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Fig. 1. A spherical orbifold Tu�e embedding: a mesh (le�) is embedded to a tile on the sphere (middle), which generates a seamless tiling of the entire sphere
(right). Three points (visualized as colored balls) are designated as cones – symmetry points of the tiling.

This work presents an algorithm for injectively parameterizing surfaces

into spherical target domains called spherical orbifolds. Spherical orbifolds

are cone surfaces that are generated from symmetry groups of the sphere.

The surface is mapped the spherical orbifold via an extension of Tutte’s

embedding. This embedding is proven to be bijective under mild additional

assumptions, which hold in all experiments performed.

This work also completes the adaptation of Tutte’s embedding to orbifolds

of the three classic geometries – Euclidean, hyperbolic and spherical – where

the �rst two were recently addressed.

The spherical orbifold embeddings approximate conformal maps and

require relatively low computational times. The constant positive curvature

of the spherical orbifolds, along with the �exibility of their cone angles,

enables producing embeddings with lower isometric distortion compared to

their Euclidean counterparts, a fact that makes spherical orbifolds a natural

candidate for surface parameterization.

CCS Concepts: • Computing methodologies → Computer graphics;

Additional Key Words and Phrases: spherical parameterization, orbifolds,

Tutte’s embedding

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

© 2017 ACM. 0730-0301/2017/7-ART90 $15.00

DOI: http://dx.doi.org/10.1145/3072959.3073615

ACM Reference format:
Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical

Orbifold Tutte Embeddings. ACM Trans. Graph. 36, 4, Article 90 (July 2017),

13 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073615

1 INTRODUCTION
This work lies at the connection between two di�erent mesh parame-

terization methods: spherical parameterizations, and cone-manifold

parameterizations.

The sphere is one of the most natural target domains for embed-

dings of genus-zero surfaces. However, parameterizing surfaces into

the sphere is a non-trivial task as its non-convexity poses a chal-

lenge when used as a target domain, leading to numerous di�erent

approaches to tackling this problem, [Crane et al. 2013; Friedel et al.

2007; Gotsman et al. 2003; Kazhdan et al. 2012].

Parameterizing surfaces into planar cone manifolds has also been

steadily gaining popularity, as it is a practical and e�ective way to

embed closed (i.e., boundaryless) surfaces into planar domains in a

seamless manner, and the addition of cone singularities signi�cantly

reduces the distortion of the parameterization [Myles and Zorin

2012; Springborn et al. 2008]. As far as we are aware, in computer

graphics cone singularities have yet to be used in the spherical

setting.
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In this paper we combine the two approaches, and introduce a

simple and e�cient algorithm for spherical cone parameterization.

Theoretically, the algorithm is proven to produce valid, injective

embeddings assuming a couple of additional conditions hold, and

practically, in all conducted experiments produced such valid em-

beddings. The algorithm is based on an extension of the classic Tutte

embedding [Floater 2003; Tutte 1963] to the spherical setting, with

the spherical orbifolds as target domains. The spherical orbifolds

are a collection of constant-positive-curvature surfaces with cone

singularities; each spherical orbifold is generated from a symmetry

group of the sphere.

The motivation to combine orbifolds and spherical embeddings is

that the special properties of the spherical orbifolds, when combined

with a spherical version of Tutte’s algorithm, are shown to alleviate

past problems of spherical parameterizations such as degeneration

of the map (to a point or a line), multiple wrapping of the sphere,

inverted elements, and “tent” singularities. Furthermore, the cone-

singularity structure enables both setting 2-3 point constraints in the

embedding, and also approximating conformal maps to spherical

domains while reducing scaling near the cones. Figure 1 shows

an example of a mapping of a mesh with sphere topology (left,

cones shown as colored balls) onto a spherical orbifold with 3 cones

(computed embedding shown in the middle); this mapping is a

seamless harmonic mapping to the target spherical orbifold, as can

be seen by the seamless tiling of the sphere (right).

Theoretically, we prove two results: �rst, a generalization of the

classic Tutte embedding [Floater 2003; Tutte 1963] to the spherical

case (embedding meshes to a spherical convex polygonal domain).

Second, given two extra, mild assumptions, we prove a Tutte em-

bedding theorem for all spherical orbifolds. This paper also com-

plements recent generalizations of Tutte’s algorithm to orbifolds in

di�erent geometries [Aigerman and Lipman 2015, 2016]. However,

the non-convexity and compactness of the spherical case necessitate

di�erent algorithmic and theoretical tools than the previous cases.

We demonstrate that our algorithm can e�ciently map large

models (up to a few million triangles), while in practice producing

valid spherical embeddings that approximate conformal maps. We

show through experiments that the positive-curvature spherical orb-

ifolds are natural candidates for mapping surfaces with sphere-like

topology (whose average Gaussian curvature is 4π ), often allowing

lower isometric-distortion embeddings compared to their Euclidean

counterparts.

2 PREVIOUS WORK
Spherical parameterization. Parameterization to di�erent domains

is one of the most basic and important tasks in Geometry Processing

and Computer Graphics; detailed surveys can be found in [Hormann

et al. 2007; She�er et al. 2006]. Embedding a mesh into the unit

sphere has long been studied. [Alexa 1999] computes a Tutte-like

spring embedding, letting the edges relax while penalizing long

edges so as to avoid reaching the zero map. [Haker et al. 2000] use a

streographic projection to compute a conformal map to the sphere.

[Shapiro and Tal 1998] extract a base tetrahedron and reinsert the

vertices while preserving validity of the embedding; [Asirvatham

et al. 2005; Praun and Hoppe 2003] extend this idea using progres-

sive meshes. [Gotsman et al. 2003] build upon theory from [Lovász

and Schrijver 1999] to extend the concept of barycentric coordinates

to the spherical case and characterize the set of valid embeddings;

[Saba et al. 2005] continue this work and suggest an e�cient method

to solve these equations. Computationally, they solve a system of

quadratic equality constraints for which there is no guaranteed way

to �nd a valid solution, even if one exists. [Gu et al. 2003] compute a

conformal map of a spherical mesh to a sphere. [She�er et al. 2004]

derive necessary and su�cient geometric conditions for an assign-

ment of spherical angles to generate a valid spherical embedding.

They minimize the l2 error of these conditions, leading to a non-

convex problem which is not guaranteed to reach a valid solution.

[Friedel et al. 2007] also embed a mesh to the sphere by minimiz-

ing the Dirichlet energy; they minimize the energy of the graph

extrinsically, while cleverly reweighing the per-triangle energy so

as to ensure the modi�ed reweighed energy gives an upper bound

to the real, intrinsic energy. Flow methods such as [Kazhdan et al.

