the Laplace equation. They set the LCs (or
higher order differential coordinates) to zero, thus only
surfaces without any geometry details, like minimal
surfaces and thin-plate surfaces, can be built between the
handles. Since the differential coordinates vanish, there is
no transformation problem to address here. To edit surfaces
with local geometry details, they built multiresolution
meshes using the technique in [11]. However, for meshes
with nonzero genus, the deformed “details-less” surface
will contain collapsed and degenerated triangles, making
detail encoding in multiresolution framework impractical.

Recently, Sheffer and Krayevoy [15] proposed a repre-
sentation called pyramid coordinates to encode local
features. Like ours, this representation is rotation invariant
and, thus, it can avoid the distortion caused by rotation and
translation of handles. However, they use an explicit
iterative procedure to update the vertex positions, thus
any local changes require at least OðnÞ iterations to
propagate to the entire mesh. Their method also involves
the computation of the (primal) vertex normals and the
tangent plane; thus, it faces the same drifting and conver-
gence problem as our iterative framework that uses the
curvature normal (see Section 3).

3 ITERATIVE UPDATING FRAMEWORK

We observe that, to preserve local features, the edited mesh
should retain two types of information in the original mesh:
1) parameterization information (shapes of triangles);
2) geometry information (sizes of local features). As the
Laplace operator can be used to compute planar para-
meterization for a mesh [16], [17], [18], [19], [20], [21], we

consider the Laplacian coefficients as the local parameter-
ization information. Since the LCs are the local differences
of vertex positions, they are considered as the local
geometry information of the mesh.

To accurately separate the parameterization and geome-
try, the geometry data should be represented in the normal
directions of the local surface. For example, in multi-
resolution editing frameworks, the detail vectors are either
generated with least tangential components [10] or encoded
in the normal directions of the lower level (smoother)
surface [11]. If the local geometry data contains tangential
components, the local features in the edited surface
reconstructed from the geometry and parameterization
information will contain tangential drifts (Fig. 3). This
mostly happens when the vertex sampling is highly
nonuniform or the model is stretched or squashed greatly.
In Laplacian-based editing, the choice of the weighting
scheme wij is important, since the LCs are a type of local
geometry data and thus should be in the local normal
directions.

We first choose to use the curvature flow weighting scheme
for the computation of the LCs, that is, wij ¼ cot�i þ cot�i,
where�i and�i are the two angles opposite the edge ði; jÞ. The
LCs approximate the integrated curvature normals at the
vertices [14]: li ¼ 4Areai�ini, where Areai is the sum of the
areas of the triangles adjacent to the vertexvi, andni and�i are
the unit normal and the mean curvature at the vertex vi,
respectively. Note that this weighting scheme is also used for
planar conformal parameterization, which preserves local
angles [21]. Thus, the curvature flow weighting scheme is
suitable for separating the geometry data (4Areai�i) and the
parameterization data (wij¼cot�iþcot�i).

After separating the vertex positions in global coordi-
nates into the local geometry and parameterization in-
formation, we need to address the problem of correctly
transforming the LCs. In visually pleasing deformed
surfaces, the LC of each vertex should be normal to the
local surface. Therefore, we aim to keep the LCs in the
normal directions and to make the magnitudes of LCs and
the Laplacian coefficients similar before and after editing. In
general, the computations of the vertex normals and the
Laplacian coefficients depend on the vertex positions
nonlinearly. Thus, using a single step linear solver to
compute the vertex positions cannot give a satisfactory
solution. For this reason, we iteratively update both the
vertex positions V and the LCs l to minimize the
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Fig. 2. The iterative process progressively reduces distortion in both
local parametrization and local geometry. (a) Input model with handles
at two ends. (b) Deformed mesh without reorienting the LCs; triangles
are sheared and stretched. (c) After one iteration of our updating
method, starting from the mesh in (b). (d) After 10 iterations; the
shearing effect is now reduced and the features are deformed naturally.

