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FULL RANK TILINGS OF FINITE ABELIAN GROUPS∗

MICHAEL DINITZ†

Abstract. A tiling of a finite abelian group G is a pair (V,A) of subsets of G such that 0 is in
both V and A and every g ∈ G can be uniquely written as g = v + a with v ∈ V and a ∈ A. Tilings
are a special case of normed factorizations, a type of factorization by subsets that was introduced
by Hajós [Casopsis Pĕst Path. Rys., 74, (1949), pp. 157–162]. A tiling is said to be full rank if
both V and A generate G. Cohen, Litsyn, Vardy, and Zémor [SIAM J. Discrete Math., 9 (1996),
pp. 393–412] proved that any tiling of Z

n
2 can be decomposed into full rank and trivial tilings. We

generalize this decomposition from Z
n
2 to all finite abelian groups. We also show how to generate

larger full rank tilings from smaller ones, and give two sufficient conditions for a group to admit a
full rank tiling, showing that many groups do admit them. In particular, we prove that if p ≥ 5 is a
prime and n ≥ 4, then Z

n
p admits a full rank tiling. This bound on n is tight for 5 ≤ p ≤ 11, and is

conjectured to be tight for all primes p.
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1. Introduction. Throughout this paper G is a finite abelian group. A fac-
torization of G is a collection (A1, . . . , Ak) of subsets such that every g ∈ G can be
uniquely represented as a1 + · · · + ak, where ai ∈ Ai. A factorization is normed if
every subset in the factorization contains 0. A tiling is a special case of a normed
factorization in which there are only two subsets (usually denoted V and A rather
than A1 and A2). Any subset V for which there exists a subset A such that (V,A) is
a tiling of G is called a tile of G. Cohen, Litsyn, Vardy, and Zémor first introduced
this definition of a tiling in 1996 for the special case of tilings of Z

n
2 in [2], but it

extends perfectly well to arbitrary finite abelian groups. Before then, there was no
separate term for a normed factorization into two subsets, despite the fact that they
had been studied by Hajós [7], Rédei [14], Sands [16], and others. The term “tiling”
was a natural choice since all of [2] is phrased in terms of F

n
2 rather than Z

n
2 and a

tiling of a vector space is a natural concept. In particular, tilings of the Euclidean
space R

n have been studied extensively (see [15, 18]). But since tilings do not depend
on multiplicative structure, F

n
2 is identical to Z

n
2 with respect to tilings, and hence it

suffices to look at finite abelian groups rather than vector spaces over finite fields.
The study of factorizations of finite abelian groups by subsets was introduced by

Hajós in 1941 [6] as a tool to prove a conjecture on homogenous linear forms posed by
Minkowski. Hajós then began to study a certain type of factorization which he called
periodic (see [7]). A subset A ⊆ G is periodic if there is some nonidentity element
g ∈ G such that g+A = A and a periodic factorization is a factorization in which one
of the subsets is periodic. Hajós asked for which groups G any factorization into two
subsets G = A+B necessarily has either A or B periodic. This question was eventually
solved by Sands [16] after major contributions from de Bruijn [3] and Rédei [14].
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A group G possesses the Rédei property if in every tiling (V,A) of G either V or
A is contained in a proper subgroup of G. The question of which groups possess the
Rédei property has been investigated since 1979, when Rédei [14] conjectured that
Z

3
p has the Rédei property for all primes p. If G does not possess the Rédei property

then there is some tiling (V,A) of G in which 〈V 〉 = 〈A〉 = G, where 〈S〉 denotes
the subgroup generated by S for any S ⊆ G. These tilings are said to be full rank
[2]. Note that having the Rédei property is equivalent to not admitting a full rank
tiling. Sands [17] asked whether every group has the Rédei property, which was shown
not to be the case by Fraser and Gordon [5], who used results from coding theory to
construct a full rank tiling of Z

6
5 as a counterexample.

Until recently the only motivation for studying full rank tilings was to find out
which groups had the Rédei property. Then in 1996 Cohen, Litsyn, Vardy, and Zémor
[2] found that any tiling of Z

n
2 can be decomposed into full rank tilings and trivial

tilings (a tiling is trivial if one of V or A is Z
n
2 and the other is just the zero vector).

This provided extra motivation for studying which elementary 2-groups (groups of
the form Z

n
2 ) admit full rank tilings (or equivalently do not have the Rédei property).

Cohen, Litsyn, Vardy, and Zémor [2] showed that there do not exist full rank tilings
of Z

n
2 when n ≤ 7 and that there do exist full rank tilings of Z

n
2 when n ≥ 112.

