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Fig. 1. A function is represented with noisy data points. The lower and upper convex hull crudely approximate the data by fitting lines. Replacing the lines
with parabolas of the form − 1

2
𝛼𝑥2 creates more detailed lower hulls as 𝛼 increases (from left to right). The function can be approximated as the mid-contour

of the lower and upper 𝛼-hull

We introduce𝛼-functions, providing piecewise linear approximation to given

data as the difference of two convex functions. The parameter 𝛼 controls

the shape of a paraboloid that is probing the data and may be used to filter

out noise in the data. The use of convex functions enables tools for efficient

approximation to the data, adding robustness to outliers, and dealing with

gradient information. It also allows using the approach in higher dimension.

We show that 𝛼-functions can be efficiently computed and demonstrate

their versatility at the example of surface reconstruction from noisy surface

samples.
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1 INTRODUCTION
Piecewise-linear (PL) functions are a convenient and commonplace

data representation in virtually all engineering disciplines, and par-

ticularly relevant for two and three-dimensional signals. PL func-

tions are often generated from scattered data samples: locations x𝑖
in a Euclidean parameter space associated with function values 𝑓𝑖 .

It is common to assume that the data has been sampled from an

unknown, possibly (piecewise) smooth function 𝑓 : R𝑑 ↦→ R and

that the sampling process might have introduced noise.

Seeking a PL approximation to 𝑓 , all we can do is ask that it

is close to the given data, i.e. 𝑓 (x𝑖 ) ≈ 𝑓𝑖 . Our central idea to ap-

proach the approximation problem is to generalize the notion of
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lower/upper convex hull of the point set (see Def. 3.1). Inspired by

𝛼-shapes [Edelsbrunner et al. 1983], we interpret the lower convex

hull as the result of ’probing’ from below using planes. General-

izing the probing to paraboloids, more points become ’reachable’

(Figure 1). In Section 3 we introduce this concept formally. It turns

out that the set of simplices touched by paraboloids is the lower

convex hull of an appropriately lifted point set. This implies that the

set of simplices, generically, is a weighted Delaunay triangulation

, i.e., it forms a triangulation of (a subset) of the given points. We

call this weighted Delaunay triangulation of the data points the

(lower) 𝛼-hull. Using the analogously defined upper 𝛼-hull, we can

approximate given data by a PL envelope consisting of the lower

and upper 𝛼-hull, which encloses all points, progressively tighter

with increasing 𝛼 . Using any convex combination of the two hulls

yields a PL approximation.

This view not only allows us to show several nice properties of

lower 𝛼-hulls, including how they can be constructed efficiently for

all possible values of 𝛼 (Section 3). It also leads to an alternative

approximation of the sought-after function 𝑓 as a convex-concave
decomposition or, equivalently, the difference of convex functions

(Section 4): we call the lower convex hull of the lifted point set the

𝛼-lift of the data. The 𝛼-function is then (half of) the difference of

the lower and upper lift. Representation in terms of convex func-

tions is useful, as a wide variety of algorithms and data structures

become available. A noteworthy concept are 𝛼/𝜏-lifts, which are

based on leaving some data points out when constructing the lower

convex hull. Another useful feature is that all algorithms can be

implemented without explicitly constructing the simplicial complex,

so they might be used in higher dimension as well. Convex function

also have a dual representation, the so-called Legendre transforma-
tion. The decomposition into two convex function allows to apply

this to any function. This view makes it possible to also apply PL

function approximation to data that carries gradient information,

sometimes called Hermite data. We show in Section 5 how this

can be used to generate PL signed distance functions from surface

samples with normals. Reconstructions from real world data using

robust filtering are on par with the state of the art despite not being

specifically designed to exploit the characteristics of the input.

Summarizing, the concepts of 𝛼-functions have the following

features:
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• Combinatorial algorithms for representing scattered data as

PL functions that deal well with noise.

• Representation of scattered data as the difference of PL convex

functions enables efficient algorithms and data structures for

approximation and representation that also scales to higher

dimension.

• Handling of data with gradient information, including noise,

resulting in a Voronoi-type reconstruction algorithms for

noisy surface samples.

2 RELATED WORK
While the particular construction of 𝛼-functions is inspired by 𝛼-

shapes [Edelsbrunner et al. 1983; Edelsbrunner and Mücke 1994]

the motivation for coming up with convex/concave decompositions

is that convolutional neural networks with ReLU activation can be

interpreted in this way: such networks have been characterized as

tropical rational polynomials [Zhang et al. 2018]. Tropical geometry

is based on a min, +-algebra, so a polynomial is the minimum of

linear functions and the quotient turns into a difference [Maclagan

and Sturmfels 2015], and rational tropical polynomials are represen-

tations in terms of a convex and a concave PL linear function. Such

decompositions have been used actively in optimization [Yuille and

Rangarajan 2003], which is natural as the decompositions reduces

non-convex optimization to the easier case of convex optimiza-

tion [Boyd et al. 2004].

This work is an attempt at exploiting this idea for the case of

scattered data interpolation and approximation [Wendland 2004]

using PL functions. The motivation for restricting to PL functions

is their simplicity, resulting in efficient representation and compu-

tation. The convex/concave decomposition gives rise to handling

noisy data as well as data with gradients, the latter being quite

unusual for PL data approximation methods. We cannot possibly

discuss the many potential application areas in graphics and ge-

ometry processing beyond pointing to surveys covering the areas

of curve [Ohrhallinger et al. 2021] and surface [Berger et al. 2014]

reconstruction from unstructured samples.