2012] and [Crane et al. 2013] can be used to smooth the mesh until

it converges to a sphere. These �ow methods are fast and robust,

however they generate parameterizations into the entire sphere,

and there is no guarantee as to whether they produce valid embed-

dings. [Wang et al. 2014] compute spherical parameterizations in

an as-rigid-as-possible manner. [Buss and Fillmore 2001] compute

averages on the sphere.

Tutte’s embedding. Tutte’s embedding is a method originally de-

vised for computing injective embeddings into the Euclidean plane,

R2; the classic Tutte embedding [Floater 2003; Tutte 1963] yields

globally injective embeddings by computing a convex-combination

map into a convex polygon, and has seen many uses, e.g., for sur-

face mapping [Weber and Zorin 2014]. [Gortler et al. 2006; Lovász

2004] extend Tutte’s embedding to the Euclidean �at-torus case

by integrating harmonic one-forms on the torus. [Aigerman and

Lipman 2015] extend Tutte to the Euclidean orbifolds, i.e., cone man-

ifolds which can tile R2. Following the work of [Tsui et al. 2013],

[Aigerman and Lipman 2016] extend Tutte’s embedding beyond

Euclidean domains, to hyperbolic orbifolds – cone manifolds which

tile H2. Similarly, this work extends Tutte’s embedding to spherical

orbifolds - cone manifolds which tile the unit sphere.

Cone parameterization. Cone parameterization has been gaining

popularity as a method to seamlessly embed closed surfaces into

planar domains. The basic idea is to achieve this seamlessness by

setting periodic boundary conditions [Ray et al. 2006]. The addition

of cones to the parameterization is an e�ective way to reduce the dis-

tortion of the embedding [Myles and Zorin 2012, 2013]. Due to their

seamlessness and low distortion, cone parameterizations are highly

popular for the task of quad-meshing. This concept was addressed

from several di�erent points of view, such as integrating one-forms

with singularities [Tong et al. 2006], producing a branched covering

of the surface [Kälberer et al. 2007], modifying the metric of the

surface [Chien et al. 2016], or directly computing the parameteriza-

tion while enforcing the appropriate boundary conditions [Bommes

et al. 2009].
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Fig. 2. The di�erent orbifolds used in this paper, visualized by tiling the sphere with copies of the representative basic tile (in bold color). On the le� are the 5
orbifolds with rotational symmetry and sphere-like topology, on the right, the 5 orbifolds with reflectional symmetry and disk-like topology.

3 PRELIMINARIES
Spherical geometry. The basic domain considered in this paper

is the 2-sphere embedded in R3, S2 =
{
x ∈ R3 | ‖x ‖ = 1

}
. The ge-

odesic distance d(p,q) between two points p,q ∈ S2, is the length

of the shorter great arc (a part of a great circle) connecting the

two points. There are several closed-form formulas for the distance;

throughout this paper we shall use a speci�c choice:

d(p,q) = atan2 (‖p × q‖ , 〈p,q〉) , (1)

which was chosen speci�cally as it enables simplifying the opti-

mization problem we will reach. We will also make use of isometric
transformations of the sphere – these are the transformations that

preserve geodesic distances between all points on the sphere. The

group of isometric transformations of the sphere is the orthogo-

nal group O(3), comprised of all three-dimensional rotations and

re�ections.

Spherical orbifolds. Formally, a spherical orbifold is generated

by taking the quotient of the sphere by a discrete symmetry group

G ⊂ O(3) of the sphere: given such a symmetry groupG , the orbifold,

denoted as O, is de�ned as the set of equivalence classes ofG , called

orbits. That is, O =
{
[p] | p ∈ S2

}
, where [p] = {д(p)|д ∈ G} is the

orbit of p ∈ S2. The topology of O is the quotient topology. Picking

a representative from each orbit in O produces a tile; a tile is a

subset of the sphere that can be used to tile the sphere using the

transformations in the group G.

We use the term basic tile for a particular choice of a tile of the

orbifold, namely a simple polygon on the sphere. The vertices of this

polygon are symmetry points of G, i.e., either gyration points (i.e.,
rotation centers) or kaleidoscopic points (i.e., meeting points of two

or more re�ection lines), see [Conway et al. 2008]. Each edge of the

tile has a transformation from the group G associated to it, either a

rotation of the edge around a symmetry point, or a re�ection along

the edge. Figure 2 depicts the basic tiles of 10 spherical orbifolds - 5

with rotational symmetry (left) and 5 with re�ectional symmetry

(right). For each of the two symmetry types, we show one example

with arrows that visualize the symmetry transformations associated

to di�erent sides of the tile; these transformations can be thought of

as the “assembly instructions" guiding us how to move and connect

copies of the tile so as to tile the entire sphere, by applying these

transformations to the basic tile repeatedly. The tile then represents

the orbifold, by considering a point p of the tile and identifying all

its generated copies [p] in the tiling as being the same point.

The spherical orbifolds are a subfamily of the constant positive

curvature cone-surfaces. They have either sphere-like or disk-like

topology, and cones of integer order (i.e., cone angles of 2π/n,n ∈ N).

Our goal is to derive a practical method for computing Tutte embed-

dings into spherical orbifolds, and prove they are valid (bijective)

embeddings.

4 APPROACH
In this section we review the full details of our method. We �rst

de�ne the spherical orbifold Tutte embeddings, and then devise an

algorithm for their computation.

Spherical embeddings. Given a 3-connected polygonal mesh M
with vertices V = {vi }, edges E = {(i, j)} and faces T, we de�ne the

image of each vertex vi to to be a variable Φi ∈ S
2 ⊂ R3. These are

the degrees of freedom of the map, which are concatenated into a

3-by-|V| matrix representing the full map, Φ =
[
Φ1,Φ2, . . . ,Φ |V |

]
.

The image of each edge (i, j) ∈ E is set to be the shortest geodesic

connecting the images of the two vertices Φi ,Φj (in case the points

are antipodal one of the geodesics can be chosen arbitrarily). Each

triangle of the original mesh is thus mapped to a spherical triangle,

and the map can be extended to any point on the surface de�ned by

M, i.e., also to points on an edge or inside a triangle, using spherical

barycentric coordinates.

Harmonic spherical maps. The spherical Dirichlet energy of an

embedding Φ is de�ned as a weighted sum of squared spherical

distances between all adjacent vertices:

E (Φ) =
∑
(i, j)∈E

wi j d(Φi ,Φj )
2, (2)

for some set of �xed positive weights wi j > 0. Although any set of

positive weights is valid for our method, throughout this work we

will use the cotangent weights [Pinkall and Polthier 1993]. In case

any of the weights are negative we clamp them to 0.01 to ensure

they are all positive.