Etzion and Vardy [4] then constructed full rank tilings for n ≥ 14 using techniques
that, together with unpublished work of LeVan and Phelps, were used to construct
full rank tilings when n ≥ 10. Trachtenberg and Vardy then proved that Z

8
2 does not

admit a full rank tiling [24], and the question of full rank tilings of Z
n
2 was resolved

when Östergard and Vardy [9] showed that Z
9
2 does not admit a full rank tiling.

All of the work done on full rank tilings of Z
n
2 was actually done in terms of F

n
2 ,

since the authors were approaching the problem from a coding theory perspective
and were apparently not aware of much of the work done on the Rédei property or
the connection of full rank tilings to it.

It is interesting to note that work on full rank tilings of F
n
2 and work on the

Rédei property have proceeded almost independently. In the paper which started
work on tilings of F

n
2 , Cohen, Litsyn, Vardy, and Zémor [2] reference the work of

Hajós on periodic factorizations but do not reference any of the work done on the
Rédei property, and neither do any of the papers mentioned above that extend the
work of [2]. The only exception to this is a paper by Szabó and Ward [21] in which
they reference work done on the Rédei property to prove the existence of full rank
tilings of F

n
2 for n ≥ 14.

We begin in section 2 by generalizing the decomposition of Cohen, Litsyn, Vardy,
and Zémor [2, section 6] from Z

n
2 to arbitrary finite abelian groups. Then in section 3

we generalize a construction of Etzion and Vardy [4, section 5] and Szabó and Ward
[21, Lemma 1] to create a full rank tiling of a group from a full rank tiling of one of
its direct factors. Using this we devise two sufficient conditions for a group to admit
a full rank tiling, showing that many groups admit them. The first condition states
a group admits a full rank tiling if it contains as a direct factor a subgroup of the
type Za × Zb × Zc with a, b, and c composite. This is based on work done by Szabó
in [19]. Then in section 4 we extend the work done for Z

n
2 by showing that any group

containing Z
n
p with p ≥ 5 prime and n = 4 as a direct factor admits a full rank tiling.

Thus, there exists a full rank tiling of Z
n
p if p ≥ 5 is prime and n ≥ 4. A conjecture of

Rédei [14] implies that this is tight for all primes. This conjecture has been verified
for primes less than or equal to 11 by Szabó and Ward [22], which completely solves
the question of whether there exist full rank tilings of Z

n
p when p is 5, 7, or 11. We

conclude by discussing some remaining open problems on tilings.
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2. Decomposition of tilings. In this section we study how tilings of arbitrary
finite abelian groups can be recursively decomposed, generalizing some of the work
done in [2] for Z

n
2 . We first develop a certain characterization of tilings which will

prove particularly useful. The notation V − V denotes {v1 − v2 : v1, v2 ∈ V }.
Proposition 1. Let V,A ⊆ G with 0 ∈ V and 0 ∈ A. Then (V,A) is a tiling of

G if and only if (V − V ) ∩ (A−A) = {0} and |V ||A| = |G|.
Proof. Suppose that (V − V ) ∩ (A − A) = {0} and |V ||A| = |G|. Assume that

v1 + a1 = v2 + a2. Then v1 − v2 = a2 − a1 = 0, so v1 = v2 and a1 = a2, and thus the
representation of each element of V + A is unique. Since |V ||A| = |G|, we have that
V + A = G and thus (V,A) is a tiling of G.

Now let (V,A) be a tiling of G, and suppose that (V −V )∩ (A−A) 	= {0}. Then
there exist distinct elements v1 and v2 in V and a1 and a2 in A such that v1 − v2 =
a1−a2, and so v1+a2 = v2+a1. Thus (V,A) is not a tiling. If (V −V )∩(A−A) = {0}
and |V ||A| 	= |G|, then clearly |V ||A| < |G| so some element of G is not in V +A and
thus (V,A) is not a tiling.

Note that the |V ||A| = |G| condition can be replaced with the condition V +A = G
if needed. To motivate our discussion of full rank tilings, we give one reason why the
subgroup generated by a tile is of interest.

Proposition 2. A subset V ⊆ G is a tile of G if and only if it is a tile of 〈V 〉.
Proof. Suppose that V is a tile of 〈V 〉. Since 〈V 〉 is a subgroup of G it is clearly

a tile of G. Let (〈V 〉, A1) be a tiling of G and let (V,A0) be a tiling of 〈V 〉. Then
clearly (V,A0 + A1) is a tiling of G.

Suppose that (V,A) is a tiling of G. Let A0 = A ∩ 〈V 〉. Since A0 ⊆ A and
(V − V ) ∩ (A − A) = {0}, we have that (V − V ) ∩ (A0 − A0) = {0}. Clearly
V + A0 ⊆ 〈V 〉. Since 〈V 〉 ⊆ G = V + A, any w ∈ 〈V 〉 can be written as w = v + a
with v ∈ V and a ∈ A. Then a = w− v ∈ 〈V 〉 since 〈V 〉 is a subgroup, and so a ∈ A0.
Hence 〈V 〉 ⊆ V + A0, so V + A0 = 〈V 〉 and thus (V,A0) is a tiling of 〈V 〉.