Our approach, at least combinatorially, can be interpreted as

computing with arrangements of paraboloids. Edelsbrunner and

Seidel [1986] mention in passing that "To our knowledge paraboloid

arrangements per se have not been studied in the literature" and

then go on to show that computing arrangements of paraboloids is

computationally equivalent to computing arrangements of planes

so "there is really no need to do so [study them]". We exploit this

computational equivalence and show that it can be very fruitful.

Weighted Delaunay Triangulations and Bistellar Flips. The lower
convex hull of points lifted from R𝑑 to R𝑑+1 is a regular or weighted
Delaunay triangulation of the points [Aurenhammer 1987; Auren-

hammer et al. 2013; De Loera et al. 2010]. Theweights𝑤𝑖 of weighted

Delaunay triangulations are connected to the function values by

𝑤𝑖 = xT
𝑖
x𝑖 − 𝑓𝑖 . The Delaunay triangulations arises from setting

𝑤𝑖 = 0 (see Alexa [2020, Sec. 2] for a more detailed explanation

using similar notation).

An important concept for the construction of weighted Delaunay

triangulations are bistellar flips [Pachner 1991; Santos 2006]. A flip is

defined by considering a circuit [De Loera et al. 2010, Sec. 2.4.1], a set

𝑐 of 𝑑 + 2 points in R𝑑 . Every circuit has exactly two triangulations.

These two triangulations are the lower and upper hull of the points

lifted into R𝑑+1 (assuming they are not affinely dependent in the

lift). In fact, these two triangulations are the Delaunay and ’furthest

point’ Delaunay triangulation (i.e. the dual of the Euclidean furthest

point Voronoi diagram [Edelsbrunner and Seidel 1986]) of the 𝑑 + 2
points. The bistellar flip changes from one triangulations to the

other [De Loera et al. 2010, Sec. 4.4]. The sum of the simplices in

the two triangulations is always 𝑑 + 2. For example, in R2, we may

flip the diagonal of 4 points in convex position, the (2-2) flip. In 3

dimensions, we typically consider the (2-3) and (3-2) flips. If the

points are not in convex position, one of the two triangulations

is a single full simplex and the other configuration results from

connecting the point inside the simplex to all vertices, resulting in

𝑑 + 1 full simplices - these are the (1-(𝑑 + 1)) and ((𝑑 + 1)-1) flips,
changing the number of vertices.

With this general notion of flipping, it is possible to move be-

tween any two weighted Delaunay triangulations by a sequence of

bistellar flips [De Loera et al. 2010, Thm. 5.3.7]. In fact, incremen-

tal algorithms for constructing the (weighted) Delaunay triangula-

tion [Edelsbrunner and Shah 1992; Joe 1989] can be interpreted in

this setting as first lifting all points to +∞ and then moving them

downwards to their desired height (xT
𝑖
x𝑖 in the case unweighted

Delaunay) one after the other (c.f. [De Loera et al. 2010, Cor. 5.3.14].

Throughout the downwards movement, the changing lower convex

hull dictates the necessary flips.

Legendre transformation. Using convex functions enables the Le-

gendre transformation [Fenchel 1949]. In the continuous case, it

maps a convex function 𝑓 to another convex function defined over

the domain of its gradients ∇𝑓 . Notice that the gradients are unique
if 𝑓 is convex. The Legendre transformation is a dual transforma-

tion, meaning if we transform twice, we get the original (convex)

function back.

If 𝑓 (x) is strictly convex and continuous, then its Legendre trans-

form is

𝑓 ∗ (y) = xTy − 𝑓 (x), y = ∇𝑓 (x) . (1)

The Legendre transformation has a meaningful definition also

for PL convex functions, albeit such functions not being strictly

convex [Chynoweth and Sewell 1990]. A fact not widely known

in the graphics community is that the Legendre transformation is

yet another way to connect the Voronoi diagram to the Delaunay

triangulation (using the quadratic lift) or, more generally, weighted

Delaunay triangulations and dual power diagrams [Boissonnat et al.

2010; Springborn 2008].

3 LOWER HULLS
In order to avoid unnecessary complication in the presentation, we

make several assumptions on the genericity of the data – in the real

world data will fail to conform to these assumptions but it is possible

to (symbolically) perturb the data [Edelsbrunner and Mücke 1990]

to deal with these situations. The parametric locations of the data

points x𝑖 ∈ R𝑑 are in general position, i.e. no more 𝑑 +1 points are on
a common sphere. Moreover, no more than 𝑑 + 1 points (x𝑖 , 𝑓𝑖 ) are
on a common affine function, i.e. co-planar when viewed as points

in R𝑑+1.
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The lower convex hull of the data X, f = {(x𝑖 , 𝑓𝑖 )} may be defined

as either the minimum among all convex combinations of the data

points or, as we prefer here, as the maximum among the planes

defining empty half-spaces:

Definition 3.1. The lower convex hull of the data (X, f) is

ℎX,f (x) = sup

a∈R𝑑 ,𝑏∈R
aTx + 𝑏, ∀𝑖 aTxi + 𝑏 ≤ 𝑓𝑖 . (2)

We will drop either of the two subscripts of ℎX,f if they are irrele-

vant or clear from the context. Note that ℎ(x) is a PL function on

the convex hull of the set {x𝑖 }. Under our genericity assumptions

the planar pieces are simplices. A simple conceptual (albeit not prac-

tical) way to construct ℎ(x) is to consider each simplex, construct

the affine function aTx + 𝑏 that interpolates its vertices, and check

if all other points are in the upper half space. Practical algorithms

avoid inspecting all simplices [Avis et al. 1997; Barber et al. 1996;

Fukuda and Prodon 1996].

