
Secretary Problems: Weights and Discounts

Moshe Babaioff∗ Michael Dinitz† Anupam Gupta‡ Nicole Immorlica§

Kunal Talwar¶

Abstract

The classical secretary problem [Dyn63, Fre83] studies how
to select online an element with maximum value in a ran-
domly ordered sequence. The problem is closely connected
with online mechanism design in which agents {e} with
private values v(e) for a good arrive sequentially in random
order and the mechanism designer wishes to allocate the
good to an agent with maximum value. The difficulty
lies in the fact that an agent’s allocation must be decided
irrevocably upon arrival. A mechanism for this problem is
called α-competitive if it gets, in expectation, at least a 1/α
fraction of the (expected) optimal offline solution. It is well-
known how to design constant-competitive algorithms for
the classical secretary problems and several variants. We
study the following two extensions:

• In the discounted secretary problem, there is a time-
dependent “discount” factor d(t), and the benefit de-
rived from assigning the good at time t to agent e
is d(t) · v(e). For this problem, we show a lower
bound of Ω(log n

log log n
), and a nearly-matching O(log n)-

competitive algorithm with general (and possibly in-
creasing) d(t). Additionally, we show a constant-
competitive algorithm when the expected optimum is
known in advance.

• In the weighted secretary problem, K goods are available
and each good k has a publicly known characteristic
or weight w(k) such that the value of agent e for
good k is w(k) · v(e). The goal is to assign goods to
maximize

P
e,k w(k) ·v(e) ·xek where xek is an indicator

variable that agent e received good k. We give constant-
competitive algorithms for this problem.

One can of course also consider a setting in which there are
both discounts and weights. We show that our algorithms
can generally be combined and extended to handle this
mixed scenario.

Most of these results can also be extended to the matroid
secretary case [BIK07] with a constant-factor loss for a
large family of matroids, and an O(log rank) loss for general
matroids. These results are based on a reduction from
various matroids to partition matroids which present a
unified approach to many of the upper bounds of [BIK07].

∗moshe@microsoft.com. Microsoft Research, Silicon Valley.
†mdinitz@cs.cmu.edu. Carnegie Mellon University.
‡anupamg@cs.cmu.edu. Carnegie Mellon University.
§immorlic@cwi.nl. Centrum voor Wiskunde en Informatica.
¶kunal@microsoft.com. Microsoft Research, Silicon Valley.

1 Introduction

The classical secretary problem [Dyn63, Fre83] captures
the question of finding the element with the maximum
value in an online fashion, when the elements are
presented in a random order. It is well known that
waiting until one sees 1/e fraction of the elements, and
picking the first element attaining a value greater than
the maximum value seen in the first 1/e fraction of the
elements gives an e-competitive algorithm, and this is
the best possible. The problem is of much interest due
to its close connections with online mechanism design:
if we have a single good to sell and agents with varying
valuations for that object arriving online (albeit in a
random order 1), then the secretary problem captures
the difficulty in picking the person with the largest
valuation for that good [HKP04, Kle05]. In this case,
the elements of the secretary problem are agents and the
element value is the agent value for the good; the goal
of the mechanism designer is to maximize social welfare,
or sell the good to the agent with the highest valuation.
The problem can also be thought of as modeling the
economic decision facing an agent who wishes to select
one of an online sequence of goods – e.g., an agent
buying a house or a company hiring an employee. In
this case, the elements are the goods and the element
value is the value of the agent for the said good.