Because of this proposition we are naturally interested in tilings (V,A) in which
〈V 〉 = G. Tilings with this property are called proper tilings, a term devised by Cohen,
Litsyn, Vardy, and Zémor [2] that was originally used only for tilings of Z

n
2 . The

following theorem is a generalization to arbitrary finite abelian groups of Theorem 6.2
in [2], the original decomposition showing that every tiling of Z

n
2 can be decomposed

into proper tilings of its subgroups. This generalization shows that the classification
of all tilings of G can be reduced to the study of all proper tilings of the subgroups
of G.

Theorem 3. Let V be a tile of G with 〈V 〉 	= G. Let z = |G|/|V |, and let
m = |G|/|〈V 〉|. The pair (V,A) is a tiling of G if and only if A has the following
form:

1. For i = 0, 1, . . . ,m− 1, let Ai ⊂ 〈V 〉 be such that (V,Ai) is a tiling of 〈V 〉.
2. Let c0 = 0, c1, . . . , cm−1 be a set of coset representatives for G/〈V 〉.

Then

A = A0 ∪ (c1 + A1) ∪ · · · ∪ (cm−1 + Am−1).(1)

Proof. Suppose that A is as in (1). Then |Ai| = z/m so |A| = z and |V ||A| = |G|.
So we just need to show that (V − V ) ∩ (A − A) = {0}. Note that any element of
A−A has one of the following forms:

1. (ci + ai) − (ci + ai) = 0,
2. (ci + ai1) − (ci + ai2) = ai1 − ai2, or
3. (ci + ai) − (cj + aj), for i 	= j,
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where ai, ai1, ai2, aj ∈ A. Let U denote the set of elements of type 2, and let W denote
the set of elements of type 3. Clearly any element of U is also an element of some
Ai −Ai, so since (V −V )∩ (Ai −Ai) = {0} for all i we have that (V −V )∩U = {0}.
Since ci − cj 	∈ 〈V 〉 for all i 	= j and Ai ⊂ 〈V 〉 for all i, it follows that 〈V 〉 and W are
disjoint, so (V − V ) ∩W = ∅ and hence (V,A) is a tiling of G.

Now let (V,A) be a tiling of G. Pick a set of representatives c0 = 0, c1, . . . , cm−1

of G/〈V 〉 and let Ai = −ci+(A∩(ci+〈V 〉)). We start by showing that we can always
pick representatives of G/〈V 〉 so that 0 ∈ Ai for all i. If 0 	∈ Ai for some i, then let
ai ∈ Ai and let c′i = ai + ci. Note that c′i represents the same coset of 〈V 〉 as ci since
ai ∈ Ai ⊂ 〈V 〉. If we let A′

i be the set we get by replacing ci with c′i in the definition
of Ai, then we get that A′

i = −ai − ci + (A ∩ (ai + ci + 〈V 〉)) = −ai + Ai. Together
with the fact that ai ∈ Ai, this gives us that 0 ∈ A′

i, so we could have simply started
with c′i instead of ci. Thus we can assume the 0 ∈ Ai for all i.

We have that ci + Ai = A ∩ (ci + 〈V 〉), so

m−1⋃
i=0

(ci + Ai) =

m−1⋃
i=0

(A ∩ (ci + 〈V 〉)) = A.(2)

Now we need to show that (V,Ai) is a tiling of 〈V 〉 for all i. Any element of Ai is
of the form −ci+a, so any element of Ai−Ai is of the form a1−a2. So Ai−Ai ⊆ A−A
and thus (Ai − Ai) ∩ (V − V ) = {0}. Note that Ai ⊂ 〈V 〉, so V + Ai ⊆ 〈V 〉. Thus
to establish that (V,Ai) is a tiling of 〈V 〉, it remains to show that |Ai| = z/m. Since
(V − V ) ∩ (Ai − Ai) = {0} and V + Ai ⊆ 〈V 〉, we obviously have that |Ai| ≤ z/m.