Our central idea is to make the condition for inclusion of a simplex

less restrictive. Rather than asking that a plane through the vertices

of a simplex separates the data points from negative infinite, we

consider a paraboloid. Making the paraboloid concave results in

being able to ’touch’ points that are not on the lower convex hull. We

do this by introducing the factor − 1

2
𝛼 for the quadratic monomial

xTx. Generically, a paraboloid with fixed𝛼 interpolates𝑑+1 points or,
in other words, the vertices of a simplex. Let 𝑡 identify the vertices of

a simplex, then we write the paraboloid interpolating these vertices

as

𝑓𝑖 = −
1

2

𝛼xT𝑖 x𝑖 + a
T
𝑡 xi + 𝑏𝑡 , 𝑖 ∈ 𝑡, (3)

i.e. the subscript 𝑡 indicating that a𝑡 , 𝑏𝑡 have been chosen appropri-

ately. With this notation, the selection of simplices by probing with

paraboloids are defined as follows:

Definition 3.2. The set of simplices comprising the lower 𝛼-hull
of the data (x𝑖 , 𝑓𝑖 ) are

T𝛼 =

{
𝑡 | − 1

2

𝛼xT𝑖 x𝑖 + a
T
𝑡 xi + 𝑏𝑡 ≤ 𝑓𝑖 ,∀𝑖

}
(4)

Elementary properties. One may wonder if the set of selected

simplices defines anything useful. Transforming the condition

− 1

2

𝛼xT𝑖 x𝑖 + b
T
𝑡 x𝑖 + 𝑐𝑡 ≤ 𝑓𝑖 ⇐⇒ bT𝑡 x𝑖 + 𝑐𝑡 ≤ 𝑓𝑖 +

1

2

𝛼xT𝑖 x𝑖 (5)

shows that it defines the triangulation T𝛼 as the lower convex hull

of the ’lifted’ data points (x𝑖 , 𝑓𝑖 + 1

2
𝛼xT

𝑖
x𝑖 ). This means the simplices

form a simplical complex - a triangulation in 2D, a tetrahedralization

in 3D - of the convex hull of the {x𝑖 }. This suggests that we can
define a PL surface, the lower 𝛼-hull ℎ𝛼 by assigning the affine

function to each simplex.

Definition 3.3. Let 𝑡 be a simplex that contains x in the parameter

domain. Then the function ℎ𝛼 at x is defined as

ℎ𝛼 (x) =
∑︁
𝑘∈𝑡

𝜇𝑘 𝑓𝑘 , with x =
∑︁
𝑗 ∈𝑡

𝜇 𝑗x𝑗 ,
∑︁
𝑗

𝜇 𝑗 = 1. (6)

The name ’lower’ 𝛼-hull seems to imply that no data point is

located below ℎ𝛼 . This is indeed the case:

Proposition 3.4. Let 𝛼 > 0 and ℎ𝛼 be constructed from data
(x𝑖 , 𝑓𝑖 ). Then ℎ(x𝑖 ) ≤ 𝑓𝑖 .

Proof. If (x𝑖 , 𝑓𝑖 ) is a vertex of any of the simplices in T𝛼
then

clearly ℎ(x𝑖 ) = 𝑓𝑖 . So assume this is not the case and let 𝑡 be a

simplex containing x𝑖 in R𝑑 , and a𝑡 , 𝑏𝑡 defining the paraboloid

interpolating its vertices. By construction of ℎ𝛼 , we have − 1

2
𝛼xT

𝑖
x𝑖 +

aT𝑡 xi+𝑏𝑡 ≤ 𝑓𝑖 . It suffices to show the paraboloid through the vertices

of 𝑡 is above the plane through the vertices of 𝑡 in the simplex.

Note that the intersection of the paraboloid and the plane projected

to the parameter domain is a sphere [Aurenhammer et al. 2013],

interpolating the parameter locations of the vertices – in other

words it is the circumsphere of the simplex in the parameter domain.

Inside this sphere the paraboloid has larger function values than

the plane. The claim follows because the simplex is contained in its

circumsphere. □

Other properties of lower 𝛼-hulls can be proved elementary, but

we find the most illuminating picture arises from exploiting the fact

that they are weighted Delaunay triangulations and can be modified

through bistellar flips (see Section 2).

Bistellar flips. Flips in Delaunay algorithms are determined by

evaluating determinants [Guibas and Stolfi 1985]. The determinant

amounts to computing the signed volume of the lifted circuit inter-

preted as a simplex inR𝑑 ×R. For computing the lower alpha hull we

need to consider the lifted points (x𝑖 , 𝑓𝑖 + 1

2
𝛼xT

𝑖
x𝑖 ). The volume 𝑉𝑐

of the circuit 𝑐 = (0, 1, . . . , 𝑑 + 1) depends on 𝛼 and is up to constant

factors

𝑉𝑐 (𝛼) = det
©­«

x0 x1 . . .