Fig. 3. (a) The local shape at p is represented by either a vector in the
normal direction (a1Þ or a vector with a tangential component (a2).
(b) Edited surface using the vector in local normal direction. (c) Edited
surface using the vector containing a tangential component, thus
tangential drift occurs.



parameterization and geometry distortion. Our framework
employs the same linear system given in (2) (Step 1 of the
algorithm).

3.1 Algorithm

Let Vt and lt be the vertex positions and the LCs at time t,
respectively, such that V0 ¼ V and l0 ¼ l. We iteratively
update them using the following two steps, until a
termination condition (discussed in Section 4) is satisfied:

. Step 1. Update the vertex positions. We use the
current LCs lt to compute the vertex positions Vtþ1;
that is, we solve (2) using the current LCs and the
current handle positions as constraints

ATAVtþ1 ¼ ATbt; ð3Þ

where bt is derived from lt and the current handle
positions. Note that A is always defined over the
original mesh and is fixed throughout the whole
updating process. Thus, this updating step enforces
the handle constraints and updates the vertex
positions so that the local parametrization of the
resulting mesh is similar to the original mesh.

. Step 2. Update the Laplacian coordinates. We
update the LCs to match the current deformed
surface; that is, we compute the new LCs ltþ1 from
the current vertex positions Vtþ1. To retain the
original feature sizes, we keep the magnitudes of the
LCs unchanged. For each vertex Vi, we define its
corresponding LC as

ltþ1
i ¼ kl0i kntþ1

i ; ð4Þ

where ntþ1
i is the unit curvature normal computed

from the current vertex positions Vtþ1 and whose
direction may be reversed so as to point inward/
outward consistently as the corresponding original
curvature normal. The computed unit curvature
normals n̂ntþ1

i may change between pointing inward
or outward (depending on whether the local one-ring

structure is convex or concave) during editing. Hence,
we use the following definition to ensure that n̂ntþ1

i and
n̂n0
i point consistently to the same side of the mesh:

ntþ1
i ¼

n̂ntþ1
i if ðn̂ntþ1

i � �nntþ1
i Þðn̂n0

i � �nn0
i Þ > 0;

�n̂ntþ1
i if ðn̂ntþ1

i � �nntþ1
i Þðn̂n0

i � �nn0
i Þ < 0;

�nntþ1
i � signðn̂n0

i � �nn0
i Þ otherwise;

8<
:

where �nn0
i and �nntþ1

i are the average face normals at
vertex vi at time 0 and tþ 1, respectively. They are
computed as the average of the normals of adjacent
triangles at vi, weighted by the triangle areas. If the
original one-ring structure at vertex vi is planar, we
simply set n̂n0

i to �nn0
i .

When the iteration converges, the Laplace operators
(using the curvature flow weighting) Ltþ1 defined over the
new vertex positions and L0ð¼ LÞ tend to be similar, as do
their coefficients, thus they retain the original parameter-
ization information. The LCs are well oriented (in the
curvature normal directions) and their magnitudes are also
maintained, making the local features similar to those of the
original mesh. Thus, the iterations minimize parametriza-
tion distortion while keeping local features similar to the
original ones. Fig. 2 shows several intermediate results of
this iterative process.

This iterative framework, however, has some drawbacks.
When the input mesh has poor sampling quality (contain-
ing slim triangles) or complex geometry, the iterative
updating process may fail to converge (Fig. 4, top row). In
general, the one-ring neighbors are not coplanar and the
LCs may have tangential components, regardless of which
weighting scheme or vertex normal definition is used. This
is because there is no common normal direction for all
planes formed by the one-ring neighbors; any local
encoding will contain tangential component in some of
these planes. This causes tangential drifts in the iterative
updating process. Moreover, since the curvature normal
and the average face normal at a given vertex are not
parallel to each other, the inward/outward determination
of the curvature normal is not reliable. In addition, due to
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Fig. 4. Editing in the dual domain can improve the stability of our system. The input model has poor sampling quality (leftmost column). The handles
at the front legs are moved to new positions (second column). The top row shows the results of our iterative updating algorithm using the LCs in the
curvature normal directions. Tangential drifting is accumulated and, thus, the iteration cannot converge. The bottom row is the updating results that
use the dual LCs. The normals and the encoding of the dual LCs are well defined. Thus, the updating process is stable and the iteration converges.
The number of iterations at each stage is shown in parentheses.