However, z = |A| ≤
∑m−1

i=0 |Ai| by (2), so |Ai| = z/m for all i.
Theorem 3 implies that if all of the proper tilings of the subgroups of G are

known, then we can construct all the tilings of G. However, proper tilings can be
decomposed further by simply switching the roles of V and A. Suppose that (V,A) is
a (proper) tiling of 〈V 〉, and consider the tiling (A, V ). Unless 〈A〉 = 〈V 〉 this tiling
is not proper, so by the above theorem

V = V0 ∪ (c1 + V1) ∪ · · · ∪ (cm−1 + Vm−1),(3)

where (A, Vi) is a proper tiling of 〈A〉 for all i and the elements 0, c1, . . . , cm are
representatives of 〈V 〉/〈A〉. So by using (3), each of the tilings (V,Ai) of Theorem 3
can be decomposed into tilings of subgroups unless 〈V 〉 = 〈Ai〉. This process can be
iterated until the remaining tilings are either trivial or of full rank. So any tiling can
be decomposed into full rank and trivial tilings of its subgroups.

We can, however, decompose full rank tilings even further, into nonperiodic full
rank tilings. For any subset A ⊆ G, let A0 = {g ∈ G : g + A = A} denote the set of
periodic points of A. By definition A0 = {0} if and only if A is nonperiodic. In the
literature A0 is sometimes referred to as the kernel of A (see [1, 10, 12]), particularly
in regard to tilings derived from codes. Note that if 0 ∈ A, then A0 ⊆ A. The
following proposition is rather obvious, first appearing in terms of codes over GF(2)
[1], but can easily be generalized to finite abelian groups.

Proposition 4. If 0 ∈ A, then A0 is a subgroup of G contained in A and A is
the union of disjoint cosets of A0.

Proof. Let a1, a2 ∈ A0. Then (a1 + a2) + A = a1 + (a2 + A) = a1 + A = A, so
a1 + a2 ∈ A0. Since every a ∈ A0 has some finite order this implies that −a ∈ A0 and
thus A0 is a subgroup of G. Now let a ∈ A. Then a + A0 ∈ A by the definition of
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A0, so A is the union of cosets of A0. These cosets are clearly disjoint since A0 is a
subgroup of G, proving the proposition.

If A′ ⊆ A is a set of representatives for A/A0, then it follows from this proposition
that A′ + A0 = A. Now we show how to reduce tilings by the kernel of one of the
subsets.

Theorem 5. Let (V,A) be a tiling of G, and let A0 be the kernel of A. Then
(V/A0, A/A0) is a tiling of G/A0.

Proof. Let ϕ : G → G/A0 be the natural homomorphism. Suppose that the
restriction of ϕ to V (which takes V to V/A0) is not one-to-one. Then there exist
distinct elements v1 and v2 in V such that ϕ(v1) = ϕ(v2) = v′ +A0. So ϕ(v1 − v2) =
ϕ(v1)− ϕ(v2) = (v′ +A0)− (v′ +A0) = A0, which implies that v1 − v2 ∈ A0. This is
a contradiction since A0 ⊆ A and (V −V )∩ (A−A) = {0}. Hence |V/A0| = |V |, and
thus |V/A0| · |A/A0| = |G/A0|.

Suppose that there exist distinct elements v′1 and v′2 in V/A0 and a′1 and a′2
in A/A0 such that v′1 − v′2 = a′1 − a′2. Then there exist v1, v2 ∈ V, v1 	= v2 and
a1, a2 ∈ A, a1 	= a2 such that (v1 − v2) + A0 = (a1 − a2) + A0. So there is some
a0 ∈ A0 such that v1 − v2 = a1 − a2 + a0, and since a0 ∈ A0 this implies that
there is some a3 ∈ A such that v1 − v2 = a1 − a3, which is a contradiction since
(V − V ) ∩ (A−A) = {0}. Thus (V/A0, A/A0) is a tiling of G/A0.

Proposition 6. If (V,A) is a full rank tiling of G, then (V/A0, A/A0) is a full
rank tiling of G/A0.

Proof. We know from Theorem 5 that (V/A0, A/A0) is a tiling of G/A0, so we
just need to show that it is full rank. Let w + A0 ∈ G/A0. Since 〈V 〉 = G, there
are v1, . . . , vk ∈ V , not necessarily distinct, such that v1 + · · · + vk = w. Then
(v1 +A0)+ · · ·+(vk +A0) = w+A0. Hence 〈V/A0〉 = G/A0. By the same argument,
〈A/A0〉 = G/A0, so (V/A0, A/A0) is a full rank tiling of G/A0.

The following propositions concern the periodicity of the tiling resulting from this
decomposition.

Proposition 7. A/A0 is nonperiodic.
Proof. Let a be a periodic point of A/A0, and let A′ be a set of representatives for

A/A0 including 0. Let c + A0 represent a, where c ∈ A′. Then clearly c is a periodic
point of A and so is an element of A0. However, A′ ∩ A0 = {0}, and hence c = 0, so
a = 0.