We will compute discrete harmonic embeddings, which are de�ned

as critical points of E. Discrete harmonic embeddings have been

used extensively in the past [Floater 2003], and also in the spherical

case [Friedel et al. 2007; Gotsman et al. 2003; Saba et al. 2005]. In this

sense, the main novelty of our method is in the boundary conditions

we set, which de�ne a mapping to a spherical cone surface, and are

the reason the embeddings are valid.

Embedding into an orbifold. Our goal is to devise a method to

embed the given mesh into a spherical orbifold O. For simplicity of

the following explanation, let us for now focus on a speci�c scenario,

as depicted in Figure 3: the given input mesh M has sphere-like

topology, and the target orbifold has 3 cones. The other cases will

be covered later, as simple extensions to the method presented next.

To compute the orbifold embedding we follow three steps:
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(a) (b) (c) (d) (e)
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2

2

R1
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Fig. 3. The outline of our method. (a) the input to our algorithm consists of an input mesh and a discrete set of cones (in this case there are 3, visualized as
colored balls) and an integer ni associated to each cone denoting its symmetry-order. (b) according to the number of cones and their order, we construct a
basic tile describing the boundary conditions of the embedding; in this specific tile, the two blue edges are associated by a 90

◦ rotation, R1, and the two red
edges are associated by a 180

◦ rotation, R2. (c) the output of our algorithm – an embedding of the cut mesh into the sphere, which minimizes the spherical
Dirichlet energy under the boundary conditions defined according to the basic tile. (d) the specific boundary conditions ensure that we can tile the entire
sphere with rotated copies of the embedding – this is the special symmetry property of an orbifold embedding. The resulting tiled embedding is a bijective,
discrete harmonic and (as shown in (e)) seamless embedding into the orbifold. The number of rotated copies of the mesh around each cone respects the
symmetry order associated to the cone.

(1) Choose the 3 vertices of the mesh that will be mapped to

the cones of the orbifold, and assign a symmetry order to

each cone, according to one of the possible cone symmetry

order assignments.

(2) Cut the mesh through the cones to produce a disk-like

mesh and construct the boundary conditions generating

the orbifold structure.

(3) Compute a critical point of the Dirichlet energy, subject to

the boundary conditions.

Step 1 relies on user-input. We detail steps 2-3 next.

4.1 Cu�ing and boundary conditions
At this stage we are given the mesh M with sphere-like topology,

the choice of the 3 vertices c1, c2, c3 ∈ V which will be mapped to

the cones, and the target symmetry order of each cone ci , denoted

as ni (see Figure 3 (a)). Our goal is to cut the mesh M open to a

topological disk, and assign the relevant boundary conditions to the

boundary generated by the cutting.

Cutting the mesh. We cut M to a topological disk by cutting

through the cones, as shown in Figure 4 (the color scheme for the

cuts and cones is consistent with Figure 3): as depicted on the left,

we trace a path of edges, denoted γ1, connecting the �rst two cones

c1, c2 (e.g., using Dijkstra’s shortest path algorithm).

We repeat this procedure for c2, c3 to create the path γ2. We now

cut the mesh through the two paths as depicted on Figure 4, right:

we traverse the edges on the cut, for each edge �nd the two triangles

adjacent to it, and disconnect them from one another. In the process

of separating the triangles, each vertex vi on the cut is duplicated

into two vertices on the two sides of the cut, which we denote as

v/i ,v
.
i . Hence, the path γ1 is duplicated into two corresponding

paths, γ /
1

and γ .
1

. Likewise, γ2 is duplicated into γ /
2
,γ .

2
. Lastly, note

that the cones c1, c3 are not duplicated, since they are the end-points

of the cut; on the other hand the middle cone c2 is duplicated and

will appear two times in the embedding as c/
2
, c.
2
, so after cutting

c1

c2

c3

c2
c2

γ1 γ1

c1

c3

γ2 γ2

γ1

γ2

Fig. 4. The cu�ing scheme used in this paper. Le�: the 3 vertices selected as
cones are connected with two edge-paths; right: cu�ing the mesh through
the paths duplicates vertices and edges along the cut into corresponding
copies.

the 3 original cones are now represented as 4 boundary vertices.

Henceforth we shall no longer need to discuss the original input

mesh, and therefore henceforth abuse notation and also denote by

M the cut mesh produced from the input mesh. We denote by ∂M
the boundary of the cut mesh, which is comprised of γ /

1
,γ .

1
,γ /

2
,γ .

2
.

We denote by C =
{
c1, c

/
2
, c.
2
, c3

}
the set of 4 boundary vertices

corresponding to the cones.

Boundary conditions. We now have at our disposal the cut mesh

M with disk-like topology, its boundary ∂M segmented into two

pairs of corresponding paths γ /
1
↔ γ .

1
, γ /

2
↔ γ .

2
. Now, according to

the assigned symmetry order of each of the three cones, n1,n2,n3,

we compute the suitable basic tile structure. The basic tile consists

of assigning a position pi ∈ S
2

to each one of the four cone-points

c1, c
/
2
, c.
2
, c3, and a rotation Ri to each pair of corresponding paths
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γ /i ,γ
.
i . The basic tile, corresponding to the cut mesh in Figure 4, is

shown in Figure 3 (b) (with the same coloring scheme of boundary

segments and cones). The positions {pi } and rotations{Ri } of the

basic tile are decided solely according to the topology of the mesh,

the number of cones, and the cones’ symmetry order; the construc-

tion process is detailed in Appendix A. This provides us with the

boundary conditions of the orbifold embedding: we require for each

pair of corresponding paths, that their images are identical up to the

relevant transformation Ri ∈ O(3) of that segment of the boundary,

i.e.,
γ /i = Ri

(
γ .i

)
, i = 1, 2

where we slightly abused notation and denoted by γi the image of

the boundary path on the sphere. The transformations R1,R2 are

illustrated with arrows in Figure 3.

This set of boundary conditions is needed to ensure the result

will be a tile (according to the de�nition presented in Section 3) and

therefore that the embedding well-de�nes a map into the relevant

orbifold. To satisfy the boundary conditions, we consider corre-

sponding vertices v/i ,v
.
i on the two sides of the cut, and require

that their images are identical up to the corresponding transforma-

tion Ri :

Φ/
i = RiΦ

.
i , Ri =

{
R1 vi ∈ γ1

R2 vi ∈ γ2
. (3)

Lastly, we �x the 4 cone vertices c1, c
/
2
, c.
2
, c3 to their assigned posi-

tions,

Φi = pi ,vi ∈ C. (4)

4.2 Computing the embedding
Given the mesh M with the boundary conditions (3) and (4), we can

now compute the orbifold Tutte embedding by computing a critical

point of the spherical Dirichlet energy under the orbifold boundary

conditions, i.e., �nd a solution to the following optimization problem:

min E(Φ) (5a)

s.t. ‖Φi ‖ = 1 ∀vi ∈ V (5b)

Φ/
i = RiΦ

.
i ∀vi ∈ ∂M (5c)

Φi = pi ∀vi ∈ C (5d)

where ‖·‖ denotes the Euclidean norm in R3.