the irregular connectivity and complex normal computa-
tion, it is difficult to determine the convergence conditions.
In the next section, we propose to perform iterative editing
using dual LCs, which can eliminate all these problems,
thanks to the regular and simple connectivity of dual
meshes.

As the methods in [1] and [2] use the uniform Laplace

operator, the LCs may have large tangential component.

However, since their examples are either well sampled or

are edited with small changes in the distances between the

handles, the drifting effect is not obvious. In order to

provide a more general editing framework that can accept

nonuniformly sampled models and large handle move-

ments, we need to address the issue of encoding local

geometry in the normal direction.

4 DUAL LAPLACIAN EDITING

In this section, we will show that editing in the dual domain

can eliminate the instability in our iterative framework.

First, we will describe the construction of dual mesh and the

definition of dual LC. Then, we present our improved

iterative updating algorithm and some editing examples.

4.1 Dual Mesh and Dual Laplacian Coordinates

We construct the dual mesh consisting of vertices positioned

at the centroids of the faces of a primal (original) mesh. There

is a one-to-one mapping between the primal vertices (faces)

and the dual faces (vertices). The conversion from the primal

vertex positions V to the dual vertex positions ~VV ¼
ð~vv1; ~vv2; . . . ; ~vvndÞ can be described by a full-rank matrix D

( ~VV ¼ DV), where D is constructed from the vertex-face

incident matrix (each row is repeated three times for thex; y; z

coordinates) and is normalized such that the sum of each row

is equal to one [22].
We assume that the input meshes to be edited are

triangular meshes. Under this assumption, one important
property of the dual meshes is that the valence of every
dual vertex is equal to three. This fixed one-ring structure
provides a simple and unique representation for each dual
vertex ~vvi, in terms of the plane defined by its one-ring
neighbors ~vvi;j, j ¼ f1; 2; 3g:

~vvi ¼ ~qqi þ hi~nni ¼
X

j2f1;2;3g
~wwi;j~vvi;j þ hi~nni; ð5Þ

where ~qqi is in the plane that contains the base triangle
4~vvi;1~vvi;2~vvi;3, and ~nni is the outward plane normal (Fig. 5).
Thus, ~wwi;j are the barycentric coordinates of ~qqi correspond-
ing to the base triangle and their sum is one. hi is the signed
magnitude (depending on whether the one-ring structure is
convex or concave) of the normal component. Note that the
encoding ð ~wwi;1; ~wwi;2; hiÞ is unique and rotation invariant.

By rearranging the terms in (5), we define the dual
Laplacian coordinate (dual LC) of a dual vertex to be the
normal component in (5) and derive the Laplacian coeffi-
cients from ~wwi;j:

~lli ¼ �hi~nni ¼
X

j2f1;2;3g
~wwi;jð~vvi;j � ~vviÞ; ð6Þ

or, in matrix form,

~ll ¼ ~LL ~VV ¼ ~LLDV: ð7Þ

Now, the dual LC is exactly in the normal direction of the
base triangle formed by the neighbors of ~vvi. Thus, there will
be no tangential drifts in the reconstruction. Since the
orientation of the base triangle normal is known (we always
use the outward normal), updating the dual LCs during the
iteration is easier and more stable than using the curvature
normals in the primal domain.