Proposition 8. V/A0 is periodic if V is periodic.
Proof. Let v0 be a nonzero periodic point of V . Then since v0 + v ∈ V for any

v ∈ V , we have that ϕ(v0) +ϕ(v) ∈ ϕ(V ), so ϕ(v0) is a periodic point of V/A0. From
the proof of Theorem 5 we know that |V | = |V/A0|, so ϕ(v0) 	= 0 and thus V/A0 is
periodic.

By Proposition 8, after an application of Theorem 5 we can switch V/A0 and
A/A0 and apply it again. Since at each iteration one of the subsets loses all of its
periodic points, this might seem to imply that this recursion never needs to be carried
out more than twice, but it turns out that the other subset can acquire new periodic
points. Cohen, Litsyn, Vardy, and Zémor [2, section 8] provide an example of this in
Z

7
2. The recursion will stop eventually, though, so we are interested not only in full

rank tilings but especially in nonperiodic full rank tilings. Note that Proposition 6
also gives us a way to construct smaller full rank tilings from larger ones, which is
helpful when trying to determine which groups admit full rank tilings.

3. Constructing full rank tilings of product groups. Etzion and Vardy [4,
Construction C] developed a construction to build a full rank tiling of Z

n+1
2 from a
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full rank tiling of Z
n
2 , and Szabó and Ward [21, Lemma 1] developed a similar but

more general construction to allow the direct product with arbitrary cyclic groups
rather than just Z2. We generalize both of these to a construction that gives a full
rank tiling of any finite abelian group having some direct factor with a full rank
tiling.

Theorem 9. If there is a full rank tiling (V,A) of G, then there is a full rank
tiling of G × H, where G is any nontrivial finite abelian group and H is any finite
abelian group.

Proof. Szabó and Ward [21, Lemma 1] proved this for the case when H = 〈k〉 is
cyclic and there is an element a ∈ A \ {0} such that 〈A \ {a}〉 = G. They did this by
letting V ′ = {(v, h) : v ∈ V, h ∈ H} and A′ = {(a′, 0) : a′ ∈ (A \ {a})} ∪ {(a, k)} and
proving that (V ′, A′) is a full rank tiling of G × H. Note that the element (0, k) is
not necessary for 〈V ′〉 to equal G×H since (v, k) and (v, k + k) are both elements of
V ′ and (v, k + k) − (v, k) = (0, k). So we can switch the roles of V and A and repeat
for another cyclic group by letting (0, k) play the role of a. Since any finite abelian
group can be decomposed into the direct product of cyclic groups, if there is initially
some a ∈ A \ {0} that is not necessary for A to generate G, then there is a full rank
tiling of G×H for any finite abelian group H.

The only case when there is not such an a is when both A \ {0} and V \ {0}
are minimal generating sets of G. Let m equal the sum of the multiplicities of the
prime divisors of |G|. We first show that any minimal generating set of G has at
most m elements. Let A = {a1, . . . , ak} be a minimal generating set of G. Let

Gi = 〈a1, . . . , ai〉, where G0 = {0}. Note that
∏k−1

i=0 |Gi+1|/|Gi| = |G|. We know that
Gi is a proper subgroup of Gi+1 since A is a minimal generating set, which means
that |Gi+1|/|Gi| > 1 for all i. Hence k ≤ m. So if (V,A) is a full rank tiling and
V \ {0} and A \ {0} are both minimal generating sets, then (m + 1)2 ≥ |G|. Clearly
m ≤ �log2 |G|�, so (�log2 |G|� + 1)2 ≥ |G|. This is true only if 1 ≤ |G| ≤ 36. Since
|G| = |V ||A|, it is only possible for both V and A to have at most m + 1 elements
when |G| is 2, 4, 6, 8, 9, 12, or 16, so we consider the finite abelian groups of those
orders. Clearly any tiling of Z2 is trivial. Rédei [13] proved that if both V and A
have prime order, then one of them is a subgroup of G, which implies that there are
no full rank tilings of Z2 × Z2, Z6, Z3 × Z3, Z4, or Z9.

For the |G| = 8, |G| = 12, and |G| = 16 cases we need a few results on the Hajós
property. We say that a finite abelian group G has the Hajós property if in any tiling
(V,A) of G at least one of V and A is periodic. Groups with the Hajós property have
been completely classified [16]. In particular, all finite abelian groups of order 8, 12,
or 16 have the Hajós property. Szabó [20, Lemma 1] has shown that if a finite abelian
group has the Hajós property, then it has no full rank tilings.

Szabó [19, section 4] has proven that there exists a full rank tiling of the direct
product of at least three cyclic groups of composite orders other than 4 or 6. We
remove the restriction that the orders not be 4 or 6 and combine it with Theorem 9
to get the following theorem.

Theorem 10. If G has Za×Zb×Zc as a direct factor, where a, b, c are composite,
then G has a full rank tiling.

