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Abotract 

We give a simple combinatorial algorithm that computes a 
piecewlze-linear approximation of a smooth surface from a 
finite set of sample points. The algorithm uses Voronoi ver- 
tices to remove triangles from the Delaunay triangulation. 
We prove the algorithm correct by showing that for densely 
sampled surfaces, where density depends on “local feature 
size”, the output is topologically valid and convergent (both 
point&e and in surface normals) to the original surface. 
We deocribe an implementation of the algorithm and shorr 
example outputs. 

1 Introduction 

The problem of reconetructing a surface from scattered sam- 
ple aointa arises in many applications such as computer 
grapilica, medical imaging, and cartography. In this paper 
we consider the ouecific reconstruction uroblem in which the 
input ia a set of iample points S draw; from a smooth tmo- 
dimensional manifold F embedded in three dimensions, and 
the desired output is a triangular mesh with vertex set equal 
to S that faithfully represents F. We give a “provably cor- 
rect” combinatorial algorithm for this problem. That is, me 
give a condition on the input sample points, such that if the 
condition is met the algorithm gives guaranteed results: a 
triangular mesh of the same topology as the surface F, with 
position and surface normals within a small error tolerance. 
The algorithm relies on the well-known constructions of the 
Delaunay triangulation and the Voronoi diagram. 

This paper is an extension of previous work by Amenta, 
Bern, and Eppotein [l] on reconstructing curves in two di- 
mensions, Our previous work defined a planar graph on the 
nnmple pointo called the “crust”. The crust is the set of 
edges in the Delaunay triangulation of the sample points 
that can be enclosed by circles empty not only of sample 
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points, but also of Voronoi vertices. The crust comes with 
a guarantee: if the curve is “well-sampled”, then the crust 
contains exactly the edges between sample points adjacent 
on the curve. Our notion of me&sampled, which involves the 
medial axis of the curve, is sensitive to the local geometry. 
Hence our algorithm, unlike other algorithms for this prob- 
lem, allows highly nonuniform sampling, dense in detailed 
areas yet sparse in featureless areas. Any provably correct 
algorithm must impose some sampling density requirement, 
similar to the Nyquist limit in spectral analysis. 

The extension to three dimensions in this paper requires 
both nem algorithmic ideas and new proof techniques. Most 
notably the algorithm uses only a subset of the Voronoi ver- 
tices to remove Delaunay triangles. The algorithm picks 
only two Voronoi vertices--talled poles-per sample point: 
the farthest vertices of the point’s cell on each side of the sur- 
face. With this modification, the straightforward generaliza- 
tion of our two-dimensional algorithm now works. Ddaunay 
triaugles with circumspheres empty of poles give a piecewise- 
linear surface poiutwise convergent to F. The poles, how- 
ever, also enable further filtering on the basis of triangle nor- 
mals. Adding this filtering gives a piecewise-linear surface 
that converges to F both pointwise and in surface normals 
(and hence iu area). We believe that poles may be applica- 
ble to other algorithms as well, perhaps whenever one wishes 
to estimate a surface normal or tangent plane. 

This paper is organized as follows. Section 2 describes 
previous work on surface reconstruction. Section 3 gives 
our algorithm. Section 4 states our theoretical guarantees, 
and Section 5 sketches their proofs. Section 6 shows some 
example outputs. 

2 Previous Work 

Previous work on the reconstruction problem has been mostly 
heuristic. Only recently have researchers started publishing 
algorithms for the two-dimensional problem with provable 
properties. 

Hoppe et al. [20,21,22] brought the reconstruction prob- 
lem to the attention of the computer graphics community. 
Their algorithm computes an approximating surface-not 
interpolating but close. The algorithm estimates a tangent 
plane at each sample using the H nearest neighbors, and 
uses the distance to the plane of the closest sample point as 
a signed distance function. The zero set of this function is 
then contoured by a continuous piecewise-linear surface us- 
ing the marching cubes algorithm. A similar algorithm by 
Curless and Levoy [13] is tuned for data samples collected by 
a laser range scanner, but could be applied to the general 
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reconst.ruct.ion problem. Their algorithm sums anisotropi- 
tally weighted contribut,ions from the samples to compute a 
signed distance function, which is then discretized on voxels 
to eliminate the marching cubes step. These two algorithms 
are quite successful in practice, but have no provable guar- 
antees. Indeed dhere exist arbitrarily dense sets of samples, 
for example ones with almost collinear nearest neighbor sets, 
for which the algorithm of Hoppe et al. would fail. 

The most famous computational geometry construction 
for associating a polyhedral shape with an unorganized set 
of points is the a-shape of Edelsbrunner et al. [15,16]. Lie 
our reconstructed surface, the a-shape is a subcomplex of 
the Delaunay triangulation. A Delaunay simplex (edge, face, 
etc.) belongs to the a-shape of 5’ ifits circumsphere has ra- 
dius at most (Y. The major drawback of using cr-shapes for 
surface reconstruction is that the optimal value of (Y de- 
pends on the sampling density, which often varies over dif- 
ferent parts of the surface. For uniformly sampled surfaces, 
however, a-shapes are workable. Bernard% et al. [S] fol- 
low a-shape-based reconstruction with a clean-up phase to 
resolve sharp dihedral angles. Edelsbrunner and Raindrop 
Geomagic [14] are continuing to develop a-shape-based re- 
construction along with proprietary extensions. 