Intuitively, Equation (5) seeks a discrete harmonic map into a tile

of the target spherical orbifold. This embedding indeed de�nes a

map into the orbifold, as each vertex vi is mapped to a well-de�ned

point on the orbifold, namely the orbit [Φi ]. Note that

[
Φ/
i
]
=

[
Φ.
i
]

and hence the twin vertices v/i ,v
.
i are mapped to the same orbifold

point, thus the original vertexvi is well-de�ned to be mapped to [Φi ],
and the embedding indeed represents a homeomorphism between

the uncut mesh to the orbifold O.

Problem (5) is challenging mainly due to the non-convex con-

straint (5b); next we elaborate on how to practically solve this prob-

lem via a reduction to a simpler optimization problem.

Equivalent formulation. We compute the embedding Φ by �nding

a critical point of problem (5). To that end, we �rst show that re-

laxing the problem by simply removing the non-convex unit norm

constraint (5b) leads to an equivalent formulation: we remove (5b),

now letting Φi be any point in the ambient space R3; we treat Φi as

representing the projected point on the sphere, Π(Φi ) , Φi/‖Φi ‖.
For this projection to be well-de�ned we require Φi , 0. We now

show this leads to an equivalent problem to problem (5).

First, we note that the distance function (1) is invariant to scaling

of its arguments, that is, for λ1, λ2 > 0

d (λ1p, λ2q) = d (p,q)

and therefore also the spherical Dirichlet energy (2) satis�es

E
(
Φ · diag(λ1, . . . , λ |V |)

)
= E(Φ),

i.e., scaling the image Φi of each vertex by an arbitrary positive

scalar does not change the energy, in particular E(Φ) = E(Π(Φ)).
As for the boundary conditions, we note that if Φi , 0 satis�es

the linear constraint (5c), its projection onto the sphere also satis�es

the same constraint, i.e., if Φ/
i = RiΦ

.
i , then

Π(Φ/
i ) =

Φ/
iΦ/
i

 (5c)

=
RiΦ

.
iRiΦ.
i

 Ri ∈O (3)
= Ri

Φ.
iΦ.
i

 = RiΠ(Φ
.
i ).

Thus, an equivalent problem to (5) is:

min E(Φ) (6a)

s.t. Φi , 0 ∀vi ∈ V (6b)

Φ/
i = RiΦ

.
i ∀vi ∈ ∂M (6c)

Φi = pi ∀vi ∈ C (6d)

which has the same set of constraints as (5), except for (5b) which

is replaced with (6b). Practically, this constraint can be enforced

by a simple scaling of the variables during optimization, when any

vertex is detected to get close to the origin during the line search.

In practice, this process was never applied as vertices never strayed

close to the origin; the only way this may happen is if the line-search

direction is proportional to Φi , which entails the unlikely scenario

of the line-search being orthogonal to the gradient ∇Φi E.

Optimization . The main reason to cast the original problem (5)

we aim to solve, into problem (6), is that it leads to a simple opti-

mization problem consisting of minimizing a non-convex, smooth

functional, subject to linear equality constraints. Motivated by [Ko-

valsky et al. 2016; Liu et al. 2016] we solve this optimization prob-

lem using a Laplacian-preconditioned L-BFGS (Limited-memory

Broyden-Fletcher-Goldfarb-Shanno) algorithm. We initialize the op-

timization with a feasible starting point by projecting the Euclidean

Tutte embedding back onto the sphere, as illustrated in Figure 13,

bottom. We elaborate on all details in appendix B.

4.3 The other spherical orbifolds
Up until now, for the sake of simplicity, we have considered only

cases in which the orbifold is of sphere-like topology and has 3

cones. We now discuss the other cases, which also lead to boundary

conditions formulated exactly as (3).

The variety of spherical orbifolds is �nite: there are exactly 14

types of spherical orbifolds ([Conway et al. 2008], Chapter 4), which

we enumerate next.
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Orbifolds with re�ective symmetry points. These orbifolds are

depicted in Figure 2, right. They all correspond to disk-like topology,

and are generated from a group of re�ections (visualized as arrows

on the 5
th

-from-right sphere in Figure 2), as opposed to the orbifolds

we considered up until now, which had sphere-like topology and

were generated from a group of rotations. In the re�ective orbifolds,

each side of the boundary of the basic tile has a re�ection associated

to it. The points where two or more re�ection lines meet are called

re�ective cones, and their order counts how many re�ection lines

cross that point.

In practice, this means that the selected vertices which are mapped

to the re�ective cones lie on the boundary of the mesh, segmenting

the boundary into parts. We order the cones in clockwise order. We

connect each two consecutive cones ci , ci+1 with a path passing on

the boundary of the mesh, denoted as before as γi . We now require

that the image of each path is identical to itself under re�ection of

the corresponding edge of the basic tile (see Appendix A), that is,

γi = Ri (γi ), or in terms of the vertices,

Φi = RiΦi , (7)

where as before, Ri = Rj for j which satis�es vi ∈ γj . To be consis-

tent with the previous case, we can simply use the notation Φ/
i and

Φ.
i . However here we do not cut and duplicate vertices, but instead

only use this notation in order to cast Equation (7) above into the

format of Equation (3), by writing Φ/
i = Φ.

i = Φi . This gives a set of

boundary conditions formulated just as in the previous case.

Note that practically, as the inset illustrates,

as Eq. (7) requires that a point is mapped to

itself under a given re�ection (e.g., points on

the green segment of the boundary), this entails

the point lies on the re�ective plane (in purple

in the inset). So, geometrically, these boundary

conditions require that all vertices on a bound-

ary segment γi are restricted to lie on the great

circle supporting the edge of the basic polygon

corresponding to γi (however they may lie anywhere on the great

circle and not necessarily on the interior of the basic tile, i.e., are

free to “slide” and are not �xed to place).

2-cone orbifolds. There are a few orbifolds with only two cones,

at the north and south poles. To accommodate for this case, the

previous construction needs only minor modi�cations: in case the

mesh if sphere-like, it will only have a single cut γ1 passing between

the two cone vertices, and the two sides of the cut in the embedding

are related by a rotation around the z-axis by the cone angle α =
2π/k where the symmetry order k can be any positive integer. In

the re�ective orbifold case, the boundary will be segmented only to

two sides rather than three.