Given the above interpretations, there are certain natu-
ral cases which the secretary problem does not address:
for instance, it does not capture the opportunity cost
incurred due to rejecting elements. For example, when
seeking to purchase a house, we might think of choosing
a slightly suboptimal house at the beginning of the
experiment (and being able to use it for the entire
period) as being more desirable than a long wait to
pick the most desirable house. Here, we model such
a problem as the discounted secretary problem, where
we are given “discount” values d(t) for every time: the
benefit derived from choosing an element with value v(e)
at time t is the product d(t) · v(e). In this example,
the discount function d(t) is a monotone decreasing
function of t, but in general, the discount function may
be more complicated due to other considerations. For
example, our financial situation may improve over time

1The random order assumption allow us to overcome the
impossibility of achieving good competitive ratio in the case of
adversarial input without assuming that values come from some
distribution.

and waiting longer may get us a better mortgage rate,
so our discount function d(t) may increase up to some
point in time, and then decrease.2

An orthogonal extension of the classical secretary prob-
lem is the weighted secretary problem. In this case, there
are K heterogeneous goods {1, 2, . . . ,K} available, with
the kth good having a publicly known characteristic
or “weight” w(k), representing a common ranking of
the goods. Agents’ preferences for the goods are
related by a multiplicative factor, i.e., each agent e
has an intrinsic value v(e) and a corresponding value
of v(e) · w(k) for good k. Such so-called “product
valuations” are commonly assumed in industries like
online banner advertising. Here the weight of the good
(banner advertising space, in this case) is its visibility,
or the number of people that are likely to see it. The
intrinsic value of the advertising company is the value it
derives when one person sees its ad. Similarly, product
valuations might be observed in hiring scenarios. For
example, a company may wish to hire sales managers for
several regional markets of varying sizes. The weights
of the goods (job positions, in this case) are the market
sizes, and the value of a manager is his or her inherent
ability to convert peoples’ interest into actual sales. As
in the classical and the discounted settings the agents
(elements) arrive in a random order, and when an agent
arrives, we must decide which good to allocate to him or
her, if any. Each good can only be assigned to one agent,
each agent can only receive one good, and once a good is
assigned to an agent, that decision is irrevocable. If we
assign good k to agent e we receive benefit v(e) · w(k),
the product of the intrinsic value of the agent and the
weight of the assigned good. How should we choose K
agents and assign goods to them to maximize the total
expected benefit?

Our goal is to design algorithms for the above secretary
problems that do well with respect to the optimum
offline solution for an arbitrary set of values {v(e)}.
We call an algorithm α-competitive (α ≥ 1) if it gets,
in expectation over the random sequence of element
arrivals, a 1/α fraction of (the expected value of) the
offline optimum (see Section 2 for a precise definition).
We show that the worst-case competitive ratio for the
discounted secretary problem is close to logarithmic:

Theorem 1.1 (Discounted Secretary) Any
algorithm for the discounted secretary problem has a
(worst-case) competitive ratio of Ω(log n

log log n). Moreover,
there is a nearly-matching O(log n)-competitive
algorithm.

Surprisingly, the discounted secretary problem is inter-
esting even if we know the values of all the items in

2In this paper, we use the term “discount” though the function
d(t) is not monotone decreasing as a function of t.

advance: given discount function d(t), it is not a-priori
obvious which item to choose in this case. In stark
contrast to Theorem 1.1, we show the following.

Theorem 1.2 (Discounted Sec’y: Known-OPT)
The discounted secretary problem has an O(1)-
competitive algorithm for the case when the values
of all elements are known in advance. In fact, the
algorithm only needs to know E [OPT].3

The assumption that the values of element are known
holds, say, when the value is a function of the ordinal
preference (e.g., the value of the top candidate among
n candidates is n, the second-best candidate has value
of n − 1, and so on), which has been used in [Lin61].
Alternatively, E [OPT] may be estimated by market
research or from prior runs of the mechanism.

For the weighted secretary problem, we show the fol-
lowing.

Theorem 1.3 (Weighted Secretary) There is an
O(1)-competitive algorithm for the weighted secretary
problem.

As the classical secretary problem is a special case of
the weighted secretary problem when there is only one
non-zero weight, there is clearly a lower-bound of e for
the weighted secretary problem.

In the setting with both discounts and weights, we show
that a combination of the above algorithms yields a
nearly-optimal result (since the Ω(log n

log log n) lower bound
still holds).

Theorem 1.4 There is an O(log n)-competitive algo-
rithm for the secretary problem with both weights on
goods and discounts on times.