Since matrix D is full rank and matrix ~LL has rank nd � 1,
given the original dual LCs ~ll of a given mesh and one fixed
primal vertex position, one can compute the rest of the
primal vertex positions by solving the normal equation of
(7) without error. As in the original Laplacian editing, if
there is more than one constrained primal vertex, the
deformed (primal) mesh can be found by minimization in
the least squares sense:

arg min
V0

~LLDV0 �~ll
�� ��2

: ð8Þ

This is equivalent to solving a sparse linear system ~AAV0 ¼ ~bb
in the least squares sense. Thus, V0 can be solved from the
normal equations ~AAT ~AAV0 ¼ ~AAT ~bb.

4.2 Algorithm of Dual Laplacian Editing

Let ~VVt and ~llt be the dual vertex positions and the dual LCs
at time t, respectively, such that ~VV0 ¼ ~VV and ~ll0 ¼ ~ll. We
iteratively update them using the following two steps, until
a termination condition is satisfied:

. Step 1. Update the dual vertex positions. To enforce
the current constraints from the handles in the
primal domain, we first compute the primal vertex
positions Vtþ1 using the current dual LCs ~llt; that is,
we solve the following equations

~AAT ~AAVtþ1 ¼ ~AAT ~bbt; ð9Þ

where ~bbt is derived from ~llt and the current (primal)
handle positions. The new dual vertex positions are
then computed by ~VVtþ1 ¼ DVtþ1.

. Step 2. Update the dual Laplacian coordinates. We
update the dual LCs to match the current deformed
surface; that is, we compute the new dual LCs ~lltþ1

from the dual vertex positions ~VVtþ1. For each dual
vertex ~vvi, its corresponding dual LC is defined as

~lltþ1
i ¼ �dtþ1

i ~nntþ1
i ; ð10Þ

where ~nntþ1
i is the outward normal defined over the

base triangle 4~vvtþ1
i;1 ~vvtþ1

i;2 ~vvtþ1
i;3 and dtþ1

i is a scaling
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Fig. 5. Illustration of the one-ring structure of dual vertices.



value. Note that, now, the normals always point
outward and are well defined and, hence, the
determination of their inward/outward orientations
is no longer required unlike the case of curvature
normal. To retain the original feature sizes, we keep
the magnitudes of the dual LCs unchanged:
dtþ1
i ¼ hi. Alternatively, by changing the scaling

values, we can also iteratively update the scales of
the dual LCs and, hence, also update the geometry.
The rescaling of the dual LCs will be discussed in the
next section.

We terminate the iteration when the maximum ratio of
the changes in vertex positions between two successive time
steps is less than a given threshold. Once again, when the
iteration converges, the Laplace operators (using the
barycentric coordinates) ~LLtþ1 defined over the new dual
vertex positions and ~LL0ð¼ ~LLÞ tend to be similar, thus
retaining the original parameterization. The magnitudes
and local directions of the LCs are also maintained, making
the local features similar to the original ones. Therefore, this
new iterative updating framework minimizes the local
geometry and parametrization distortion.

4.3 Discussion

Note that the updating of the dual LCs is nonlinear when hi
is nonzero (Step 2 of our algorithm). We can think of the
degree of nonlinearity at a vertex as the ratio of the
magnitude of hi to the area of the base triangle. The
convergence speed of the iteration depends on the
nonlinearity of the local geometry. The vertex positions
require more iterations to converge if the magnitudes of hi’s
are relatively large. Note that if all hi’s are zero, the
reconstructed surface is a minimal surface (no geometry
information) with the given handle positions as boundary
constraints. In this case, the process will terminate after a
single updating iteration since the system is totally linear.

Our iterative method in dual domain is basically a
nonlinear Gauss-Seidel method that solves for the dual
vertex positions ~VV and the dual LCs ~ll iteratively. To
determine under what conditions the iteration will con-
verge, we first consider the following explicit iterative
framework without handle constraints:

~vvtþ1
i ¼

X
j2f1;2;3g

~wwi;j~vv
t
i þ~llti; ð11Þ

~lltþ1
i ¼ �hi~nntþ1

i : ð12Þ

The updating process is stable if the absolute row sum of
its Jacobian matrix is less than 1, which depends on the
values of hi and ~wwi;j and the base domain sizes. The
above explicit updating system ((11) and (12)) will
converge if maxj2f1;2;3gj ~wwi;jj þ j6hiei=Areaij < 1, where ei
and Areai are the maximum edge length and the area of
the base triangle, respectively.