An early algorithm due to Boissonnat [lo] is related to 
ours. He proposed a “sculpt~ing” heuristic for selecting a 
subset of Delaunay tet,rahedra to represent the interior of an 
object. The heurisbic is motivated by the observation that 
“typical” Delaunay tetrahedra have circumspheres approxi- 
mating maximal empty balls centered at points of the medial 
axis; our algorithm relies on this same observation. Bois- 
sonnat’s algorithm, however, overlooks the fact that even 
dense sample sets can give Delaunay tetrahedra with cir- 
cumspheres that are arbitrarily far from the medial a&; 
indeed it is this second observation wbicb motivates our def- 
inition of poles. Goldak, Yu, Knight and Dong [19] made a 
similar oversight, asserting incorrectly that the Voronoi di- 
agram vertices asymptotically approach the medial axis as 
t,he sampling densiB goes to infinity. 

Fmally, for the two-dimensional problem there are a few 
recent algorithms with provable guarantees. Figueiredo and 
Miranda Gomes [18] prove that the Euclidean minimum 
spanning tree can be used to reconstruct uniformly sam- 
pled curves in the plane. Bernardini and Bajaj [‘i’] prove 
t,hat a-shapes also reconstruct uniformly sampled curves in 
t,he plane. Attali [3] gives yet another provably correct re- 
construction algorit,hm for uniformly sampled curves in the 
plane, using a graph in which edges are defined by empty 
regions between vertices. Our previous paper showed that 
both the crust and the P-skeleton [23] (another empty-region 
planar graph) correctly reconstruct curves even with nonuni- 
form sampling. Our two-dimensional results [l] are in this 
way st,rictly stronger than those of the other authors. 

3 Description of the Algorithm 

We start by describing the algorithm of Amenta et al. [l] 
for the problem of reconstructing curves in IEt’. Let P be 
a smoot,h (twice differentiable) curve embedded in lR2, and 
S be a set of sample points from F. Let V denote the 
vert,ices of the Voronoi diagram of S. The crclst of S cont~aius 
exact,ly t,he edges of the Delaunay triangulation of S U V 
wit.h bobh endpoints from S. Saying this another way, the 
crust contains exactly those Delaunay edges around which 
it is possible to draw a circle empty of Voronoi vertices. 
In our earlier paper, we proved that if S is a sufficiently 
dense sample, this simple algorithm constructs a polygonal 

1. 

2. 

3. 

4. 

5. 

6. 

Compute the Voronoi diagram of the sample points 5’. 

For each sample point s: 

Ifs does not lie on the convex hull of S, let p+ be 
the vertex of Vor(s) farthest from s. 

If s does lie on the convex hull of S, let p+ be 
a point at “infinite distance” outside the convex 
hull with the direction of aps equal to the average 
of the outward normals of hull faces meeting at s. 

Pick the vertex p- of Vor(s 
1 

farthest from s with 
negative projection onto ap . 

Let P denote all poles pt and p-, except those ps’s at 
infinite distance. Compute the Delaunay triangulation 
OfSUP. 

(Voronoi Filtering) Keep only those triangles in which 
all three vertices are sample points. 

(Filtering by Normal) Remove each triangle T for 
which the normal to T and the vector to the pt pole 
at a vertex of T form too large an angle (greater than 
6 for the largest-angle vertex of T, greater than 2.28 
for the other vertices of T). 

(Trimming) Orient triangles and poles (inside and out- 
side) consistently, and extract a piecewise-linear man- 
ifold without sharp dihedral angles. 

Figure 1. The surface reconstruction algorithm. 

approximation of F (Theorem 1 in Section 4 below). 
The straightforward generalisation of this algorithm fails 

for the task of reconstructing a smooth two-diiensional 
manifold embedded in three dimensions. The problem is 
that vertices of the Voronoi diagram may fall very close to 
the surface, thereby punching holes in the crust. For esam- 
ple, the Voronoi center of a sliver can lie arbitrarily close 
to the surface F. A sliver is a tetrahedron with bad aspect 
ratio yet a reasonably small circumradius to shortest edge 
ratio, such as the tetrahedron formed by four nearly equally 
spaced vertices around the equator of a sphere. 

The 6x is to consider only the poles. The poles of a oam- 
ple point s are the vertices of the Voronoi cell Vor(3) far- 
thest from s, one on each side of the surfac6. Since the algo- 
rithm does not know the surface, only the sample points, it 
chooses the poles by the method given in step 2 in Figure 1. 
Lemma 2, parts (a) and (c), in Section 5 imply that that thii 
method is correct for well-sampled surfaces. Voronoi cells of 
sample points on the convex hull of S are unbounded in the 
outwards direction; for such a point the outwards pole sim- 
ply represents a direction in which the cell is unbounded. 
Such a pole is used only to help find the sample pOhIt’G op 
posite pole and is not included in the eventual Delaunay 
triangulation. Denoting the poles by P, we define the crust 
of S to be the triangles of the Delaunay triangulation of 
S U P, ah of whose vertices are members of S. 

Steps l-4 compute the crust (sometimes called the raw 
cwst to distinguish it from the more finished versions). The 
crust has a relatively weak theoretical guarantee: it is point- 
wise convergent to F as the sampling density increases. Steps 
5 and 6 are “postprocessing” steps that produce an output 
with a stronger guarantee: convergence both pointwise and 
in surface normals, and topological equivalence. 
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Step 6 removes triangles based on the directions of their 
surface normals. Let T be e triangle of the crust end let s be 
its vertex of maximum angle. Step 5 removes T if the angle 
between the normal to T end the vector from any one of T’s 
vertices to its first-chosen pole is too large. The definition 
of “too large” depends on which vertex of T is under consid- 
eration: for the vertex with largest angle, too large means 
greater than an input parameter 0, end for the other two 
vertices it means greeter then 2.20. Angles are unsigned 
angles in the range [0,x/2]. As stated in Theorem 4, the 
choice of 0 is connected with the sampling density. If the 
user of our algorithm does not have an estimate of the sam- 
pling density (the parameter P in Definition 3 below), then 
the user can alorvly decrease 8, backing off when holes start 
to appear in the surface, similar to choosing a surface from 
the spectrum of cu-shapes [16]. 