Finally, we consider the discounted and weighted ver-
sions of the matroid secretary problem [BIK07], where
the goal is to choose a set of items in order to maximize
the total expected value, subject to the constraint that
the chosen set is independent in a given matroid (see
Section 5 for definitions). We show that the algorithms
of Theorems 1.1, 1.2 and 1.3 can be extended to a large
family of matroids (including uniform matroids, parti-
tion matroids, graphical matroids) with only a constant
loss in the competitive ratio, and to all matroids with
an O(log rank) loss in the competitive ratio. These
results are based on reductions from various classes of
matroids to partition matroids, which also give a unified
approach to many of the upper bounds of [BIK07],
whilst improving some of them. For example, our
techniques imply the following:

3E [OPT] is the expected benefit the optimal algorithm gets.

2

Theorem 1.5 There is a 3e ≈ 8.15-competitive al-
gorithm for the matroid secretary problem for graph-
ical matroids. (The previous best known was a 16-
competitive algorithm [BIK07].)

While we state our results as algorithms, the setting
which motivates us is actually an economic one in which
the elements are strategic agents and their values are
private information. In this case, it is important to
consider the incentives facing agents in our proposed
algorithms. Assuming single parameter agents (i.e.,
agent e has value v(e) if he is picked by the algorithm,
and 0 otherwise), it is well known that a mechanism is
truthful (in dominant strategies) if it is bid monotonic
(a winner would keep winning if she increases her bid).
An alternative interpretation is that the mechanism
presents the agent with a price that is independent
of the agent’s bid and the agent decides if she would
like to win given the price. This is indeed the case
for all our algorithms, thus one can interpret our
algorithms as truthful mechanisms in which winners
pay the threshold value they needed to bid in order to
win. 4 The competitive ratio that an algorithm achieves
corresponds to the fraction of the social welfare that the
truthful mechanism guarantees.

Related Work. The study of truthful on-line mech-
anism design in the competitive analysis framework
was initiate by Lavi and Nisan [LN00] and many other
papers followed this line of research, e.g. [LN05].
The classical secretary problem was introduced by
Dynkin in 1963 [Dyn63]. Since then, many vari-
ants have been studied (see [Fer89, Fre83] for a sur-
vey), including some in the computer science litera-
ture highlighting the connections to online mechanism
design [HKP04, Kle05] and combinatorial preference
structures [BIK07, BIKK07]. The discounted problem
was studied previously in multiple contexts for specific
“well-behaved” functions like d(t) = βt [RP76] or
d(t) =

∑n
i=t βt [MMP08] for some fixed β < 1, whereas

here we study it for general functions d(t). For the
weighted case, Derman, Lieberman, and Ross [DLR71]
studied a version where there are the same number
of goods as agents (so K = n) and the values of the
agents are independently and identically distributed, as
opposed to our setting where the values are arbitrary
but arrive in random order. Similarly, a recent paper
by Gershkov and Moldovanu [GM07] studied the variant
where the values of the elements are independently
and identically distributed and element arrivals are
given by some renewal stochastic process, instead of the
classical secretary assumption of discrete time with a

4Note that we do not allow agents to manipulate their arrival
time - their order is random and cannot be influenced by the
agents. Moreover, each agent is considered only once and cannot
return later in time.

uniformly random ordering. They further incorporated
the discounted model into the weighted model (so the
value of agent e for good k at time t is v(e) ·w(k) · d(t),
and show how to maximize revenue as well as welfare in
their setting).