Our editing framework essentially replaces the updating
rule (11) with an implicit updating method (and include
handle constraints). This will not affect the robustness and,
in fact, will increase the convergence speed. Our system
does not directly check the above convergence condition;
instead, it decreases the updating step size (initially it is 1) if

the current updating step increases the error in the linear
system (in order to decrease the absolute row sum in the
updating). In practice, we have not encountered any
situations in which the iteration failed to converge. In all
our editing experiments, the solver converges very fast and
is stable even when the input models have poor triangle
quality (see the bottom row of Fig. 4) or when the handles
are moved rapidly. Note that when the iteration converges,
all the LCs are normal to their corresponding base triangles,
so we only consider the error in the vertex positions instead
of including the error in the directions of LCs.

Fig. 6 shows a deformation example involving only
translations of handles. It is noteworthy that our framework
produces well-oriented local features even when the
handles are only translated, not rotated. Previous methods
like [4], [5], [6], [7] generate results similar to Fig. 6b because
there is no change of handle orientations to be propagated
or minimized as required by these methods. Other methods
that implicitly solve for the local transformations [2], [3]
would give better results, similar to the deformed model
obtained after one iteration of our framework (as in Fig. 2c).
However, the distortion would become obvious under large
handle translations because a desired deformed model
would have large local rotations at the free vertices and the
implicit methods used in [2], [3] can only handle small
rotation angles well.

Fig. 7 illustrates our simple point-handle interface; the
local orientation at the point handle is automatically
decided by our system. Our system does not require local
frames as input. Note that since a point handle contains
only one vertex, it is impossible to determine the local
orientation of the handle directly (since at least three
vertices are required to determine a rigid transformation).
By updating the orientations of the LCs of the free vertices
and point handles, our system can iteratively improve the
deformation. This provides a simple click-and-drag editing
interface, which is easy to use, especially for novice users.
Fig. 8 shows the editing of a model with fine details; both
point handles and region handles are used in this example.
In all the examples (except Fig. 1), we only show the edited
models in the primal domain, as the dual meshes are
hidden from the user.

By default, we use the original dual LCs and the original
vertex positions as the initial values in the iteration because
they are the most natural choices and provide a visually
smooth transition to the deformed mesh during interactive
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Fig. 6. Editing with our framework. (a) Input model, with handles at the
head, feet, back and tail end. (b) Translating the head without reorienting
the dual LCs. (c) Same as (b), but with the dual LCs reoriented.
Shearing occurs in (b), while in (c) the local features of the body are
rotated and deformed smoothly.



editing. However, the converged result is independent of

the initial vector field (directions of the dual LCs) and are

fully determined by the scales of the LCs and the Laplacian

coefficients. Fig. 9 demonstrates that our system can

reconstruct a model from only the original parameterization

and geometry information, without using the directions of

the original dual LCs. In these examples, the zero vector is

used as the initial values of the iterative process (thus,

produces minimal surfaces). All the models converge to the

original shapes after 10 to 100 iterations, depending on the

geometry complexity. The error evaluation details are given

in Section 6.
Similar to our method, the framework of Sheffer and

Kraevoy [15] updates the vertex positions iteratively during

reconstruction, but their updating method is an explicit

procedure. In our method, we update the vertex positions

implicitly to enforce a linear relation between the dual LCs

and the vertex positions and update the dual LCs explicitly

based on the nonlinear relation. The error caused by the

change in each LC (Step 2 of each iteration) is distributed

evenly to the entire surface in one iteration (by minimizing the

error in the least squares sense). Hence, our system always

requires fewer iterations than a fully explicit system like the

method in [15].