Step 6 ensures that the reconstructed surface has the 
topology of the original surface; before this final step, the 
computed surface will resemble the original surface geomet- 
rically, but may have some extra triangles enclosing small 
bubbles end pockets. The problem once again is slivers: all 
four feces of a flat aliver may make it past steps 4 and 5. 

Step 6 first orients all triangles. Start with any sample 
point D on the convex hull of S. Call the direction to p+ et 
II the outaide end the direction to p’ the inside. Pick any 
triangle T incident to s, end define the outside side of T to 
be the one visible from points on the spt ray. Orient the 
poles of the other vertices of T to agree with this assignment. 
Orient each triangle sharing a vertex with T so that they 
agree on the orientations of their shared poles, and continue 
by breadth-first search until all poles and triangles have been 
oriented. 

Define a aharp edge to be en edge for which the cyclic 
order of triangle sides alternates between outside and inside. 
(AR we show in the proof of Theorem 4, e sharp edge indeed 
has all triangles within a small wedge. Notice that an edge 
bounding only e single triangle is necessarily e sharp edge.) 
Step 6 trims off pockets by greedily removing triangles with 
aha~p edges. Now the remaining triangles form a “quilted” 
ourfnce, in which each edge borders at least two triangles, 
with consistent orientations. Finally, Step 6 extracts the 
outside of thii quilted surface by a breadth-first search on 
triangles, 

4 Tfleoreticof Guarantees 

What sets our algorithm apart from previous algorithms are 
its theoretical &UaraUttWL We start with some definitions. 
Figure 2 gives en example of the medial axis in R2; me allow 
P to have more then one connected component. 

Definition 1. The medial axis of a manifold F embed- 
ded in Rd io the closure of the set ofpoints in Htd with more 
than one nearest neighbor on F. 

Doffnition 2. The local feature size LFS(p) et a point 
p on F IO the Euclidean distance from p to (the nearest point 
of) the medial axis. 

Doffnition 3. Set S c F is an r-sample of F ifno point 
p on F io farther than P . LFS(p) from a point of S. 

Notice that the notion of r-sample does not assume any 
global-or even local-uniformity. Further notice that to 
prove an algorithm correct, we must place some condition on 
the set of sample points S, or else the original surface could 
be any surface passing through S. Our paper on curve re- 
construction [l] proved the following theoretical guarantee. 

a 

Figure 2. The medial axis of a smooth curve. 

Theorem 1 (Amenta et al. [l]). B’S is an r-sampIe of a 
curve in lR2 for + 5.40, then the crust includes a.5 the edges 
between pairs of sample points adjacent along F. IfS is an 
r-sample for I 5 .25, then the crust includes exactly those 
edges. 

To state onr results for the three-dimensional problem, 
we must define a generalization of adjacency. Consider the 
Voronoi diagram of the sample points S. This Voronoi di- 
agram induces a cell decomposition on surface F called the 
restricted Voronoi diagram: the boundaries of the cells on F 
are simply the intersections of F with the three-dimensional 
Voronoi cell boundaries. We call a triangle with vertices 
from S a good triangle ifit is dual to a vertex of the restricted 
Voronoi diagram; good triangles are necessarily Delauney 
triangles. Our first three-dimensional result shows that good 
triangles deserve their name. To our knowledge, our proof 
of this result is the first proof that the three-dimensional 
Delauney triangulation of a sufiiciently dense set of samples 
contains e piecewise-linear surface homeomorphic to F. 

Theorem 2. IfS is an s-sample of F for r < .l, then the 
good triangles form a polyhedron homeomorp& to F. 

Our next theorem states the theoretical guarantees for 
the three-dimensional (raw) crust. 

Theorem 3. (a) If S is en r-sample for + < .l, then the 
crust includes all the good triangles. (b) US% an r-sample 
for r < .06, then the crust lies within e fattened surface 
formed by placing a ball of radius 5rLFS(q) around each 
point q E F. 

Step 5 adds another guarantee: convergence in surface 
normals. This step is indeed necessary for this guarantee, 
es the raw crust sometimes includes small skinny triangles 
with deviant surface normals. For example, the insides of 
the sausages shown on the left in Figure 11 have a sort of 
“washboard” texture due to small deviant triangles lining 
the inside curves. Finally, Step 6 adds the guarantee of 
topological equivalence. 

Theorem 4. Assume S is an r-sample and set 0 = 3~. (a) 
Let T be e triangle of the &rust and t a point on T. The 
angle between the normal to T and the normal to F at the 
point p E F closest to t measures O(r) radians. (b) For 
su%iciently small r, the trimmed &crust is homeomorphic 
to F. 
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5 Proofs 

In &is section we sketch proo& of t,he theoretical guarantees. 
We start with some terminology. At each point p E F, there 
are two tangent medial balls centered at points of the medial 
axis. The vectors from p to the centers of its medial balls 
are normal to F, and F does not intersect the interiors of 
Bhe medial balls. Since U’S(p) is at most the radius of 
the smaller medial ball, F is also confined between t,he two 
tangent balls of radius U’S(p). We call a maximal empty 
ball centered at a Voronoi vertex a Voronoi ball, and the 
Voronoi ball centered at a pole a polar ball. 

Our first lemma is rat,her basic: Lipschitz conditions for 
the LFS(p) f unc t ion and for the direction of surface normals 
(a funct,ion from F to the two-dimensional sphere). We use 
d(p, q) to denote the Euclidean distance from p to q. Angles 
are measured in radians. 