Lastly, there are 4 more orbifolds which have a mixture of rota-

tional and re�ective points; they are either topologically disk-like,

or projective-plane-like.

5 PROPERTIES
In this section we prove some properties of embeddings de�ned

as critical points of spherical Dirichlet problems such as (6). We

will prove two results: �rst, a spherical version of the classic Tutte

algorithm [Floater 2003; Tutte 1963], regarding bijective embeddings

to convex spherical polygonal regions; second, we show that under

two extra assumptions, Φ which is a critical point of (6) produces a

bijective embedding to the respective orbifold.

We start with proving the validity of the spherical Tutte embed-

ding for disk-like surfaces, which can be seen as a generalization of

the classic Tutte algorithm to spheres. Although this result seems

fundamental, we haven’t encountered it in previous works.

Theorem 1. LetM = (V,E,T) be a disk-like 3-connected triangular
mesh, and consider the spherical Dirichlet problem:

min E(Φ) (8a)

s.t. Φi , 0 ∀vi ∈ V (8b)

Φi = pi ∀vi ∈ ∂M (8c)

where pi ∈ S2 are vertices of a convex polygon Ω on the sphere, and
the assignment Φi ↔ pi de�nes a homeomorphic boundary map
∂M→ ∂Ω. Let H be an arbitrary hemisphere containing Ω. Then, (i)
there exists a critical point of (8) contained inH ; and (ii) every critical
point of (8) contained in H de�nes a bijection betweenM and Ω.

The proof is based on a reduction to the classic planar case via

the gnomonic projection. Note that a convex spherical polygon is

contained inside a closed hemisphere (this hemisphere may not be

unique); denote such a hemisphere as H . The proof follows the con-

vex combination maps theorem [Floater 2003] using the following

three lemmas:

Lemma 1. Problem (8) has a critical point Φ inside H .

Xi

Xjdij

dij l (X ) j g (X ) jii

Fig. 5. Inverse exponential
and gnomonic projections.

The lemma is proved in Appen-

dex C. Henceforth we consider an

arbitrary critical point X ⊂ H .

The second lemma considers

the gnomonic projection with re-

spect to a hemisphere H . The

gnomonic projection of X j ∈

S2 w.r.t. the hemisphere H cen-

tered at Xi is de�ned as дi (X j ) =

X j/
〈
X j ,Xi

〉
, projecting points to the plane de�ned via the equation{

x ∈ R3 | 〈x ,Xi 〉 = 1

}
; see Figure 5 for an illustration.

Lemma 2. The gnomonic projection maps spherical convex polygons
contained in H to Euclidean convex polygons.

The lemma is proved in Appendix C.

The third lemma is proved in [Buss and Fillmore 2001] (see Theo-

rem 3),

Lemma 3. A critical point Xi of the spherical averaging energy
ei (·) =

∑
j ∈Ni wi jd(·,X j )

2 satis�es∑
j ∈Ni

wi j
(
`i (X j ) − Xi

)
= 0, (9)

where `i (X j ) is the inverse exponential map centered around Xi , ap-
plied to X j , and Ni is the set of indices of neighbors of the i-th vertex.

See Figure 5 for an illustration of the inverse exponential map

`i (X j ). Now let Φ be a critical point of (8). The following relation
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between the inverse exponential map and the gnomonic map holds:

дi (X j ) − Xi =
tandi j

di j

(
`i (X j ) − Xi

)
. (10)

where di j = d(Φi ,Φj ). Eq. (10) combined with (9) implies that

дi (Xi ) is a Euclidean convex combination of its neighbours’ im-

ages,

{
дi

(
X j

)}
j ∈Ni

. Let д0 be the gnomonic projection w.r.t. the

centroid of H . Consider the composition Ψ = д0 ◦ Φ, where Φ is the

map induced by the positions X . Ψ maps ∂M to a boundary of a

convex Euclidean polygon, due to Lemma 2. Now, for any i , д0 ◦д
−1
i

is a perspective transformation and therefore preserves convex com-

binations. Hence Ψ = д0 ◦ д
−1
i ◦ дi ◦ Φ is a convex-combination

map, and therefore, due to the convex-combination map theorem

by Floater [Floater 2003], Ψ is bijective, entailing Φ = д−1
0
◦ Ψ is

bijective. This proves Theorem 1.

To address the general spherical orbifold case we �rst use the

symmetry groupG to tile the mesh Φ(M) over the sphere, e.g., Figure

3 (d) and (e). We denote this new spherical mesh M′ = (V′,E′,T′).
M′ is made up of rotated and re�ected copies of Φ(M), hence if we

show that M′ is a valid spherical triangulation, it will imply that Φ
is a bijective map from the uncut M to the orbifold O.

We will follow [Gotsman et al. 2003; Saba et al. 2005] and use

the spherical embedding theory in [Lovász and Schrijver 1999]. As

discussed in these works, a su�cient condition for a 3-connected

M′ to be a valid spherical triangulation is that its coordinate vectors

X =
[
X1,X2, . . . ,X |V′ |

]
∈ R3×|V

′ |
are in the kernel of a CdV matrix

W , that isWXT = 0. A matrixW ∈ R |V
′ |× |V′ |

is a CdV matrix if it

satis�es the following two conditions: (i) for every i , j , if (i, j) ∈ E′,
Wi j < 0, otherwiseWi j = 0 ; (ii)W has exactly one negative eigen-

vector. Two comments are in order: �rst, the Perron-Frobenious

theorem can be used to show that any matrix satisfying condition (i)

has at-least one negative eigenvector (condition (ii) requires there

to be exactly one). Second, CdV matrices have some similarities to

Laplacian matrices with the di�erence that their diagonal is arbi-

trary.

We will next show that there exists a matrixW satisfying condi-

tion (i) and that the coordinate vectors X are in its kernel. We make

the assumption that the maximal spherical edge lengths in W′ is

smaller than π/2, that is di j < π/2, for all (i, j) ∈ E′. We de�neW
to be the matrix corresponding to the following linear system:

Xi
©«
∑
j ∈Ni

γi j
ª®¬ −

∑
j ∈Ni

γi j

cos(di j )
X j = 0, i = 1, . . . , |V′ |, (11)

where γi j = wi j
di j

tan(di j )
.

First, we note that since di j = dji (the distance is symmetric),W
is also symmetric and satis�es condition (i) of the CdV matrices.

To show that WXT = 0 we �rst note that each vertex position

Xi in M′ is a critical point of the spherical average energy ei (·) =∑
j ∈Ni wi jd(·,X j )

2
, where wi j are the weights de�ned on the edges

of the original M. This is true also at the cone vertices of M due to

the symmetry of the corresponding one-ring at M′. This means we

can use Lemma 3 on X . Eq. (11) can now be shown by combining

equations (9), (10) and

д(X j )
 = 1

cos(di j )
. See Figure 5 again for an

illustration. We proved:

Fig. 6. Embeddings of sphere-like meshes to sphere-like orbifolds with cones
of order 4, 3, 2 (top) and 5, 3, 2 (bo�om).