5 RESCALING OF DUAL LCS

When the user’s manipulation of a handle causes drastic
changes of the distances between handles, stretching or
squashing distortion occurs. In such editing situations, edge
lengths are modified drastically, thus the angles between
adjacent faces are also changed greatly. In these cases,
merely reorienting the dual LCs, while keeping their
magnitudes unchanged, cannot produce deformation with
small parameterization distortion (Fig. 10b and Fig. 11b).
Rescaling the Laplacian coordinates in order to maintain the
angles between adjacent triangles, thus modifying the
feature sizes, can produce a more natural result with less
parameterization distortion (Fig. 10c and Fig. 11c).

Since the dual LCs are linear combinations of the vertex
positions (as well as the dual vertex positions), they have
the same scaling factors as the vertex positions under
isotropic scaling. Based on this fact, we let the user have the
option to rescale the dual LCs to be of magnitude equal to
the average edge lengths to reduce anisotropic scaling. We
use the square root of the base triangle area as the average
edge length and reset the scaling factor in (10):

dtþ1
i ¼ hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Areatþ1

i =Area0
i

q
; ð13Þ
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Fig. 7. Editing by only translating point handles. The point handles are at

the tail end and nose tip. The nose tip is moved by the user and the body

is oriented automatically by our system.

Fig. 8. An editing example of armadillo model. (a) Input model, with three

region handles and five point handles. (b) Edited model.

Fig. 9. Reconstruction without using the directions of the original dual
LCs; only the scales of the dual LCs and the Laplacian coefficients are
used. A few vertices (three to six) are selected as handles. The top row
shows the minimal surfaces reconstructed when the zero vector is used
as the initial values. The remaining rows are the reconstruction results of
iteratively updating the meshes in the first row. The number of iterations
is shown in the parentheses.



where Area0
i and Areatþ1

i are the base triangle areas in the
dual meshes at time 0 and tþ 1, respectively.

Fig. 10 shows an editing example in which distortion
occurs if the magnitudes of the dual LCs are kept the same
as the original dual LCs (Fig. 10b). It is observed that
undesired distortion occurs nonuniformly over the surface,
depending on the local geometry complexity. In such cases,
it is difficult to design a scaling field for the dual LCs, as
required by previous methods [3], [4], [7]. With our
rescaling option, the system automatically eliminates most
of the distortion and obtains a more natural deformation
(Fig. 10c). Fig. 11 shows another deformation example
demonstrating the effect of rescaling the LCs. The handles
are moved closer to each other, so the space between them
becomes smaller and cannot accommodate the big global
features of the original body. By rescaling the LCs, the
features are automatically scaled, giving a better visual
result. Note that anisotropic stretching is sometime desired
(Fig. 12); hence, the rescaling is provided only as an option.

6 ERROR EVALUATION

Our deformation algorithm is based on the idea of
separating the parameterization and geometry information
of the mesh. Therefore, it is natural to measure the mesh
difference before and after the deformation in terms of the
differences in the Laplacian coefficients (the parameteriza-
tion error Ep) and the differences in the magnitudes of the
dual LCs (the geometry error Eg). We define the error
metrics as:

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nd

X
i

X
j2f1;2;3g

ðw0
i;j � wti;jÞ

2

s
;

Eg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

h0
i � hti

� �2

s
;

where w0
i;j and wti;j (h0

i and hti) denote the weights (normal
components) computed from the original dual mesh and
the deformed dual mesh, respectively. To facilitate compar-
ison of the geometry error among models of different sizes,
we first scale the input models to fit within a unit boundary
box before editing and error evaluation.

Table 1 gives the error estimation of the deformation
examples in this paper. The errors are measured for the
meshes obtained when the iteration converges. In all our
deformation experiments, we found that the reorientation
and rescaling of the dual LCs greatly reduced the para-
meterization error. In addition, we observed that, with the
reorientation of the LCs, the geometry error is similar to (or
smaller than) the deformation without the reorientation.
With the rescaling of the dual LCs, the geometry error may
be slightly increased, but it is evenly distributed over the
surface and the features are scaled smoothly and, hence, it
further reduces parameterization distortion. This shows
that both our reorientation and rescaling methods can
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Fig. 10. Rescaling of the dual LCs improves the reconstruction of local
features. (a) Original model, with a point handle and a region handle.
Editing the mesh by moving the top handle downward, (b) without
rescaling the LCs and (c) with rescaling the LCs. Notice that the
undesired distortion depends on the local geometry complexity.