Lemma 1. (a) F or any two pointsp and q on F, ILFS(p)- 
J-wq)l I 4P, d. 04 F or any two points p and q on F with 
d(p,q) <: pmin{LFS(p), U’S(q)}, where p < l/3, the angle 
between the normals to F at p and q is at most d(p, q)/((l- 
3P)JFS(P)). 

Proof: For part (a), G’S(p) 2 l&‘(q) - d(p,q), since the 
ball of radius M’S(q) around q contains the ball of radius 
D’S(q)-d(p, q) around p and contains no point of the medial 
axis. Similarly, G’S(p) - d(p, q) 5 I;FS(q). 

For part (b), let us parametrize the line segment pq by 
length. Let p(t) denote the point on pq with parameter value 
t and let f(t) denote the nearest point to p(t) on the surface 
F. In ot.her words, f(t) is t,he point at which an expanding 
sphere centered at p(t) first touches F. Point f(t) is unique, 
because obherwise p(t) would be a point of the medial axis, 
contradicting d(p, q) < pLFS(p). 

Let n(t) denote the unit normal to F at f(t), and In’(t)1 
the magnitude of the derivative with respect to t, that is, 
the rate at which the normal turns as t grows. The change 
in normal between p and q is at most spp Id(t) which is 

at most. d(p, q) maxt In’(t)l. 
There are tangent balls of radius LFS(f(t)) on either 

side of F at f(t), so In’(t)] is at most the rate at which the 
normal turns on one of these tangent balls. Referring to 
Figure 3, we see that 

at 2 (=w(t)) - Wt), p(t)>) * siu e- 

Now sin0 approaches 8 as 0 goes to zero, so 

b’(t)l = ,eo eidt I ll(~FW@)) - dW),P(W 

We have that 

wt),P(t)) I d(p(t),p) 2 P=qP) 

and 

Wt), P) 5 W(t), p(t)) + d(P@), PI 6 2PLFS(P), 

so by Lemma 1, LFS(f(t)) 1 (1 - 2p)LFS(p). Altogether 
we obtain maxt In’(t)1 2 l/((l - 3p)LFS(p)), which yields 
t,he lemma. I 

We next show that the cells of the Voronoi diagram of 
S are long and skinny, with long direct,ion nearly normal to 
t,he surface F. Together, Lemma 2(a) and (c) below show 
t,hat the vector from a sample point to a pole gives a good 
approximation to the surface normal. This observation may 

Figure 3. Bounding In’(t)1 in terms of the radiw LW(f(t)) and 

4f(t),P(t))- 

have wider applicability than to our own surface reconntruc- 
tion algorithm; for example, the Voronoi diagram and the 
poles could be used to obtain provably reliable estimates of 
tangent planes in the algorithm of Hoppe et al. 

Lemma 2. (8) 0 n either side of F, the distance from a to 
its pole is at least MS(a). (b) The intersection of Vor(a) 
and F is contained in a baJl of radius &U’S(a). (c,) Eet v 
be a vertex of Vor(a) such that d(v, a) 2 U’S(a). The angle 
at a between the vector to v and the normal to the surface 
ia at most 2arcsi.n A. 

Proof: (a) On either side of F at a, the tangent ball of 
radius D’S(s) is empty, since it is contained in a medial ball 
at s. The center c of such a ball lies within Vor(a). So either 
Vor(a) has a vertex at distance at least U’S(a), or the pole 
on that side lies at infinity. 

(b) Let p E Vor(a) n F. Since a is the closest sample 
point to p, d(p,a) 5 rLFS(p) 5 T(LFS(a) + d(p,a)) by 
Lemma l(a). So d(p, s) 5 &AFS(a). 

(c) Let B, be the Voronoi ball centered on v. Let B, be 
the medial ball touching a on the same side of the surface 
F, and let m be its center. Let 4 be the angle between the 
segments av and am, that is, the angle referred to in the 
lemma. Let BP be the ball of radius LFS(a), tangent to F 
at a, but lying on the opposite side of F from Bm; let p be 
the center of B,,. The surface F passes between B, and BP 
at a, and does not intersect the interior of either of them, as 
shown in Figure 4. 

Since p and v lie on opposite sides of F, line segment 
pu must intersect F at least once. Let q be the inter- 
section point closest to p. No sample point can lie in ei- 
ther BP or B,, so the nearest sample point to q must be 
s. Since BP and B, each have radius at least U’S(a), 
d(q, a) 2 2 sin(4/2)6FS(a). Since S is an r-sample, d(q, a) 
must be less than &LFS(a). Combining the last two in- 
equalities, 2sin(ij/2) < &, or 4 5 2arcsin *. I 

Lemma 3. Let T be a good triangle and a its vertex with 
largest angle. (a) Th e angle between the normal to T and 
the normal to F at a is at most arcsin(&/(l--T)). (b) The 
angle between the normal to T and the normal to F at any 
other vertex ofT is at most 2r/(l-‘?‘r)+arcsin($&/(l-r)). 

Proof: For part (a), let C be the circumcircle of T and 
let pc be its radius. Consider the balls of radius G’S(a) 

42 



Figura 4. Tha vector from 8 to a distant Voronoi vertex such as 
a pole mud be nearly normal to the surface. BP, B, and B, all 
have rndiue at least 1;FS(a). 

tangent to P at D on either side of P. These balls intersect 
the plane of T in two disks of the same radius, which me 
shall denote pBO Since the balls are empty of sample points, 
the disks cannot contain the other two vertices of T. The 
other two vertices are at most distance &J away from a, 
which in turn implies that PB < &J. 