Proof. Let G be the direct product of cyclic groups of orders m1,m2,m3 (all
composite) and generators g1, g2, g3 respectively. Let vi = mi/ui, where ui is the
smallest prime divisor of mi. Also let [g]m denote the set {0, g, 2g, . . . , (m− 1)g}. If
V = {(a, b, c) : a ∈ [g1]u1 , b ∈ [g2]u2

, c ∈ [g3]u3
} and A = {(a, b, c) : a ∈ [u1g1]v1

, b ∈
[u2g2]v2 , c ∈ [u3g3]v3}, then it is not hard to see that (V,A) is a tiling of G. Let π be
some cyclic permutation of {1, 2, 3}, and define the following two sets:
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X =

3⋃
i=1

{(a1, a2, a3) : ai ∈ [uigi]vi and aπ(i) = uπ(i)gπ(i) and aπ−1(i) = 0}

Y =

3⋃
i=1

{(a1, a2, a3) : ai ∈ [uigi]vi + gi and aπ(i) = uπ(i)gπ(i) and aπ−1(i) = 0}.

Note that X ⊂ A. Szabó [19, section 2] proved that if A′ = A ∪ Y \X then (V,A′) is
a tiling of G, and the tiling is full rank if vi is at least 4 for all i. Note that if j = π(i)
and vj = 3 then 0, ujgj + gi, 2ujgj ∈ A′, so 2ujgj + (ujgj + gi) = gi ∈ 〈A′〉. If vj > 3
then 3ujgj ∈ A′, so 3ujgj−2ujgj = ujgj ∈ 〈A′〉 and thus ujgj +gi−ujgj = gi ∈ 〈A′〉.
So if every vi is at least 3 then (V,A′) is a full rank tiling of G.

If vi = 2 for all i then ui = 2, and G is the group Z4×Z4×Z4. It is easy to check
by hand that Szabó’s construction results in a full rank tiling. In the final case, there
is some vj > 2. Let i = π−1(j). Then by the above argument gi ∈ 〈A′〉. Let k = π(j).
Since π is cyclic, k = π−1(i). By definition uigi + gk ∈ A′, so since gi ∈ 〈A′〉 we have
that gk ∈ 〈A′〉. Also, ukgk + gj ∈ A′, so gj ∈ 〈A′〉. Thus 〈A′〉 = G, so (V,A′) is a full
rank tiling of G. Now by Theorem 9 any group containing G as a direct factor has a
full rank tiling, which proves the theorem.

4. Constructions using codes. In this section we get another sufficient condi-
tion for G to admit a full rank tiling by using codes. We will work in vector spaces over
finite fields in this section since we will on occasion use properties of the vector space.
However, as noted in the introduction a tiling of a vector space is also a tiling of the
additive group associated with that space, so at the end of the section we translate
our main result back to groups. Throughout this section p is a prime. The Hamming
distance of two n-tuples is the number of coordinates in which they differ. A perfect
code is a subset C ⊂ F

n
q such that (C, SR(0)) is a tiling of F

n
q , where SR(0) is the

Hamming ball of radius R centered on 0 [8]. Since a Hamming ball clearly generates
the entire space, this gives a full rank tiling if the code itself generates the entire
space. An important special case of perfect codes are the Hamming codes, which are
the linear perfect codes for R = 1 (see [8]). A Hamming code forms a proper subspace
of F

n
q , and so does not immediately result in a full rank tiling. However, we will see

how to slightly modify a Hamming code to get a full rank tiling.
Sands posed the question of whether every group has the Rédei property in [17].

Answering this question in the negative, Fraser and Gordon [5] constructed a full rank
tiling of F

6
5 by applying permutations of GF(5) to a Hamming code. They state that

their construction generalizes to provide an infinite number of counterexamples, but
they omit the details. We begin by generalizing their argument to show that there
exist full rank tilings of F

p+1
p , where p ≥ 5 is prime. We do this by starting out with

the same code they do, a Hamming code on F
p+1
p , and then permute the values in

the first two coordinates of the vectors in the code. Permuting only the first two
coordinates is a property that will prove important when computing the kernel. Let
p ≥ 7 be prime and let H be the following 2 × (p + 1) matrix:

H =

(
0 1 1 1 · · · 1
1 0 1 2 · · · p− 1

)
.

Let C = {u ∈ F
p+1
p : HuT = 0}. It is easy to show that C is a Hamming code,

which implies that (C, S1(0)) is a tiling of F
p+1
p . It is not a full rank tiling since C is a

proper subspace of F
p+1
p of dimension p− 1. Let ui = (p− i, p− 1, 0, . . . , 0, 1, 0 . . . , 0),

where the 1 is in the (i+2)nd coordinate. Note that {u1, u2, . . . , up−1} is a basis for C.
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Now let πi, for i = 1, . . . , p + 1, be permutations of the elements of GF(p). Then
the map

π : (x1, . . . , xp+1) �→ (π1(x1), . . . , πp+1(xp+1))

from F
p+1
p to itself clearly preserves the Hamming distance. Hence π(C) is still a

perfect code with R = 1 for any choice of the πi’s. We will use this fact to construct
full rank tilings from C.