Theorem 2. LetM = (V,E,T) be a disk-like 3-connected triangular
mesh, and Φ a critical point of (6). Let M′ be the cover spherical
triangulation, andW the matrix de�ned via (11). If: (i) the maximal
edge length inM′ is smaller than π/2; and (ii)W has a single negative
eigenvector, thenM′ is a valid spherical triangulation and Φ de�nes a
bijection from the original uncut meshM into the spherical orbifold
O.

Theorem 2 makes two assumption regarding the embedding Φ.

The 2
nd

assumption excludes critical points of the Dirichlet energy

that are in a non-trivial homotopy class (e.g., a double-wrapping of

the sphere). Although we could not prove these assumptions always

hold, and in general, numerical descent methods are not guaranteed

to preserve the homotopy class of the map, we conjecture these

additional assumptions are always satis�ed by the output of our

algorithm, based on the numerical experiments performed in this

paper.

6 EXPERIMENTS
We have tested our algorithm on a wide variety of meshes. In all

cases our algorithm produced a bijective, seamless embedding, ap-

proximating a conformal map into the desired orbifold. We visualize

each embedding by drawing it on the sphere in bold color, and
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Fig. 7. Top: an embedding of a sphere-like mesh to a 3-cone sphere orbifold with cones of order 2, 2, k , where k can be be any integer larger than 1; we show
k = 4, 8, 12, 16. Bo�om: an embedding of a sphere-like mesh to a 2-cone sphere orbifold, where the two cones are placed at the north and south poles and
have the same order k . The results shown are for k = 2, 3, 4, 6, 8.

tiling the sphere with copies of the embedding in lighter color. We

also compare our algorithm to the Euclidean orbifold Tutte embed-

dings, and validate the properties of the embeddings, namely their

seamlessness and conformality.

6.1 Sphere-topology orbifolds
There are 5 orbifolds with sphere-like topology where cones are

rotational symmetry points, and their symmetry order ni measures

the angle of rotation around that point as 2π/ni . We enumerate

these orbifolds in the following �gures.

Fig. 8. An embedding of a sphere-like mesh of 2M triangles to a sphere-like
orbifold with cones of order 3, 3, 2.

Figure 6 shows an embedding to an orbifold with cones of order

4, 3, 2 (top) and 5, 3, 2 (bottom). Figure 7, top, shows an embedding

of a mesh to an orbifold with cones of order 2, 2,k , where k can

be any integer larger than 1; in this �gure we show results for

k = 4, 8, 12, 16. In all cases the resulting embeddings are conformal.

Note how di�erent choices for the order of the yellow cone a�ect

the proportions of the head and feet. The bottom row shows an em-

bedding of the armadillo to a 2-coned orbifold, where the cone order

of the two cones, k,k , can again be chosen to be any integer greater

than 1 – we show k = 2, 3, 4, 6, 8. Figure 8 shows an embedding of a

mesh to an orbifold with cones of order 3, 3, 2. This mesh consists

of 2 million triangles, and our optimization produced the bijective

embedding in 350 seconds.

6.2 Disk-topology orbifolds

Fig. 10. An embedding of a flat disk mesh to a disk-like orbifold with
reflective cones of order 4, 3, 2.

There are 5 spherical orbifolds generated by re�ective lines, all

with disk topology. In these cases the “cones” are meeting points
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Fig. 9. From le� to right: 4 embeddings to a disk-like orbifold with reflective cones of 2, 2, k , where k = 2, 3, 4, 6, and one “classic" Tu�e embedding, in which
the boundary is fixed to place – note this embedding exhibits shear and is not conformal, as opposed to the le�most orbifold embedding which produces a
conformal map into the same domain.

of the re�ection-lines, and their symmetry order ni denotes how

many re�ection lines meet at that cone.

Figure 9 shows an embedding into an orbifold with re�ective

cones of order 2, 2,k , with k = 2, 3, 4, 6; all the maps are conformal.

In comparison, the rightmost embedding in Figure 9 is the adapta-

tion of the “classic" Tutte embedding to the spherical case, where

the boundary of the mesh is �xed into place. This map exhibits

shear, and is not conformal, in comparison to the leftmost orbifold

embedding which is a conformal embedding into the same domain.

However, as we show in the

inset, the classic spherical

Tutte embedding is merita-

ble on its own, as it can be

used to injectively embed

a mesh into any spherical

convex domain, also ones

which do not have a corre-

sponding orbifold.

Figure 10 shows an embedding of a �at disk-like mesh to an

orbifold with re�ective cones of order of 4, 3, 2. Although the circular

mesh is mapped to a domain with sharp corners, the result still

approximates a conformal map. In Figure 11 we show embeddings

into the 3 other re�ective orbifolds, having cones of order 5, 3, 2

(top) 3, 3, 2 (middle) and k,k (bottom), in this example k = 3.

6.3 Comparison to Euclidean orbifold embeddings
The Euclidean counterpart of the spherical orbifold embeddings

introduced in [Aigerman and Lipman 2015], provides harmonic

paramterizations into the Euclidean orbifolds, which similarly to

the spherical case approximate conformal maps. It has the bene�t

of being computationally cheaper, requiring only solving a sparse

linear system.

Next we present empirical evidence that the spherical orbifolds en-

able conformal parameterizations with lower area distortion. This is

due to two main reasons: �rst, the spherical orbifolds have di�erent

cone structures than the Euclidean ones, and there are orbifolds in

which one can adjust the angle of the cone to be 2π/k for any integer

2 ≤ k ; second, the spherical orbifolds have constant positive cur-

vature, hence spherical surfaces which also have close-to-constant

positive curvature can be embedded in the spherical orbifolds in a

more isometric manner.

Fig. 11. Embeddings of three disk-like meshes to disk-like orbifolds with
reflective cones of order 5, 3, 2 (top), 3, 3, 2 (middle), and k, k , with k = 3

(bo�om).

In Figure 12 we show three comparisons of spherical orbifold

Tutte embeddings to a Euclidean orbifold Tutte embeddings in terms

of area distortion. We compute the area distortion by �rst rescaling

the source mesh to have an area of 1, and likewise rescaling the two

embeddings so that the total area of each of the two target domains

is 1. We then de�ne the distortion of a triangle t ∈ T as dt =
max

(
At ,A

−1
t

)
, where At is the change in area of t induced by the

map, i.e., At = |Φ(t)| /|t | (in the spherical case we compute the area

using the spherical area formula). We color the meshes according

to the log of the distortion, and display a histogram showing the

distribution of the distortion. In the embedding of Ramesses, the
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2.4571.836 16.1925.425

1 ≥20

Spherical dist.
Euclidean dist.
Spherical mean dist.
Spherical median dist.
Euclidean mean dist.
Euclidean median dist.