Fig. 11. A baby lion cloned from her mother. (a) Input model. (b) Deformed model with reorientation of the dual LCs, but without rescaling them.

(c) Deformed model with reorientation and rescaling of the dual LCs.

Fig. 12. (a) Distortion in local parameterization due to stretching.

(b) Rescaling the dual LCs to reduce anisotropic stretching, but the

deformed shape may not be what the user wants.



improve the parameterization distortion while retaining the
geometry details well.

Table 2 lists the error estimation of the reconstruction
examples shown in Fig. 9. As the iteration progresses, all the
examples converge to the original shapes and both the
parameterization and geometry errors tend to zero.

7 IMPLEMENTATION DETAILS AND LIMITATIONS

All the examples presented in this paper were created on a

2.0GHz Pentium IV computer with 512MB memory. The

most time-consuming part of our algorithm is solving the

sparse linear system. We use the direct solver in [23] in our

implementation. The factorization of the normal equation

may take a longer time, but it is precomputed only once

(when the user finishes demarcating the handles). At each

iteration step, only back-substitutions are performed to

solve the system. The running time is the same for each

iteration since the updating procedure is fixed. In all our

experiments, it usually takes 10-20 iterations for the

deformation to converge. The number of iterations depends

on the geometry complexity of the model, and it is

independent of the total number of vertices and the speed

of the handle movement. Therefore, interactive rate can be

achieved in all the applications. Table 3 shows the time

required for the factorization and back-substitution for the

examples in this paper.
Our editing framework has several limitations. First, like

other mesh editing frameworks based on differential

coordinates, the input mesh has to be a 2-manifold. If the

mesh contains open boundaries, the boundary vertices have

to be the handles (as the boundary conditions of the linear

system). Also, if the connectivity is changed or a different

set of constrained vertices are selected, the linear system has

to be rebuilt.

Our system does not support editing with rotation angles
between successive handles larger than �. This is because
one of our objectives is to keep the user interface simple:
Only the final handle positions are required as user input.
There are infinite possible transformations to reach the final
position of a handle. Our system always chooses the
transformation with the smallest rotation angle (< �), since
a larger angle would give greater distortion. To perform
editing with a rotation angle larger than �, extra user input
is required. A possible approach [4] is, given the (user
specified) transformation for each handle, the system can
interpolate the transformations to the remaining vertices.
Alternatively, the user can specify more handles such that
the rotation angles between successive handles are smaller
than �. For the purpose of a simple and unified interface,
we prefer the latter solution. Fig. 13 shows two editing
examples of a bar model using large translation (Fig. 13a,
two handles) and large rotations of handles (Fig. 13b, four
handles).

8 CONCLUSIONS AND FUTURE WORK

We present an iterative framework to solve the transforma-
tion problem. The mesh parameterization information is
captured by the coefficients of the Laplacian operator, and
the local geometry information is represented by the LCs.
Our framework minimizes the local parameterization and
geometry distortion in deformation, including the distortion
caused by handle translation. Point handles are supported
to provide a simple interface such that there is no need for
the user to specify the orientations of the handles. To have a
stable framework for deforming meshes with poor sam-
pling quality and complex geometry, we propose to
perform the deformation and editing in the dual mesh
domain. We also provide an option for updating the scales
of the LCs to modify the feature sizes. Two new error
metrics are introduced to measure mesh distortion.
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TABLE 1
Errors (Ep=Eg) of the Deformation Examples

Shown in this Paper

TABLE 2
Errors (Ep=Eg) of the Reconstruction Examples Shown in Fig. 9

TABLE 3
Time Required for Factorization and Back-Substitution

(in Seconds)

Fig. 13. Editing examples involving large translation (left) and large
angle rotations (right).