We can rewrite these radii in terms of US(a). Let u de- 
note the restricted Voronoi diagram vertex dual to T. Since 
u lies on the line through the center of C normal to the plane 
of 0, pa < d(~,s), By Lemma 2(b), d(u,s) 5 &6I’S(s), 
so altogether pi 5 &I;FS(s)/(l - 7). 

Now to find the angle between the normal to T and the 
normal to P at o, we consider one of the tangent balls B at 
a. Let m denote the center of B and v denote the center of 
the diik of radius PB that is the intersection of B with the 
plane of T, as shown in Figure 5. The segment am is normal 
to P at II and the segment mu is normal to T, so the angle 
we would like to bound is ~amv. The triangle amv is right, 
with hypotenuse of length G’S(a) and leg opposite Lamv of 
length po 4 @rU’S(a)/(l - r). Hence Lamv measures at 
moat arcoin(&/(l - T)). 

For part (b), let a’ be one of the other vertices of T. Since 
T is a good triangle, a and a’ are neighbors in the restricted 
Voronoi diagram. Let p be a point on the boundary of both 
restricted Voronoi diagram cells. Then 

SO o!(o) 0’) ,< fi min{t;FS(a), U’S(a’)). By Lemma l(b), 
the angle between the normals to F at a and a’ is at most 
2r/(l - 7r). I 

We are now ready to sketch a proof of Theorem 2: the 
good triangles form a polyhedron homeomorphic to F. The 
proof uaes a result of Edelsbrunner and Shah [17]. 

Proof of Theorem 2: It suffices [17] to shorn that S 
has the following closed-ball property: the closure of each 
k-dimensional face, 1 < Iz 5 3, of the Voronoi diagram of S 
intersects P in either the empty set or in a closed (E - l)- 
dimensional topological ball. 

Let o be a sample point and Vor(a) its Voronoi cell. Let 
the direction of the normal to F at a be vertical. Lemma 2(b) 
shows that Vb~(a)f~ F is small, fitting inside a ball B of ra- 
dius &U’S(a). Lemma l(b) then shows that F is nearly 

Figure 5. Bounding the angle between the normal to the triangle 
and the normal to the surface at s. 

horizontal throughout Vor(a) tl F, more precisely, the nor- 
mal to F is nowhere farther than t/(1 - 3~) 5 .15 radians 
from vertical. 

First consider an edge e of Vor(a), that is, the case X: = 1. 
If e has nonempty intersection with F, then e is normal 
to the good triangle T dual to its intersection point. By 
Lemma 3(b), e must be within 2r/(l-7r)+arcsin(&/(l- 
r)) radians from the normal to F at a. For r C .l, this 
expression is less than .9, so e is within .9 rad&s from 
vertical, and consequently can intersect F only once within 
B. 

Next consider a face f of fir(a), that is, the case X: = 2. 
Face f is contained in the perpendicular bisector of a and 
another sample point a’. If f intersects F, then some side of 
f must pierce F, and since such an edge can form an angle 
no greater than .9 radians with vertical, f itself lies within 
.9 radians of vertical. Nom consider a single connected com- 
ponent C of f n F. We use the curved segment C to divide 
IR? into two pieces. Let H be the set of points p in IRS \ C 
such that the line segment from p to its closest point on 
C forms an angle smaller than .2 radians with horizontal. 
Set H is thus a union of wedges with vertices on C. We 
assert that all points of F I-I B, lie either in C or in H. If 
F crossed the boundary of H other than at C, then there 
must be a point of F with normal more than .2 radians from 
the vertical. Siiarly, me assert that all points off lie in 
either C or lR3 \ H. Face f lies in a plane within .9 ra- 
dians of vertical, and mithin a strip on this plane bounded 
by lines within .9 radians of vertical. Any point within this 
strip can be connected to C by a line within .9 radians of 
vertical. Altogether, me can conclude that C is the only con- 
nected component of f n F, and of course is a topological 
l-ball. 

Finally me consider Vor(a) itself, the case L = 3. Con- 
sider any connected component C of the intersection of F 
and the Voronoi cell. We mimic the argument from the case 
k = 2, again dividing Rs into two pieces using the angle 
formed by a shortest line segment to C. Again H will be 
a union of wedges with vertices on C. Except at C itself, 
F n B, must lie inside the wedges (closer to 
whereas V&(s) must lie outside the wedges. 

horisontal), 
I 

Next me give a proof of Theorem 3(a): the crust con- 
tains all the good triangles. The intuition behind this proof 
is that restricted Voronoi cells are small and poles are far 
away, so that the ball centered at a vertex Y of the restricted 
Voronoi diagram, passing through the three sample points 
whose cells meet at B, must be empty of poles. 
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Figure 6. (a) The Delaunay ball BT of a triangle intersecting the spindle must contain a big patch of surface F. (b) Spindles of onmplc 
points fuse so that all triangles must lie close to F. 

Proof of Theorem 3(a): Let T be a triangle duaS to 
a vertex ZL of the restricted Voronoi diagram. Consider the 
ball B, centered on u with boundary passing through the 
vertices of T. Since T is a Delaunay triangle, B, contains 
no point of S in its interior. Since S is an r-sample of F 
for T < 1, the radius of B,, is less than TLFS(U). By the 
definit,ion of LFS, even the larger ball Bk of radius LFS(zc) 
centered on u cannot contain a point of the medial axis. 

Now assume that B, contains a pole ‘u of a sample point 
s. We will show that under t,his assumption the polar ball B, 
must be contained in Bk, and that B, must contain a point 
of the medial axis, thereby giving a contradiction. Let B,,, 
be the medial ball with center m, tangent to F at s on the 
same side of F as v; this ball has radius at least LFS(s). By 
Lemma 2(c), Lmsv measures at most 2 arcsin(7/2), which is 
less ahan .12 for T 5 .I. An easy calculation shows that B, 
must contain the medial axis point m. 