𝑓0 + 𝛼
2
xT
0
x0 𝑓1 + 𝛼

2
xT
1
x1 . . .

1 1 . . .

ª®¬
= det

©­«
x0 x1 . . .

𝑓0 𝑓1 . . .

1 1 . . .

ª®¬ + 𝛼

2

det
©­«
x0 x1 . . .

xT
0
x0 xT

1
x1 . . .

1 1 . . .

ª®¬
= 𝑉𝑐 (0) +

𝛼

2

𝑉 del

𝑐 .

(7)

We see that the volume in the lift depends on the volume in the

original configuration 𝑉𝑐 (0) and the volume 𝑉 del

𝑐 of the Delaunay

configuration. A flip occurs on the circuit when the sign of the

volume changes. Since𝑉𝑐 is a linear function of 𝛼 it has exactly one

zero and the critical value is

𝛼𝑐 = −2𝑉𝑐 (0)
𝑉 del

𝑐

. (8)

We have the following result.

Lemma 3.5. For the 𝑑 + 2 points in a circuit 𝑐 the lower alpha hull
T𝛼 is the Delaunay triangulation for 𝛼 > 𝛼𝑐 .

Proof. Arrange the index set in 𝑐 so that𝑉 del

𝑐 is positive. If𝑉𝑐 (𝛼)
is positive, the corresponding triangulation is the Delaunay trian-

gulation. The condition 0 < 𝑉𝑐 (𝛼) = 𝑉𝑐 (0) + 𝛼
2
𝑉 del

𝑐 leads to 𝛼 > 𝛼𝑐 ,

as claimed. □

This local result yields characterization of the ’endpoints’ of the

spectrum of triangulations T𝛼
over varying 𝛼 .
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Corollary 3.6. For given data (x𝑖 , 𝑓𝑖 ) there exist constants 𝛼± so
that for all 𝛼 > 𝛼+ the lower alpha hull T𝛼 is a Delaunay triangula-
tion, and for all 𝛼 < 𝛼− the lower alpha hull T𝛼 is the furthest point
Delaunay triangulation.

Proof. We only discuss the case of𝛼+, the other case is analogous.
A triangulation is Delaunay if all of its simplices are Delaunay. A

simplex is not Delaunay if and only if it is part of a flippable circuit

that is not Delaunay. Consider the Delaunay configuration of the

points {x𝑖 }. Compute 𝛼𝑐 for all flippable circuits and let 𝛼𝑐 be their

maximum. Set 𝛼+ = 𝛼𝑐 +𝜖 for 𝜖 > 0. Increasing 𝛼 starting from T𝛼+

cannot result in any flips. Scaling the function values has no effect

on the combinatorics, so we consider the lifted points (x𝑖 , 1𝛼 𝑓𝑖 +x
Tx),

which converge to the Delaunay configuration for 𝛼 →∞. □

The general position assumption implies that the Delaunay tri-

angulation is unique. If it is not, 𝛼+ identifies one of the Delaunay
triangulations.

How are the triangulations evolving as 𝛼 varies in [𝛼−, 𝛼+]?
Notice that the furthest point Delaunay triangulation contains only

the boundary vertices of the convex hull in the parameter domain,

while the Delaunay triangulation contains all the points. One may

expect that the number of vertices increases with 𝛼 , and this is

indeed the case, because flips for increasing 𝛼 are Delaunay.

Corollary 3.7. The number of vertices in T𝛼 is a non-decreasing
function of 𝛼 .

Proof. It suffices to show that a flip occurring due to the increase

of 𝛼 can never remove a vertex. This follows from flips for increasing

𝛼 being Delaunay flips, which either leave the number of vertices

unchanged or are (1-(𝑑 + 1)) flips. □

For 𝑑 = 1, 2 this completely characterizes the behavior of the

number of elements, as the number of edges and triangles is de-

termined by the number of vertices for fixed boundary. Beyond

two dimensions there is not much we can say about the number of

the other simplices, as Delaunay flips may decrease the number of

simplices.

Construction. The observations so far show that moving 𝛼 from

−∞ to +∞ creates a sequence of bistellar flips starting at the furthest

point Delaunay triangulation and ending in the Delaunay triangu-

lation of the point set. The choice of flip for a triangulation T𝛼
is

governed by the flippable circuit with the smallest value 𝛼𝑐 . This

observation immediately leads to an algorithm for computing all

different triangulations T𝛼
, similar to algorithms for incremental

Delaunay triangulation.

As it makes asymptotically no difference and Delaunay triangu-

lation is fast in theory and practice [Amenta et al. 2007; Attali et al.

2003; Jamin et al. 2018] we start from the Delaunay triangulation.

This is more convenient because decreasing 𝛼 only reduces the num-

ber of vertices, avoiding point location for adding vertices, which

is the most costly part of the algorithm [Amenta et al. 2003]. The

algorithm is then straightforward in principle: maintain a priority

queue of circuits to be flipped, prioritized based on 𝛼𝑐 ; after each flip,

update 𝛼𝑐 for the boundary facets of the circuit. An efficient imple-

mentation of identifying flippable circuits in arbitrary dimension is

non-trivial, and there are established libraries for the task. For 𝑑 = 2,

Fig. 2. A smooth function is point sampled (left) and the function values
are contaminated with Gaussian noise. The lower and upper 𝛼-hull are poor
reconstructions of the original data, the mid-contour (right) performs well.