Transforming a mesh geometry to rotation invariant
information is an interesting idea. Working on such informa-
tion is often easier than working directly on directional vector
fields. Potential future work includes exploring such scalar
representations to develop new algorithms for signal proces-
sing, compression, and remeshing.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
valuable comments which helped improve the exposition of
the paper. This work received support from the Hong Kong
Research Grant Council (Project No. HKUST6295/04E),
National Natural Science Foundation of China (Grant No.
60333010, 60503067), and Zhejiang Provincial Natural
Science Foundation of China (Grant No. Y105159).

REFERENCES

[1] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P.
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Processing for Meshes,” Proc. ACM SIGGRAPH ’99, pp. 325-334,
1999.

[11] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive
Multi-Resolution Modeling on Arbitrary Meshes,” Proc. ACM
SIGGRAPH ’98, pp. 105-114, 1998.

[12] M. Botsch and L. Kobbelt, “An Intuitive Framework for Real-Time
Freeform Modeling,” ACM Trans. Graphics, vol. 23, no. 3, pp. 630-
634, 2004.

[13] G. Taubin, “A Signal Processing Approach to Fair Surface
Design,” Proc. ACM SIGGRAPH ’95, pp. 351-358, 1995.

[14] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, “Implicit
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[18] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least Squares
Conformal Maps for Automatic Texture Atlas Generation,” ACM
Trans. Graphics, vol. 21, no. 3, pp. 362-371, 2002.

[19] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and
M. Halle, “Conformal Surface Parameterization for Texture
Mapping,” IEEE Trans. Visualization and Computer Graphics, vol. 6,
no. 2, pp. 181-189, Apr.-June 2000.

[20] X. Gu and S.-T. Yau, “Global Conformal Surface Parameteriza-
tion,” Proc. Symp. Geometry Processing, pp. 127-137, 2003.

[21] U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces
and Their Conjugates,” Experimental Math., vol. 2, no. 1, pp. 15-36,
1993.

[22] G. Taubin, “Dual Mesh Resampling,” Proc. Conf. Pacific Graphics,
pp. 94-113, 2001.

[23] S. Toledo, “Taucs: A Library of Sparse Linear Solvers, Version
2.2,” Tel-Aviv Univ., http://www.tau.ac.il/stoledo/taucs/, 2003.

Oscar Kin-Chung Au is a PhD student at the
Hong Kong University of Science and Technol-
ogy, from which he received the BSc and MPhil
degrees in computer science in 2001 and 2003,
respectively. His research interests include
computer graphics and polygonal mesh model-
ing and processing.

Chiew-Lan Tai received the BSc degree in
mathematics from the University of Malaya, the
MSc degree in computer and information
sciences from the National University of Singa-
pore, and the DSc degree in information science
from the University of Tokyo. She is an
associate professor of computer science at the
Hong Kong University of Science and Technol-
ogy. Her research interests include geometric
modeling, computer graphics, and reconstruc-

tion from architecture drawings.

Ligang Liu received the BS degree in mathe-
matics in 1996 from Zhejiang University, China.
In 2001, he received the PhD degree in
mathematics, also from Zhejiang University.
From 2001 to 2004, he was an associate
researcher at the Internet Graphics Group,
Microsoft Research Asia. Since 2004, he has
been an associate professor in the Department
of Mathematics at Zhejiang University. His
current research interests include geometric

modeling and processing, interactive computer graphics, and image
processing.

Hongbo Fu received the BS degree in informa-
tion science from Peking University, China, in
2002. He is a PhD candidate in computer science
at the Hong Kong University of Science and
Technology. His primary research interests fall in
the field of computer graphics with an emphasis
on interactive surface editing techniques.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIN-CHUNG AU ET AL.: DUAL LAPLACIAN EDITING FOR MESHES 395



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