2 Model, Preliminaries, and Notation

In the classical secretary problem, there is a universe
U of elements with |U | = n. Each element e ∈ U
has an intrinsic value v(e) ∈ R≥0. An algorithm A for
the secretary problem observes the elements of U in a
random order and chooses one element eA in an online
fashion. In other words, it must decide at the moment
an element arrives whether or not to select it, and all
decisions are irrevocable. The goal is to maximize the
expected value E [v(eA)], the expectation being taken
over the random order, as well as over the randomness
in the algorithm, if any. In this paper, we extend the
classical setting in the following ways:

Weighted Secretary Problems. Here, we want to
assign K goods to elements (agents). Each good k
has a non-negative associated weight w(k). Without
loss of generality we assume that w(·) is non-increasing
(i.e., good 1 has the highest weight, and so on). The
algorithm assigns goods to agents as the agents arrive,
never assigning a good to more than one agent or giving
an agent more than one good. In other words, an
algorithm A maintains a map sA : [K] → U ∪ {⊥},
where we interpret sA(k) =⊥ to mean that the kth good
is not assigned to any agent. For ease of notation we
extend the agent valuation function by letting v(⊥) = 0.
This map is almost injective in that no two goods can
be assigned to the same agent, so if sA(i) = sA(j) 6=⊥
then i = j.

Agents are observed in a random order, and initially
s(k) =⊥ for all k ∈ [K]. When an agent e arrives the
algorithm finds out v(e), and if there is some unassigned
good (i.e. there exists some k such that sA(k) =⊥) the
algorithm can choose whether or not to assign good k to
agent e. If it decides to give e some currently unassigned
good k, then it sets sA(k) = e. The goal of the algorithm
is to output a final map sA that maximizes the objective
function E [

∑K
k=1 v(sA(k))w(k)], where the expectation

is over the random ordering and the random choices of
the algorithm, if any.

Discounted Secretary Problems. Here, the algo-
rithm is given as input a discount function d : [n] → R≥0

which maps “time” to “discounts”. Again, the ground
set is presented in random order: we formalize this
as picking a bijective ordering function π : [n] →
U uniformly at random from all bijective functions
from time instants [n] to elements U , implying that
element π(t) ∈ U appears at time instant t. In this

3

problem, we want to choose an element eA in an online
fashion to maximize the expected discounted value
E π[d(π−1(eA)) · v(eA)]. We first consider a classical
worst-case model where the algorithm does not have
any prior knowledge about the input. We also consider
the known-OPT model, where the algorithm knows the
expected value of the optimal offline solution ahead
of time (for example, it is sufficient to assume the
algorithm knows the valuations), it just does not know
the random permutation π.

We use the competitive ratio of an online algorithm
to measure the performance of all the algorithms in
this paper: this is just the performance of the algo-
rithm compared to the performance of the best offline
algorithm. Since we are dealing with maximization
problems, an α-competitive algorithm A for the classical
secretary problem guarantees that for all valuation
functions v(·), OPT/E [v(eA)] is at most α where
OPT = maxe∈U v(e) (note α ≥ 1). Similarly, an
α-competitive algorithm A for the weighted secretary
problem guarantees that OPT/E [

∑
e∈SA

v(e)w(sA(e))]
is at most α where OPT =

∑K
i=1 w(k)v(σ(k)) and σ is

the permutation that sorts agents in decreasing order
of value. For the discounted secretary problem, we
need to be careful in defining the competitive ratio as
the optimum solution is now a random variable (the
optimum offline solution is a function of the random
order of arrivals). We define the competitive ratio of an
algorithm A in this case as the smallest value α such
that

E π[maxe d(π−1(e)) · v(e)]
E π[d(π−1(eA)) · v(eA)]

≤ α.

It is well-known that the following algorithm is e-
competitive for the classical secretary problem: observe
a (1/e) fraction of the elements without selecting any. In
the remaining (1−1/e) elements, select the first element
whose value is greater than all elements preceding it.
In the remainder of the paper, we will refer to this
algorithm as the classical secretary algorithm, and we
will use it (and the sample-then-select intuition behind
it) to design algorithms for the weighted and discounted
cases.

Finally, all the secretary problems mentioned above
can be extended to the matroid secretary case where,
instead of picking a set S of one or K elements, we are
given a matroid M = (U, I) and want to pick a set
S ∈ I that maximizes the objective function. Details of
this extension, and background on matroids, appear in
Section 5.