8.3213.746 14.3836.058

2.342 19.452

1 ≥20

1 ≥20

Fig. 12. Comparison of the spherical orbifold Tu�e embeddings (to the right in each row) to the Euclidean orbifold Tu�e embeddings (to the le� in each row).
Both methods produce conformal maps, however the spherical orbifolds enable generating embeddings with lower area distortion (meshes colored according
to distortion). The histogram of the distortion is shown next to each example.

Euclidean orbifold embedding shrinks the head to the point that it

is indiscernible, and the feet are blown up, compared to the rest of

the mesh. In contrast, the spherical orbifold embedding prevents

the harsh shrinking of the head, and preserves good proportions

between all parts of the body. Likewise, in the embedding of the

dragon, the spherical embedding embeds the body of the dragon

with relatively-constant scale, as shown in the blowup, while in

the Euclidean embedding the body rapidly shrinks as it approaches

the tail. In this example the mean and standard deviation of the

distortion were larger than 10
5

for both examples and hence are not

shown in the histogram. The embeddings of the stanford bunny may

seem more similar to one-another than the previous examples, as in

this case the two orbifolds have a rather similar cone structure (4, 3, 2

for the spherical, 3, 3, 3 for the Euclidean), however the Euclidean

orbifold has much higher average and median distortion (this can be

observed as the mesh of the Euclidean embedding is slightly redder,

remembering that the coloring is by log-scale).

Note that in all results, the histograms of the Euclidean embeddings

have a longer “tail" of triangles with distortion larger than 20.

6.4 Properties of the embeddings
Seamlessness. The spherical orbifold Tutte embeddings are com-

pletely agnostic to the cuts, as shown in Figure 13, top two rows: we

computed one embedding (top row), and then, without modifying

the cones, modi�ed the cuts on David’s head in an arbitrary manner

(middle row). As expected, while each cut produces a di�erent tile,
they both represent exactly the same spherical orbifold embedding,

as can be seen once the sphere is tiled (left column). At the bottom

row, we show the initialization of our algorithm, which is also a
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valid embedding into the orbifold, however it is not a spherical orb-

ifold Tutte embedding, i.e., not a solution to our basic optimization

problem (5), and therefore is not seamless.

Fig. 13. Our embedding is seamless, and is only a�ected by the choice
of cones, as shown in the top two rows: we modify the cuts on the mesh
(without modifying the cone placement) and produce two embeddings
– although they generate two di�erent tiles (in bold color, le� column),
a�er tiling the results are identical and in fact represent the same orbifold
embedding. In the bo�om row, we show the embedding we initialize our
optimization with, which, as can be seen in the blowup, is a�ected by the
placement of the cuts.

Conformality. The spherical orbifold Tutte embeddings approx-

imate a conformal map, for the same arguments as in [Aigerman

and Lipman 2015]: they are bijective minimizers of the spherical

Dirichlet energy into a target domain with �xed area – the spheri-

cal orbifold – with only 2-3 points constrained to place. Figure 14

exhibits the conformality of the embeddings: we texture the meshes

by projecting the spherical embedding to the plane using a stereo-

graphic projection (which preserves conformality) and then use the

plane coordinates as UV coordinates. Evidently, the embeddings do

not introduce almost any angle distortion.

Fig. 14. The conformality of the embeddings: texturing the models using
our embeddings shows they approximate conformal maps.

6.5 Technical details

0 2 4
# triangles (x106)

0

500

1000

tim
e 

[s
ec

] opt
init

The algorithm was implemented in

MATLAB. The computations were per-

formed on a single thread on a 3.50GHz

Intel i7 CPU. Typical timings of our al-

gorithm are detailed in Table 1. Some

parts of the initialization, such as the

cutting, can be optimized for speed.

The inset demonstrates the scalability of our algorithm; we show

the initialization and optimization times for an iteratively-re�ned

mesh, using the same cone placements.

name # Vert # Tri init # iter opt
Moon 7K 12.5K 0.25 25 0.86

Fandisk 20K 40K 0.80 20 2.72

David 25K 50K 0.97 21 3.66

Bunny 35K 70K 1.65 19 6.12

Dragon 50K 100K 2.04 31 9.09

Armadillo 172K 346K 8.67 24 24.79

Ramesses 193K 386K 14.89 23 33.82

Frog 196K 392K 13.50 21 29.66

Lucy 263K 526K 15.05 30 61.56

Nicola 501K 1M 27.99 22 87.53

Crab 1M 2M 66.95 24 295.42

Table 1. Timings of our algorithm (initialization and optimization, measured
in seconds), and number of iterations to convergence.

7 CONCLUSION
The spherical orbifold Tutte embedding is a fast and robust method

for computing seamless, bijective embeddings into spherical cone

domains. They are conformal parameterizations with cone types

which do not exist in the Euclidean setting, and hence enable pro-

ducing conformal maps which are more isometric, i.e., have lower

area-distortion than their Euclidean equivalents.

One limitation of our method is that our theoretical guarantees

for the orbifold mapping still require two extra assumptions. The

experiments strongly imply that these assumptions always hold,

and we mark proving this conjecture as important future theoretical
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work. A second limitation is that we can control the mapping only

by prescribing the cone vertices and their angles; designing an

algorithm to embed into general spherical cone-manifolds would be

an interesting followup. Another question regarding the spherical

embeddings is how to automatically choose the cones’ location and

order (e.g., Figure 7) to achieve minimal isometric distortion.

In a broader sense, this work completes the construction of orb-

ifold Tutte embeddings to all three classic geometries – Euclidean,

hyperbolic and spherical; as these three geometries arise in many

di�erent mathematical contexts, we are sure the ability to compute

bijective embeddings into all three will prove to be bene�cial. One

immediate and interesting followup that can harness the theory and

practice developed here is to consider spaces of bounded curvature;
it stands to reason that for some bound, these domains will also

enable bijective Tutte embeddings, and will be much more �exible.
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APPENDIX A CONSTRUCTION OF THE BOUNDARY
CONDITIONS

Preliminaries. First, we review a simple algorithm for constructing

a spherical triangle having with 3 given angles, θ1,θ2,θ3. To this

end, we �rst infer the lengths of each of the arcs of the triangle,

denoted as Θ1,Θ2,Θ3, measured in radians. The arc-lengths can be

computed by the well-known spherical-trigonometry formula

Θi = acos

(
cos(θi ) + cos(θi+1) cos(θi+2)

sin(θi+1) sin(θi+1)

)
,

where the indices are cyclically shifted. Now we compute the posi-

tion of the triangle’s vertices, p1,p2,p3: we set p1 to the north pole,
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p2 rotated from p1 on the y-z plane by Θ2, and p3 rotated by Θ3 on

the y-z plane and then rotated by θ1 on the x-y plane:

p1 = (0, 0, 1)

p2 = (0, sin(Θ2), cos(Θ2))

p3 = (sin(θ1) sin(Θ3), cos(θ1)sin(Θ3), cos(Θ3)) .