Since v lies in B,, the radius of B, is no greater than 
the distance from v to t,he nearest vertex of T, which is 
%LFS(U) since S is an +sample. Since d(‘l~, v) 4 TLFS(U), 
ball B, lies entirely within BL since 3rLFS(u) 5 LFS(z&). I 

We now move on to the proof of Theorem 3(b). Let 3 be 
a sample point and v a pole of s. We shall define a forbidden 
region inside polar ball B,, which cannot be penetrated by 
large crust briangles. 

Let Bk be the ball of radius LFS(s) tangent to F at s, 
on the same side of F as v, and let Bg be the tangent ball 
of radius LFS(s) on the opposite side of F from v. Surface 
F must lie between these two balk, since these balls are 
contained in medial balls at s. Let B be the ball concentric 
wit,h B& with radius (l-+)LFS(s), as shown in Figure 6(a). 
Notice that Lemma 2(a) shows that the radius of B,, is at 
least that of B. 

Definition 4. The reflection of a point t through BV is 
the point t’ along ray vt such fhat line segment tt’ is divided 
into equal halves by the boundary of B,. The spindle of s 
is (t E B, [ segment tt’ intersects B}, that is, aI.f points in 
B, whose reflection lies in or beyond B. 

The spindle is shaded in Figure 6(a). Our plan is to 
confine large crust triangles between the union of spindles 

on each side of F as shown in Figure 6(b). (Small crust 
triangles lie within the fattened surface simply due to their 
size.) We start by proving two lemmas about spindlco: they 
are indeed forbidden regions, and they have relatively “fiat” 
bottoms, meaning that their width does not shrinlr with r. 

B” 
H 

:..y 

(iii!3 

‘kp 
t.. . ” w . . . . . ,......~ 
:t 
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Figure 7. (a) BT must contain reflectionpoint t’. (b) The family 
of possible BT circles. 

Lemma 4. Assume T 5 .06. No crust triangle T whose 
Delaunay ball BT has radius greater than SrLFS(a) can 
penetrate the spindle of s. 

Proof: Assume t is a point inside B, on a crust triangle 
T with Delaunay ball BT; We first assert that B-J contains 
the reflection point t’. Let II be the plane containing the 
intersection of the boundaries of B, and BT. Since the ver- 
tices of T lie on BT outside B,, T must be contained in the 
closed halfspace bounded by H not containing v. WC may 
assume that t lies on H, since this is the worst case for our 
assertion. 

Now consider any plane containing line vt. Balls B, and 
BT intersect this plane in circles and plane H interoecta in 
a line containing the mutual chord of these circles, as shown 
in Figure 7(a). W e may assume that ball BT passes through 
v, for this situation is again the worst case. 

Assume w.1.o.g. that the cross-section of B, is the unit 
circle with center v = (0,l). Let t = (O,?J~). Denote the 
center and radius of BT’S cross-section by (ZE, 7~) and p. Since 
t lies along the mutual chord, it has equal “power distance” 
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to (0,l) and (qy): 

(1 - ?Jt)2 - 1 = 2 + (g - y*)l - p”. 

Substituting (1 - y)’ for p’ - z’, we obtain 

l/t2 -2?Jt = (II- d2 - (1 - d2, 

which simplifies to y = (1 - 2yt)/(2 - 2yt). Thus the centers 
of all poosible .& circles lie on the same horizontal line, as 
ahown in Figure 7(b). 

Any & paooes through the reflection of (0,l) across the 
horizontal line, the point (0, (1 - 2yt)/(l- yt) - 1). For any 
value of v1 < 1, (1 - 2yt)/(l- yt) - 1 < -y:, 50 BT contains 
t’ = (0, y/t). 

Thus if the original point t lies within the spindle of a, 
then .& must intersect B. Since F is confined between 
B;I; and B&, thii statement implies that BT intersects F. 
In fact, a short calculation using the assumption that the 
radius of BT in greater than SPU’S(S) reveals that BT must 
intersect F in a patch large enough that it must contain a 
aample point in its interior, a contradiction to BT being a 
Delaunay ball. I 

The next lemma shows that spindles have flat bottoms. 
In thii lemma we assume that B and B, have equal radius. 
It io not hard to confirm that this assumption is worst case: 
a larger B, just gives a larger, flatter spindle. 

Lemma G. Assume that B and B, are unit balk, and that 
the dhtance between them is at most b 5 .06. Let t be a 
point outside B and outside the spindle induced by B in Bo. 
Let p be the cloeest point on B to t. IflLompl, the measure 
of Lompin radians, isless than .20, then d(t,p) 5 b+lLompj. 

Proof: Assume v has coordinates (0,l). The worst case 
for the lemma occurs when b assumes its maximum value, 
as larger 6 means a higher and narrower spindle, thereby 
maximizing d(t,p) relative to b+ I~ompl. So assume m has 
coordinates (0, -1.00). 

Draw the ,%O-radian ray with origin m and the .32-radian 
ray with origin v as shown in Figure 6. The rays intersect at 
a point o with coordinates about (.259, .218). By computing 
the dintanceo to the boundaries of B,, and B along ray VZ, 
we can confirm that z lies inside the spindle. Thus the 
boundary of the spindle lies below z on the .20-radian ray 
with origin rn. Assume t and p are as stated in the lemma, 
and Idomp = 

I 
.20. The distance from z to m is less than 

1.2G2, ao d t,p) - 6 < ,192 ,< ILompl. Since d(t,p) increases 
ever more rapidly a8 ILompl increases, this inequality also 
applies to points t and p such that ILompl < .20 as well. I 

We are now in a position to finish the proof of the theo- 
rem: all cruet triangles lie within the fattened surface formed 
by placing a ball of radius STI;FS(Q) around each point 
‘1 E F. 