(3-1) flips are identified as vertices with degree 3, and (2-2) flips are

recognized as interior edges that intersect the flipped edge. These

conditions extend to higher dimension in a natural way, but how to

maintain efficient data structures is non-obvious. The complexity

of this algorithm is similar to incremental Delaunay algorithms.

The result of the algorithm can be compactly stored as the se-

quence of flips together with the corresponding value𝛼𝑐 . This allows

browsing through the different triangulations with constant time

per flip, meaning time linear in the number different triangulations

for accessing a triangulation based on 𝛼 .

4 CONVEX/CONCAVE DECOMPOSITION
We can compute upper hullsU𝛼

in a completely analogous fashion.

In fact, we do so by computing lower 𝛼-hulls of the data (x,−𝑓𝑖 +
1

2
𝛼xT

𝑖
x𝑖 ), which gives the negative of the upper hull. In other words,

the upper hull is given as −ℎ𝛼−f (x).
Assuming the data contains noise, it may be reasonable to approx-

imate it as the mid-contour of the lower and upper PL functions,

i.e. as𝑚𝛼
f = 1

2
(ℎ𝛼f + (−ℎ

𝛼
−f )) (see Figure 2). It seems we could also

take the mid-contour of the lifted triangulations and get the same

result, because the lifting by 𝛼xT
𝑖
x𝑖 cancels, similar to an obser-

vation of Biswis et al. [2022] for the mid-contour of the lifts for

a weighted Delaunay triangulations and its dual power diagram.

Such a representation of the mid-contour would be a convex/concave
decomposition, because the lifts are convex. We will now analyze

this idea

To make this concrete we define the lifted PL function as the

lower hull of the lifted points:

Definition 4.1. Let data (X, f) be given and write f𝛼 = {𝑓𝑖 +
1

2
𝛼xT

𝑖
x𝑖 )} for the lifted data. Then the (lower) 𝛼-lift is

𝑙𝛼X,f (x) = ℎX,f𝛼 (x) = sup

a∈R𝑑 ,𝑏∈R
aTx + 𝑏, ∀𝑖 aTxi + 𝑏 ≤ 𝑓𝑖 +

1

2

𝛼xT𝑖 x𝑖 .

(9)

Note that 𝑙𝛼 is a convex PL function by construction. The corre-

sponding lifted upper hull is given as 𝑙𝛼−f . Taking the mid-contour

of the two lifts yields the

𝛼−function : 𝑓 𝛼f =
1

2

(
𝑙𝛼f − 𝑙

𝛼
−f

)
(10)

and shows that it is represented as the difference of two convex PL

functions. As mentioned, this approximation is identical to the mid-

contour based on the original data, if the lower and upper 𝛼-hull

have the same combinatorics.

Proposition 4.2. For T𝛼 = U𝛼 we have 𝑓 𝛼f =𝑚𝛼
f .
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Fig. 3. The 𝛼/𝜏 lift: the data points are equipped with confidence measures
𝜏𝑖 , here we assume 𝜏𝑖 = 1. Rather than considering the lower convex hull of
the (lifted) data, we consider the intersection of half spaces that are above
data points so that

∑
𝜏𝑖 ≤ 𝜏 . The illustrations shows this for 𝛼 = 0 (the

original function values) and, from left to right, 𝜏 = {0, 1, 2, 3}.

Proof. The function is determined by the function values for the

vertices and the triangulation. As both triangulations are the same,

it suffices to inspect the function values. Here we have

2𝑚𝛼
f (x𝑖 ) = 𝑙𝛼f (x𝑖 ) − 𝑙

𝛼
−f (x𝑖 )

= 𝑓𝑖 +
1

2

𝛼xT𝑖 x𝑖 − (−𝑓𝑖 +
1

2

𝛼xT𝑖 x𝑖 )

= 𝑓𝑖 − (−𝑓𝑖 ) = ℎ𝛼f (x𝑖 ) − ℎ
𝛼
−f (x𝑖 ) = 2𝑓 𝛼f .

(11)

□

For 𝛼 large enough, every set of function values will be the De-

launay triangulation. This immediately implies the following result:

Corollary 4.3. A PL function interpolating the data (X, f) defined
by the Delaunay triangulation ofX can be represented as the difference
of two convex functions f𝛼 and −f𝛼 .
We want to stress that while every PL function has a PL con-

vex/concave decomposition [Aleksandrov 2012], such decomposi-

tion generally induces additional vertices.

Moreover, if the combinatorics of the lower and upper 𝛼-hulls are

different then, in general, averaging the lower and upper hulls is

different from averaging the lower and upper 𝛼-lifts, i.e.𝑚𝛼
f ≠ 𝑓 𝛼f .

In particular, while𝑚𝛼
f is guaranteed to be enclosed in the 𝛼-hulls,

the 𝛼-function 𝑓 𝛼f is not.

Why is it interesting to represent a PL function as the difference

of two convex PL functions (rather than the difference of arbitrary

PL functions such as the 𝛼-hulls)? A number of algorithms for

approximation or, more generally, processing such data exist that

require or exploit convexity of the input. Importantly, the function

can be represented exactly or approximated coarsely by a set of

planes. Function values can then be computed in time linear in the

number of planes by taking the maximum. This is possible even

in high dimensions, where generating the complete combinatorial

information is impractical. We cannot give a comprehensive account

of the many algorithms that would apply and highlight the potential

by combining a robust redefinition of the 𝛼-lift and subsampling.