Proposition 11. There exists a full rank tiling of F
p+1
p if p ≥ 5.

Proof. Let π1 = ((p − 3)(p − 4)) be the transposition interchanging p − 3 and
p − 4, let π2 = ((p − 2)(p − 3)) be the transposition interchanging p − 2 and p − 3,
and let every other πi be the identity permutation. We claim that (π(C), S1(0)) is a
full rank tiling of F

p+1
p for p ≥ 7. The basis we constructed of F

p+1
p gets mapped to

p− 1 linearly independent vectors since only the first two coordinates get permuted.
Also, π(u1 + u2) = (p− 4, p− 3, 1, 1, 0, . . . , 0) is another linearly independent vector,
since otherwise the 1’s in the third and fourth coordinates would force it to equal
π(u1) + π(u2), which it does not since π(u1) + π(u2) = (p− 3, p− 2, 1, 1, 0, . . . , 0).

Now consider the vector π(u5 +up−1) = (p−3, p−3, 0, . . . , 0, 1, 0, . . . , 0, 1), where
the 1’s are in the seventh and the p + 1st coordinates. Assume that this is a linear
combination of the previous p vectors. Because of the placement of the 1’s it is clear
that π(u5) and π(up−1) each have a coefficient of 1 in this linear combination, so
the remaining parts of the linear combination must sum to π(u5 + up−1) − π(u5) −
π(up−1) = (1, p − 1, 0, . . . , 0). Clearly the remaining π(ui)’s other than π(u1) and
π(u2) do not appear in the linear combination. The only way π(u1) and π(u2) can
contribute is if each has the negative coefficient of π(u1 + u2). If x is the coefficient
of π(u1 + u2), then we get the following two equations from the first and second
coordinate, respectively:

(p− 1)(−x) + (p− 2)(−x) + (p− 4)x = 1

(p− 1)(−x) + (p− 1)(−x) + (p− 3)x = p− 1

The left-hand side of each equation simplifies to (p−1)x, which is a contradiction
since (p−1)x cannot equal both 1 and p−1. Thus the coefficients of π(u1), π(u2), and
π(u1+u2) are zero, so π(u5+up−1) = π(u5)+π(up−1). However, this is a contradiction
since π(u5) + π(up−1) = (p − 4, p − 2, . . . ). Hence {π(ui) : 1 ≤ i ≤ p − 1} ∪ {π(u1 +
u2)} ∪ {π(u5 + up−1)} is a linearly independent set of size p + 1, and therefore forms
a basis of F

p+1
p . Thus 〈π(C)〉 = F

p+1
p , so (π(C), S1(0)) is a full rank tiling of F

p+1
p .

Since we used u5 this only works when p ≥ 7, but the full rank tiling of F
6
5 given by

Fraser and Gordon starts with the same basis as our construction ({u1, u2, . . . , up−1})
and just uses different permutations (still only changing the elements in the first two
coordinates).

To get even smaller full rank tilings we find the kernel of π(C) and use Proposi-
tion 6.

Proposition 12. There exist full rank tilings of F
4
p when p ≥ 5.

Proof. Since C is a Hamming code, it is a subgroup of F
p+1
p , and so every element

of C is a periodic point. The map π used in Proposition 11 only changes the first
two coordinates of a vector, so any element of C that has 0’s in the first and second
coordinates is still a periodic point of π(C). We claim that these vectors form a
subspace of dimension at least p − 3. To see this, let ui = (0, 0, . . . , 0, 1, 0, . . . , 0, i −
1, p − i), where the 1 is in the ith coordinate, for 3 ≤ i ≤ p − 1. Note that 1 + (i −
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1) + (p − i) = 0 and i − 2 + (i − 1)(p − 2) + (p − i)(p − 1) = 0, so HuT
i = 0 for all

i, and thus each of these p− 3 vectors is a periodic point of π(C). They are linearly
independent, which shows that the periodic points form a subspace of dimension at
least p− 3. Thus by Proposition 6 there is a full rank tiling of F

4
p.

Now we use Proposition 12 to obtain another sufficient condition for a finite
abelian group to admit a full rank tiling.

Theorem 13. If G has Z
4
p with p ≥ 5 as a direct factor, then G admits a full

rank tiling.
Proof. Proposition 12 proves that there exists a full rank tiling of F

4
p. Since tilings

depend only on the additive group structure, this is the same thing as saying that
there is a full rank tiling of Z

4
p. Combining this with Theorem 9 we get that any

group containing Z
4
p as a direct factor has a full rank tiling.