3 The Weighted Secretary Problem

Recall the weighted secretary problem was to choose,
in an online fashion, an assignment of K goods with

weights w(1) ≥ w(2) ≥ · · · ≥ w(K) to agents with unit
demand. The goal was to maximize the weighted value∑K

k=1 v(s(k)) · w(k), where s(k) is the agent to which
good k is assigned and v(s(k)) = 0 if k is not assigned
to any agent (i.e. s(k) =⊥). In this section, we show
a constant-competitive algorithm for this problem; in
Appendix C, we will extend the algorithm to a variety
of matroids as well.

There are two basic cases for the weighted secretary
problem. Either there is one agent with very high
value, in which case we must assign this agent the
highest-weight good, or there are many agents with high
value. We deal with each case separately by running the
classical secretary algorithm with some probability and
the following reservation algorithm with the remaining
probability:

• Pick a random value τ ∈R Binom(n, 1/2). Observe
the first τ agents in the random sequence without
assigning any goods. Call these agents the sample
set S.

• Let I be the set of K agents of largest value in S.
For each integer i, suppose there are ri agents in
I having values between 2i−1 and 2i (henceforth
called value class i). Let a be the index of the
largest non-empty value class. We partition the
goods into subsets Ti = {1 +

∑a
j=i+1 rj , . . . , ri +∑a

j=i+1 rj}, and we reserve the goods in subset Ti

for agents in value class i. That is, for each i, we
will allocate the ri goods in subset Ti only to agents
in value class i. Note that subset Ta consists of the
first (heaviest) ra goods, subset Ta−1 consists of the
next ra−1 goods, and so on.

• Upon observing an agent e in the remaining n− τ
agents, let i be its value class. If there are
unassigned goods in subset Ti then assign agent
e the heaviest unassigned good in Ti.

The bulk of the work is to prove that the above
reservation algorithm is constant-competitive when the
optimal solution has many agents in each value class.
The intuition for this fact is as follows: if the optimal
solution contains many agents from, say, value class i,
then about half of them will appear in the sample set.
Each such agent will cause the reservation algorithm to
reserve one good for agents of value class i. Thus, the
remaining half of the agents from value class i in the
optimal solution which appear after the sample set will
be assigned goods. This, combined with the observation
that goods reserved for value class i are at least as heavy
as goods assigned to value class i in the optimal solution,
will enable us to prove a constant competitive ratio.

We first introduce some notation describing the optimal
and algorithmic solutions. Fix an optimal solution, and

4

let ui be the number of goods assigned to agents in
value class i by this solution. Recall that the reservation
algorithm reserves ri goods for value class i. Let r′i
be the number of goods that the reservation algorithm
reserves for value class i because of an agent in I that
is also in the optimal solution, so r′i ≤ ri and r′i ≤ ui.
Let fi be the number of goods reserved for value class i
that the algorithm actually ends up assigning to agents.

We first prove that the reservation algorithm assigns
sufficiently many goods to agents in value class i (i.e.,
that fi is large).

Lemma 3.1 If there are at least two agents from value
class i that are assigned goods in the optimal solution
(i.e., ui ≥ 2), then E[fi] ≥ 1

4ui.

Proof: If the algorithm runs out of goods to give to
agents in value class i then fi = ri ≥ r′i. If the algorithm
does not run out of goods to give to agents in value class
i then every agent in class i that comes after the sample
set gets a good, so certainly the agents from value class
i that get a good in the optimal solution but did not
appear in the sample get a good, and thus in this case
fi ≥ ui− r′i. So fi ≥ min{r′i, ui− r′i}. Since the optimal
solution gives goods to the most valuable K agents,
any agent that is given a good in the optimal solution
and also appears in the algorithm’s sample reserves a
good for its class, so r′i is drawn from the binomial
distribution with ui trials and probability 1/2. So if
the optimal solution gives goods to at least two agents
with values in class i (i.e. ui ≥ 2), this implies that
E[min{r′i, ui − r′i}] ≥ 1

4ui, and thus E[fi] ≥ 1
4ui. So in

expectation the reservation algorithm gives goods to at
least 1

4 as many agents from value class i as the optimal
solution does.