Robust 𝛼-lifts. If the data is contaminated with outliers, using

hulls will make the outliers prominent features in the approximation

and the mid-contour 𝑚𝛼
f degenerates to noise (see Figure 4). We

introduce a simple way to account for outliers, made possible by

the convex representation. Recall that we defined the convex hull

as the intersection of half-spaces, for which all points are on the

positive side. Following Joswig et al. [2020], we generalize this idea

and consider the intersection of half-spaces, for which almost all

Fig. 4. Pairs of samples from the function in Figure 2 are swapped to create
outliers. The mid-contour of the 𝛼-hulls fails to reconstruct the function
(left). Constructing the 𝛼-function from 𝛼-lifts based on random planes
(middle left) makes no difference, but enables using the 𝛼/𝜏-lift to filter the
outliers (middle). Using subsampling on a grid for the 𝛼-lifts likewise results
in a poor 𝛼-function approximation (middle right), but adding 𝛼/𝜏-filtering
for the lifts yields a good result.

points are on the positive side (see Figure 3). In order to deal with

confidence information 𝜏𝑖 connected to the points, we restrict to half-

spaces, for which the sum of the confidence values on the negative

side is below a threshold.

Definition 4.4. The 𝛼/𝜏-lift of the data X, f is

𝑙
𝛼/𝜏
X,f (x) = sup

a∈R𝑑 ,𝑏∈R
aTx + 𝑏,

∑︁
𝑗 ∈P(a,𝑏)

𝜏 𝑗 < 𝜏, (12)

where P(a, 𝑏) is the set of points below plane a, 𝑏, i.e. satisfying

aTxj + 𝑏 > 𝑓𝑗 +
1

2

𝛼xT𝑗 x𝑗 . (13)

While the 𝛼/𝜏-lift is, by construction, a convex PL function, un-

like the hulls and lifts so far, it is not necessarily a triangulation,

and its vertices are not necessarily elements of X. This is illustrated
in Figure 3 for 𝜏𝑖 = 1. We suggest to approximate the 𝛼/𝜏-lift by a

finite set of (random) planes. Assuming a lower bound 𝜏 on the 𝜏𝑖 at

most 𝑘 = 𝜏−1 points may be outside the 𝛼/𝜏-hull in any direction.

This means for a given gradient a we can compute 𝑏 without addi-

tional data structures in expected𝑂 (𝑛 +𝑘 log𝑘) time using efficient

computation of the 𝑘-th smallest element and then sorting the 𝑘

elements. Spatial data structures (such as 𝑘-d trees) help in reducing

the linear dependence on 𝑛, however, the effect will depend on the

distribution of the data and the dimension 𝑑 [Samet 1990].

Sub-sampling. An alternative to random sampling in lower dimen-

sions is sub-sampling the data points. We suggest to use

coresets [Agarwal et al. 2005], which allow approximating a geo-

metric structure within a factor of 1 + 𝜖 . Bentley et al. [1982] show

that coresets of size𝑂 (1/𝜖) for convex hulls can be found by taking

extremal values from the data sorted into a grid. This is not optimal

but attractive as it leads to a simple algorithm: the locations x𝑖 are
sorted into a grid, and the minimal/maximal value is chosen for the

lower/upper 𝛼-lift. This approach works well on data with moder-

ate noise and can be easily combined with 𝛼/𝜏 filtering to handle

outliers. Figure 4 shows the resulting 𝛼-functions.

5 HERMITE DATA AND THE LEGENDRE TRANSFORM
In many applications, the data (x𝑖 , 𝑓𝑖 ) also carry information about

gradients g𝑖 . One may think of this data as small (hyper-)planes

around the sample points. It is uncommon to approximate such data

with PL functions – the data will generally be contradictory (i.e.,

not integrable) for 𝑑 > 1.

5
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Fig. 5. Approximating a signed distance function from point samples with
normals (blue). Points are sampled from two circles with varying Gaussian
noise in the positions and normals (rows). Vertices of the lower and upper
𝛼-lift are shown in red and green. The reconstructed curve (black) is the
zero level-set of the 𝛼-function for 𝛼 = 1

2
, 1, 2. (left to right).

One prime example in geometry processing is the reconstruction

of a surface from sample points. If we want to generate a (PL) signed

distance function from the data so that the surface is represented

as a level set, the samples all provide the same function value. This

shows not only that an important part of the information about the

surface is encoded in the given gradients, but also that additional

vertices are needed supporting a PL function that approximates the

signed distance function.

If the sampled function were convex, we could interpret the

samples as small planes, and compute their Legendre transformation.