Proof of Theorem 3(b): Let BT be the Delaunay ball 
of the crust triangle containing point t. Let a be the sample 
point nearcot t. If BT has radius less than 5rU’S(a), then 
there ia nothing to prove, since a itself could be the q of the 
theorem. 

So wume BT has radius at least ~TLFS(S). Let B,, BG, 
and B be the polar ball of a, the opposite medial axis ball, 
and the concentric ball with radius reduced by r&ES(a) asin 
Figure 9. Let o and o’ be the points of lune BG CI B, closest 
to the centers of B, and B,, respectively. Surface F could 
paao through the point o’, and ifit did, a would necessarily 

Figure 8. The spindle curves gradually, so t must be close to B. 

be the closest sample point to o’, since BE and B, are both 
empty. Hence by Lemma 2(b), d(a,o’) 5 ~U??(a)/(l - r). 
Since B, has radius at least that of BG, d(a,o) 5 d(a,o’). 

Let p and p’ be the closest points to t on B and BG, 
respectively, and let Q be the point of F on line pt closest 
to t. Hence d(t, q) 5 d@, t). By an argument analogous to 
that used for o’, d(s,p’) 2 rl;FS(a)/(l - T), and so by the 
triangle inequality, d(o,p’) 5 Srl;FS(a)/(l-r). So Lamp’ s 
2 arcsiu(r/(l-T)), which for T < .06, is less than .20 radians. 
The set-up satisfies the hypotheses of Lemma 5, only with 
radii scaled by (1 - t)U’S(s). 

By Lemma 4, t must lie between the spindle and Bm. 
Applying Lemma 5, 

d(t,p) 5 rl;FS(a) + ILompl(l - t)LJ’S(a). 

We nom use the fact that ILompl 6 2arcsin(r/(l -T)) 5 3t, 
to obtain 

d(t,p) 5 rLFS(a) + 3r(l- T)US(S) 5 4rQ’S(s). 

Finally, d(a, n) 5 rM’S(a)/(l - r), so 

I;FS(q) 1 (1 - 2r)LFS(a)/(l- r), 

aud hence 5~6FS(q) 2 d(t,p) > d&q). I 

, 

Figure 9. Crust point t must be near surf&e point q. 

Let T be a triangle of the &crust, with 0 = 3~, and let 
t be a point on T. Theorem 4, part (a), states that for the 
angle between the normal to T and the normal to F at the 
point p E F closest to t measures O(r) radians. Part (b) 
states that for sufEciently small f, the trimmed &crust is 
homeomorphic to F. 
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Proof of Theorem 4: We first prove that the (untrimmed) 
Q-crust contains all the good t,riangles, so that we do not 
lose the guarantees of the raw crust. Theorem 3(a) shows 
t,hat t,he crust contains all the good triangles, so we need 
only show that each good triangle passes the filtering-by- 
normal step. Let T be a good triangle and s its vertex of 
maximum angle. By Lemma 3(a), the angle between the 
normal to T and the normal to F at s measures at most 
arc&(&&/(1 - 7)) radians. By Lemma 2(c), the angle be- 
tween 6he pole vector at s and the normal to F at s mea- 
sures at most 2arcsin(r/%). Combining these two bounds, 
the angle between the normal to 2’ and either pole vector 
at s must be less than 3r = 8. Siiarly, Lemmas 3(b) 
and 2(c) combine to show that the angle between the nor- 
mal to T and the pole angle at any other vertex of 2’ is 
at most 2arcsin(r/2) + 2r/(l - 7~) + arcsin(&/(l - 5.)) 
radians, which is less than 6.67 = 2.28. 

We next prove that at each sample point s, the normals 
to incident e-crust triangles do not deviate by more than 
O(T) radians from bhe normal to F. This statement follows 
from the fact that Step 5 of Bhe algorithm removes each bri- 
angle around s whose normal forms an angle larger than 6.6~ 
with t,he vector to the pole. By Lemma 2(c), the pole vec- 
tor deviates from the normal to F by at most 2 arcsin(s/%), 
which is less t,han 1.17 for T 5 .06. 

Now let t be any point on a O-crust triangle T, and let p 
be the closest point on F to T. By Theorem 3(b), d(t,p) 2 
&US(p). We next prove t,hat the normal to T does not 
deviate by more than O(T) radians from the normal to F 
at p. If t is less t,ha.n distance U’S(s)/4 from a vertex s of 
T, t,hen combining t,he bounds from Lemmas l(b) and 3(b) 
establishes the result. If t is not close to any vertex of T, 
then we use an argument related to our spindle argument 
above. Let BT be t,he Delaunay ball of T, and s and s’ be 
two verBices of T at least U?!?(s)/3 apart. Since BT is fairly 
large with respect to both U’S(s) and LFS(s’), the vectors 
from s and s’ to the center v of BT deviate only slightly 
(linearly in 7) from the normals to F at s and s’. Since 
t,hese surface normals in turn deviate only slightly (again 
linearly in T) from the normal to T, as T shrinks the vectors 
from s and s’ to v become nearly parallel, By picking T 
sufficiently small, we force the boundary of BT to be very 
close to t and parallel to T. Now consider the medial balls, 
which have radius at least U’S(p), on either side of F at 
p. As in the proof of Lemma 4, F is confined between these 
medial balls. If the normal to F at p were not nearly parallel 
to the normal to T, then F would be forced to penetrate BT 
in a large patch (a constant tyimes IiFS(p F cannot avoid 
BT since its curvature is bounded by Lemma l(b). Thus we 
can conclude that Theorem 4(a) holds. 