Rédei [14] conjectured that there do not exist full rank tilings of Z
3
p for any p.

This conjecture is still open, but it has been verified for p ≤ 11 (see [22]), so when p
is 5, 7, or 11 we know exactly for which values of n there is a full rank tiling of Z

n
p .

Unfortunately we could not get as strong a bound for the case when p = 3. The
construction that we have been using does not work when p = 3, so we need to use
something else. Phelps, Rifa, and Villanueva [11] have recently found full rank perfect
codes of F

n
p when n = (pm − 1)/(p − 1), where m ≥ 4, with a kernel of dimension

(p − 1)m−1. So when p = 3 this gives the existence of full rank tilings for Z
n
3 for

all n ≥ ((p4 − 1)/(p − 1)) − (p − 1)3 = 4p2 − 2p + 2 = 32. Thus there exists a full
rank tiling of Z

n
3 if n ≥ 32. This is not nearly as good a bound as we have for either

p = 2 or p ≥ 5, so it can almost definitely be improved. The only lower bound in the
literature says that there do not exist full rank tilings of Z

n
3 when n ≤ 4 [23], so it is

not known whether Z
n
3 admits a full rank tiling for 5 ≤ n ≤ 31.

5. Open problems. Probably the most tractable open problem remaining is
the one mentioned at the end of the last section, the existence of full rank tilings of
Z
n
3 for 5 ≤ n ≤ 31. Since p = 3 allows more freedom in the construction than p = 2

but less than p = 5, we conjecture that there is some k with 4 < k ≤ 10 for which Z
n
3

has a full rank tiling if and only if n ≥ k. As with other cases of Z
n
p , we suspect that

coding theory approaches will prove valuable, in particular finding full rank perfect
ternary codes.

A more difficult open question is what conditions on G are necessary for G to
admit a full rank tiling. We know that neither of our two sufficient conditions is
necessary on its own, and we suspect that it is not necessary for either of them to be
satisfied for G to have a full rank tiling. We have shown that many groups admit full
rank tilings, so our conditions are close to necessary, but there is no reason to think
that we have characterized all groups admitting full rank tilings. An easier subproblem
of this is Rédei’s conjecture, mentioned previously, that Z

3
p does not admit a full rank

tiling for any prime p. This conjecture is still wide open, with the only progress being
a computer check for p ≤ 11 by Szabó and Ward [22]. This conjecture immediately
implies that our bound of n ≥ 4 for the existence of full rank tilings of Z

n
p with p ≥ 5

is tight and so if proved would give a complete characterization of which elementary
p-groups (p ≥ 5) admit full rank tilings.

There are many generalizations of this problem that could also prove to be in-
teresting. Tilings can easily be defined for groups that are not finite or abelian, so
removing those constraints gives many questions. We could also extend the work done
for F

n
2 in a different direction by considering not more general groups but more gen-

eral transformations. We have pointed out that vector spaces are equivalent to groups
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with respect to tilings, but that is not true if we allow linear or affine transformations
other than translation. Define an affine factorization of F

n
q to be a pair (V,Φ) with V

a subset of F
n
q and Φ = {φi} a set of affine transformations satisfying F

n
q =

⋃
i φi(V )

and φi(V ) ∩ φj(V ) = ∅ for all i 	= j. Any tiling (V,A) of F
n
q automatically gives

an affine factorization (V ′,Φ) by letting V ′ = V and φi ∈ Φ be translation by the
ith element of A. However, tilings only give a small subset of affine factorizations.
Allowing arbitrary affine transformations seems to make the problem very difficult,
but perhaps adding some extra restrictions would make it tractable. In particular,
requiring that |φi(V )| = |V | for all i might be helpful.

6. Conclusions. We have generalized the notions of tilings and full rank tilings
from F

n
2 to general finite abelian groups and have generalized many existing theorems

to this new setting. We then combined and extended these results to prove that a
group admits a full rank tiling if any of its direct factors do, allowing us to take any
sufficient condition for a group to admit a full rank tiling and extend it by simply
requiring a group to have a direct factor for which the condition holds. This method
results in two such sufficient conditions: a group G admits a full rank tiling if it has
a direct factor of the form Za × Zb × Zc with a, b, and c composite, or if it has a
direct factor of the form Z

4
p with p ≥ 5 prime. Since any finite abelian group can be

decomposed into the direct product of finite abelian groups of prime power order, these
are obviously quite strong conditions when the size of the group is large, showing that
many groups admit a full rank tiling. We have also suggested some open problems in
the area that we feel are tractable and could lead to some interesting results.
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