As before, we achieve convexity by lifting the (unknown) signed

distance function 𝑓 by
1

2
𝛼xTx. Notice that the gradient of the lift at

x𝑖 is 𝛼x𝑖 so the lifted samples are

(x𝑖 , 𝑓𝑖 , g𝑖 )
𝛼−lift−−−−−→

(
x𝑖 , 𝑓𝑖 +

1

2

𝛼xT𝑖 x𝑖 , g𝑖 + 𝛼x𝑖
)
. (14)

The Legendre transformation applied to the samples yields

𝑓 𝛼
∗

𝑖 (y𝑖 ) = 𝑓 ∗𝑖 (g𝑖 +𝛼x) = xT𝑖 y𝑖 − 𝑓𝑖 −
𝛼

2

xT𝑖 x𝑖 , y𝑖 = g𝑖 +𝛼x𝑖 . (15)

We use the variable y to denote points in the Legendre transform do-

main, i.e. the domain of the gradients of the lifted function. Plugging

in y𝑖 provides the samples

(y𝑖 , 𝑓 ∗𝑖 ) =
(
g𝑖 + 𝛼x𝑖 , xT𝑖 g𝑖 − 𝑓𝑖 +

1

2

𝛼xT𝑖 x𝑖

)
. (16)

Similar to the situation before, we can always choose 𝛼 large enough

to make sure the transformed samples are in convex position. If 𝛼 is

chosen smaller, we can then still take the lower convex hull, similar

to the motivation for 𝛼-hulls, ignoring the information contained

in some of the points. The lower hull is in any case a convex PL

function, to which we can apply the Legendre transformation to

generate an approximate PL function that respects the function

values 𝑓𝑖 as well as the gradients g𝑖 .

Computing function values. Transforming the weighted Delau-

nay triangulation of the Legendre data yields a power diagram that

approximates the 𝛼-lift 𝑙𝛼X,f of the original data while respecting

the gradients. Transforming both lower and upper hull allows ap-

proximating the signed distance function as an 𝛼-function, i.e., the

difference of the two lifts, which is our goal given the data.

It is not necessary to explicitly compute the weighted Delaunay

triangulation or the power diagram for evaluating the function.

Consider what evaluation of 𝑙𝛼 at x amounts to in the Legendre

transform domain. Notice that all possible function values 𝑙 at x form
the plane 𝑝∗ (y) = xTy − 𝑙 in the Legendre transform domain. This

means we can evaluate 𝑙𝛼 at x by making the plane 𝑝∗ (y) tangent
to 𝑓 ∗ (y). Generically, we have to identify the vertex (y𝑖 , 𝑓 ∗𝑖 ) that
minimizes 𝑝∗ (y𝑖 ). Since x is fixed we have to maximize 𝑙 :

𝑙𝛼 (x) = argmax𝑖 x
Ty𝑖 − 𝑓 ∗𝑖 . (17)

It is instructive to inspect what this maximization means in terms

of the original data. Plugging in how the points y𝑖 , 𝑓 ∗𝑖 have been

constructed reveals

𝑙𝛼 (x) = argmax𝑖 xT (g𝑖 + 𝛼x𝑖 ) −
(
xT𝑖 g𝑖 − 𝑓𝑖 +

𝛼

2

xT𝑖 x𝑖
)

= argmax𝑖 (x − x𝑖 )Tg𝑖 + 𝑓𝑖 +
𝛼

2

(2x − x𝑖 )Tx𝑖 .
(18)

This shows that 𝑙𝛼 (x) results from evaluating the plane through

data point (x𝑖 , 𝑓𝑖 ) with gradient g𝑖 at x, the evaluation point in the

original space. Lifting adds another plane of the form (2x − x𝑖 )Tx𝑖 .
Evaluating this plane at x = x𝑖 yields 𝛼xT𝑖 x𝑖 , the lifting for point 𝑖 .
This means, the value 𝑙𝛼 (x) depends on only on a single data

point. Which point is selected? This depends on the function value

of the plane given by x𝑖 , 𝑓𝑖 , as well as g𝑖 and the term (2x − x𝑖 )Tx𝑖 ,
both of which are maximized, with the second part weighted by

𝛼
2
. The first part selects the plane with maximal height at x. If the

original data was convex, this would be the correct assignment.

Inspecting the second part, we find

argmax𝑖 (2x − x𝑖 )Tx𝑖 = argmax𝑖 −(x − x𝑖 )T (x − x𝑖 ) + xTx
= argmin𝑖 ∥x − x𝑖 ∥.

(19)

In other words, the term weighted by
𝛼
2
minimizes the distance of

x𝑖 to the evaluation point x. This connects to approaches using the

Voronoi diagram of the surface samples for reconstruction. Hoppe’s

approach [1992] is recovered explicitly by choosing 𝛼 large enough

and then recovering 𝑓 (x) from the maximization as 𝑓 = 𝑓 𝛼 −𝛼 (2x−
x𝑖 )Tx𝑖 , i.e. by only considering the plane through the point x𝑖 . Doing
this to remove the effect of lifting, however, gives up continuity

of 𝑓 . Using the 𝛼-function based on the lower and upper 𝛼 lifts

guarantees a continuous PL approximation of the signed distance

field.