For part (b), we must show that the trimming operation 
(Step 6) produces a set of triangles wit,h the same topology 
as the good triangles. Let s be a sample point, and assume 
the normal to F at s is vert,ical. Step 5 ensures that for 
T 2 .06, all triangles around s remaining after Step 5 have 
normals within .5 radians of vertical. By Lemma 2(c), the 
vector from s to one of its poles is within .2 radians of ver- 
tical. Since the sum of .5 and .2 is bounded below a/2, the 
vertex-to&angle breadth-first-search in Step 6 orients tri- 
angles consistent,ly: the orientat,ions do not depend on the 
actual search order, and at each vertex they agree with an 
orientation of F. 

Sharp edges are exactly those edges at which a walk on 
the t,riangles can cross from an outside side to an inside 
side without piercing a t,riangle. After all triangles with 
sharp edges have been removed, all walks along the remain- 

ing triangles must run along either only inside or only out- 
side sides. 

Consider the mapping that takes each point of space to 
its closest point on F. We claim that this mapping is a 
homeomorphism. By Theorem 4(a) each triangle is nearly 
parallel to F, so the map is one-to-one on each triangle. 
Because the triangles are consistently oriented, points on 
two different triangles cannot map to the same point on 
F. I 

Figure 10. A reconstructed minimal surface along with the p&o 
ofsamplepoints. The crust containsexactly the ori~al triangles. 
(Sample points courtesy of Hugues Hoppe) 

6 Implementation and Examples 

Manolis Kamvysselis, an undergraduate from MIT, imple- 
mented steps l-4 of the crust algorithm during a summer 
at Xerox PARC. We used Clarkson’s H~l2 program [12] for 
Delaunay triangulation, and Geomwa’ew [24] to visualize and 
print the results. We used vertices from pre-existing poly- 
hedral models as inputs, in order to compare our results 
with “ground truth”. A companion paper [2] reports on our 
experimental findings. 

The only tricky part of the implementation was the hnn- 
dling of degeneracies and near degeneracies. Our test ex- 
amples, many of which started from approximately gridded 
sample points, included numerous quadruples of points sup- 
porting slivers. Kamvysselis incorporated an explicit tol- 
erance parameter E; the circumcenter of quadruples within 
E of cocircularity was computed by simply computing the 
circumcenter of a subset of three. This “hack” did not nf- 
feet the overall algorithm, as these centers were never poles. 
Running time was only a little more than the time for two 
three-dimensional Delaunay triangulations. Notice that the 
Delaunay triangulation in step 3 involves at most three times 
the original number of vertices. 

Figure 10 shows an especially advantageous example for 
our algorithm, a well-spaced point set on a smooth surface. 
Even though our algorithm is not designed for surfaces with 
boundary, it achieves perfect reconstruction on this exam- 
ple. Of course, the trimming step should not be used in 
reconstructing a surface with boundary. 
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Figure 12, (n) The pig sample set contains 3611 points. (b) A close-up of the front feet shows an effect of undersampling. (Sample points 
courtesy of Tim Baker) 

Figure 11. The raw crust contains some extra triangles linking 
the aausogeo; this defect is corrected by step 6. (Sample points 
courtesy of Paul Heckbert) 

Figure 11 shows an effect of undersampling. (We say 
we have undesvampled if the sample set is not an r-sample 
for a sufficiently small 7.) In this example, the ram crust 
contains all the good triangles, along with some extra trlan- 
glea. The extra triangles turn separated sausages into link 
sausages, and as mentioned above roughen the inside sur- 
faces of the sausages. Both of these defects are corrected 
by step 6, filtering by normals. Figure 12 shows another 
effect of undersampling: missing triangles around the chest 
and hooves. Some sample points are not “opposed” by sam- 
plea on the other side of these roughly cylindrical surfaces; 
hence Voronoi cells extend too far and poles filter out some 
good triangles, An T-sample for a sufficiently small T would 
be very dense near the hooves, which include some rather 
sharp corners. 

7 Concluoions end Future Work 

In thii paper we have given an algorithm for reconstruct- 
ing an interpolating surface from sample points in three di- 
mensions, The algorithm is simple enough to analyze, easy 
enough to implement, and practical enough for actual use. 

Our previous paper [l] gave two provably good algo- 
rithms for reconstructing curves in two dimensions, one us- 
ing Voronoi Altering as in this paper, and the other using the 

@keleton. It is interesting to ask whether the P-skeleton 
can be generalized to the problem of surface reconstruction. 
(We know that the most straightforward generalization of 
the p-skeleton does not work.) 

Another interesting question concerns the generalization 
of Voronoi filtering to higher dimensions. Hanifafold leern- 
ing is the problem of reconstructing a smooth A-dimensional 
manifold embedded in ntd. This problem arises in model- 
ing uuknown dynamical systems from experimental obser- 
vations [ll]. Even if Voronoi filtering can be generalized 
to this problem, its mnning time for the important case in 
which I; << d would not be competitive with algorithms that 
compute triangulations only in H-dimensional subspaces [ll], 
rather than ln IRd. 

Along with the two theoretical open questions outlined 
above, there are several quite practical directions for further 
research on onr algorithms. What is the empirical maximum 
value of r for which our algorithm gives reliable results? We 
believe that the value of r 5 .06 in Theorem 3 is much 
smaller than necessary. Is the crust useful in simplification 
and compression of polyhedra? Can the crust be extended 
to inputs with creases and corners, such as machine parts? 
Can the crust be modified for the problem of reconstruction 
from cross-sections, in which the input is more structured 
than scattered points? 
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