(12)

Now we can discuss the construction of the boundary conditions for

orbifolds with disk topology, sphere topology, and 2-coned orbifolds.

Disk topology. Given the order of each of the 3 re�ective cones,

n1,n2,n3, we set the 3 angles α1,α2,α3 according to αi =
2π
2ni . Using

formula (12) we construct a spherical triangle having those angles.

This is a basic tile of the corresponding orbifold. The re�ection

matrix Ri j , associated to the side (pi ,pj ) of the tile, is de�ned as the

(unique) re�ection satisfying Ri jpi = pi ,Ri jpj = pj .

Sphere topology. In this case, given the order of each of the 3

cones, we construct the same triangle as in the previous paragraph.

Denoting this triangle as q1,q2,q3, we add the re�ected point q4 =
(−qx

3
,q
y
3
,qz

3
) (superscript referring to coordinate indices). We now

build the quadrilateral (p1,p2,p3,p4) according to p1 = q1,p2 =
q4,p3 = q2,p4 = q3. The 4 vertices are arranged in order, and the

two pairs of matching edges are e1 = (p1,p2) ↔ (p1,p4) = e4, and

e2 = (p2,p3) ↔ (p4,p3) = e3. The two rotations R1,R2 are de�ned

as the 3D rotations mapping corresponding edges to one-another:

R1(e1) = e4,R2(e2) = e3.

2-cone orbifolds. The last case is when there are only two cones.

In this case, one is placed at the north pole, and one at the south

pole, and the given symmetry order of the two cones is identical. In

the spherical case the rotation between the two sides of the polygon

is the x-y in-plane rotation by α , denoted Rα . In the disk case, we

generate two vectors, v1 = (1, 0, 0), and v2 = Rαv1. The re�ection

matrices R1,R2 associated to each of the two sides are the ones

satisfying Rivi = −vi .

APPENDIX B OPTIMIZATION ALGORITHM
We note that the Euclidean Dirichlet energy provides a natural

quadratic approximation to the spherical Dirichlet energy (2), as for

points su�ciently close on the sphere

E (Φ) ≈
∑
(i, j)∈E

wi j
Φi − Φj2

2
= xT (L ⊗ I3)x ,

where x = vec(Φ) ∈ R3 |V | is the column stack of Φ, and the Kro-

necker product (L ⊗ I3) is the cotangent Laplacian [Pinkall and

Polthier 1993] acting separately on each coordinate in R3. We there-

fore follow [Liu et al. 2016] and modify the L-BFGS two-loop re-

cursion (see Algorithm 7.4 in [Nocedal and Wright 2006]) so that it

uses a scaled Laplacian as an initial Hessian approximation. We fur-

ther modify the L-BFGS algorithm to handle the linear constraints

(6c) by introducing a change of coordinates, realized by a matrix

N whose columns form an orthonormal basis for the null space of

the corresponding linear system. The modi�ed L-BFGS algorithm,

described in Algorithm 1, is then iteratively used with backtracking

(Armijo) line search to minimize the energy until convergence.

Our optimization is implemented in MATLAB. We setm = 3 in Al-

gorithm 1. The matrixN is computed with a QR decomposition. An

LU decomposition is used to prefactorize the matrixNT (L ⊗ I3)N ,

in turn enabling e�cient computation of step 8 of Algorithm 1 using

back-substitution.

Initialization. We initialize the optimization with a feasible start-

ing point, by embedding the mesh into the basic tile of the desired

orbifold. For each boundary curve, e.g., γ /i , we place its vertices

equidistantly along the corresponding arc of the basic tile. We take

the plane H having the centroid of the basic tile as its normal and

rotate the sphere so H is the x − y plane. We project all boundary

vertices onto the plane, (x ,y, z) → (x ,y, 0); the boundary projec-

tion forms a convex polygon in the plane, which we use as �xed

boundary conditions for solving the classic, Euclidean Tutte embed-

ding, which we then project back onto the sphere via the inverse

projection (x ,y) → (x ,y,
√
1 − x2 − y2) and rotate the sphere back

so H lies at its original place. This yields an initial feasible point for

problem (6).

Algorithm 1: Modi�ed L-BFGS two-loop recursion

1 q ← NT ∇Ek ;

2 for i = k − 1,k − 2, . . . ,k −m do
3 si ← N

T (xi+1 − xi );

4 yi ← N
T (∇Ei+1 − ∇Ei );

5 ρi ← 1/(yTi si );

6 αi ← ρis
T
i q;

7 q ← q − αiyi ;

8 r ←
sTk−1yk−1
yTk−1yk−1

(
NT (L ⊗ I3)N

)−1
q;

9 for i = k − 1,k − 2, . . . ,k −m do
10 β ← ρiy

T
i r ;

11 r ← r + si (αi − β);

12 return Nr ;

APPENDIX C PROOF OF LEMMAS
Proof of Lemma 1. As noted in [Buss and Fillmore 2001], if

x ,y ∈ S2 lie on opposite sides of a plane A passing through the ori-

gin and RA is the re�ection preservingA, then d(x ,RA(y)) ≤ d(x ,y),
where the equality case happens only if either x or y lie on A.

Let Φ denote an embedding of M where not all vertices are con-

tained in H . Denote by A the plane that contains ∂H , and RA the

corresponding re�ection. Re�ecting all Φi < H via RA does not

increase the Dirichlet energy E(Φ). Since the sphere is compact it

follows that there exists a minimum where Φ is contained in H . �

proof of Lemma 2. Note that the spherical convex polygon Ω is

the intersection of H with a collection of half-spaces {Bi }
n
i=1 that

contain the origin, Ω =
⋂n
i=1(Bi

⋂
H ); the gnomonic projection

maps each Bi
⋂
H to a 2-dimensional half-space, bijectively. Since

the intersection operator commutes with bijective transformations,

we getд (Ω) = д
(⋂n

i=1 Bi
⋂
H

)
=

⋂n
i=1 д (Bi

⋂
H ) – an intersection

of planar half-spaces, yielding a convex polygon in the plane. �
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