The overall evaluation procedure leads to a simple algorithm for

approximating the signed distance function based on surface sam-

ples with gradient information, summarized in Alg. 1. It is crucial to

use spatial data structures for computing the Legendre sample that

maximizes Eq. 17, lines marked OPT in Alg. 1. While 𝑘-d trees [Fried-

man et al. 1977] work generally well in small dimension, we have

found that for 𝑑 = 3 computing the convex hull explicitly and then

’walking the triangulation’ [Devillers et al. 2001; Mücke et al. 1999]

is more efficient. For using the 𝛼/𝜏-lift, the algorithm needs to be

extended to first compute the top 1/min𝜏𝑖 values and then sort them

to find the index according to the 𝜏 cutoff. This extension works
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ALGORITHM 1: Computing the 𝛼-function from Hermite data

Preprocess lift(𝛼 , Positions x𝑖 , function values 𝑓𝑖 , gradients g𝑖)
for 𝑖 ∈ {0, . . . , 𝑛 − 1} do
(y+

𝑖
, 𝑓 ∗+
𝑖
) ←

(
g𝑖 + 𝛼x𝑖 , xT𝑖 g𝑖 − 𝑓𝑖 + 1

2
𝛼xT

𝑖
x𝑖
)

(y−
𝑖
, 𝑓 ∗−
𝑖
) ←

(
−g𝑖 + 𝛼x𝑖 ,−xT𝑖 g𝑖 + 𝑓𝑖 +

1

2
𝛼xT

𝑖
x𝑖
)

Function alpha(x)
Data: Legendre samples computed in preprocess

OPT 𝑙+ ← argmax𝑖 x
Ty+

𝑖
− 𝑓 ∗+

𝑖

OPT 𝑙− ← argmax𝑖 x
Ty−

𝑖
− 𝑓 ∗−

𝑖

return 1

2
(𝑙+ − 𝑙−)

well with the 𝑘-d trees and the combinatorial data of the convex

hull.

Results. Wehave used this algorithm to approximate the PL signed

distance function generated from the raw samples of the Stanford

Bunny. We evaluate the function on a grid and then use Marching

Cubes [Lorensen and Cline 1987] to extract a surface. The data con-

tains unreliable samples, particularly the normals degrade in quality

towards the boundary of the scans. Kazhdan et al. [2006, Fig. 4]

show how this leads to artifacts in many surface reconstruction

methods. We use confidence values [Curless and Levoy 1996; Turk

and Levoy 1994] for an 𝛼/𝜏-lift to increase robustness. Figure 6,

left column shows the reconstruction without using the robust lift,

the right column with 𝛼/𝜏-lifting (for two values of 𝛼 and 𝜏 = 1).

The result for 𝛼 = 64 appears to match the state of the art Poisson

Surface Reconstruction [Kazhdan et al. 2006], while our approach

has not been designed for this task. It certainly outperforms other

combinatorial approaches [Amenta and Bern 1998; Amenta et al.

2001; Bernardini et al. 1999; Dey and Goswami 2003].

6 DISCUSSION
We have presented the concept of 𝛼-functions for PL linear approx-

imation of scattered data, possibly carrying gradient information.

Themain ingredient is a convex/concave decomposition that enables

exploiting a range of existing data structures, algorithms for effi-

cient handling of large amounts of data, data in high dimension, and

dealing with noise and outliers. Handling data with gradients via the

Lagendre transformation, while perhaps conceptually non-trivial,

ultimately leads to a simple algorithm. Despite its simplicity, for the

well-researched task of surface reconstruction from 3D samples it

provides competitive results.

We could exploit the possibility to work

with noisy inputs and explicitly specify

contradicting gradients for the purpose

of modeling functions with discontinuous

derivatives, for example to model unsigned
distance fields. Each surface sample turns

into two copies, with identical position and

opposing gradients. The inset shows the

resulting lower 𝛼-hull (upper image, up-

side down) for the samples shown below.

The curve implied by the samples is no

longer encoded as a level set. We argue that it is now given as a

Fig. 6. The Stanford Bunny reconstructed from the raw range scans based
on the 𝛼-functions for 𝛼 = 16, 64 (top, bottom). Left column is based on
the standard 𝛼-lift, right column uses the robust 𝛼/𝜏-lift with 𝜏 = 1 and
the vertex-wise confidence values [Curless and Levoy 1996; Turk and Levoy
1994] for the raw samples as 𝜏𝑖 .

ravine or valley [Belyaev et al. 1997], the union of edge paths con-

necting saddles to local minima (lower image in the inset), and leave

algorithms for its extraction as future work.

There are many ideas and avenues that were left for follow-up

reports, partly addressing several limitations. For one, 𝛼 is currently

handled as global parameter. If the data (discounting noise) con-

tains large gradients, then a large value 𝛼 is needed to represent

all features faithfully. Approximating the 𝛼-lift using techniques

for PL surfaces leads to approximating mostly the paraboloid and

not the data. This problem can be addressed with multi-level or

hierarchical representations, similar to how convolutional networks

model the function. In some applications the value of the PL approx-

imation can only be exploited if a representation based on vertices

and incident simplices has been generated. As 𝛼-functions are the

difference of simplicial meshes, an overlay is required. While this

problem is well understood in principle in computational geome-

try [Amato et al. 1995; Edelsbrunner and Seidel 1986], efficient and

robust implementations exist only in 2D [Wein et al. 2021]. Likewise,

efficient computational tools for flipping among weighted Delaunay

triangulations in dimension 𝑑 > 3 are missing as well.

We have not yet reaped the benefit of topological filtering and

persistence enabled through the parameter 𝛼 . Similar to 𝛼-shapes,

changes to the topology of the graph of critical points of the function

can be tracked locally [Edelsbrunner et al. 2002]. This allows com-

puting the persistence of vertices in the sample set, with a variety

of applications in data analysis [Carlsson et al. 2005].

7
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