Next we prove that the goods reserved by the algorithm
are at least as heavy as the goods used by the optimal
solution. Let bi =

∑a
j=i+1 rj and let oi =

∑a
j=i+1 uj ,

so bi +1 is the “starting good” for class i in the solution
given by the algorithm and oi +1 is the “starting good”
for class i in the optimal solution. The proof of the
following lemma is immediate and is deferred to the full
version.

Lemma 3.2 bi ≤ oi for all i ∈ [a]

Let sO be the optimal assignment, and let sR be
the assignment returned by the reservation algorithm.
Let OPTi =

∑oi+ui

j=oi+1 v(sO(j))w(j) be the contribution
of value class i to the optimal solution, so OPT =∑

i OPTi. Similarly, let Ri =
∑bi+fi

j=bi+1 v(sA(j))w(j)
be the contribution of class i to the solution given by
the algorithm. We now claim that as long as at least
two agents from value class i get goods in the optimal
solution, the algorithm does well in expectation.

Lemma 3.3 If there are at least two agents from value
class i that are assigned goods in the optimal solution
(i.e., ui ≥ 2), then E[Ri] ≥ 1

8E[OPTi]

Proof: We know that the weights of goods are non-
increasing with their index, and from Lemma 3.2 we
know that the starting good for value class i in the
solution returned by the algorithm has index no larger
than the starting good for value class i in the optimal
solution (and thus is at least as heavy). Lemma 3.1 also
implies that in expectation at least 1/4 as many goods
are assigned to value class i by the algorithm as in the
optimal solution. Putting these together, we get that

E[Ri] ≥ E [2i−1
∑bi+fi

j=bi+1 w(j)]

≥ E [2i−1
∑oi+fi

j=oi+1 w(j)] (Lemma 3.2)

≥ 1
42i−1

∑oi+ui

j=oi+1 w(j) (Lemma 3.1)

≥ 1
82i

∑oi+ui

j=oi+1 w(j) ≥ 1
8OPTi.

proving the lemma.

If there are value classes that only have one agent that
gets a good in the optimal solution, then the reservation
algorithm might not work because if that one agent
appears in the sample then it will not appear in the
final solution, and if it appears after the sample then
there might not be a good reserved for it, so Lemma
3.1 would not hold. We handle this case by essentially
running the classical secretary algorithm in parallel as
follows.

Theorem 3.4 (Wtd Secretary: Upper Bound)
Let algorithm A run the reservation algorithm with
probability 8

3e+8 , and with the remaining probability
3e

3e+8 , run the classical secretary algorithm assigning
the heaviest good to the single agent chosen. Algorithm
A is 8 + 3e competitive.

Proof: Let H be the set of value classes that have at
least 2 agents that get goods in the optimal solution
and let T denote the rest of the value classes. We
denote OPTH =

∑
i∈H OPTi and OPTT =

∑
i∈T OPTi.

Clearly OPT = OPTH + OPTT . By Lemma 3.3 the
reservation algorithm returns a solution with expected
value at least 1

8OPTH . Let vmax = maxe∈U v(e). It is
easy to observe that OPTT ≤ 3 · w(1) · vmax. As the
secretary algorithm picks vmax with probability 1/e, if
we run the secretary algorithm and assign the heaviest
good to the agent chosen we get at least 1

3eOPTT in
expectation. We conclude that the expected value of
the solution returned by A is at least

3e
3e+8 ·

1
3e · OPTT + 8

3e+8 ·
1
8 · OPTH = 1

3e+8OPT,

which completes the proof.

5

Remark: We can slightly improve the above constant
using the following optimizations (which will result in
more involved analysis of the algorithm). First, we
are currently using a scale of powers of 2, this can be
replaced by a scale of powers of α for some α > 1.
Additionally, the scale can be shifted randomly. Finally,
the probabilities in which we run each of the algorithms
can be tuned to the new scale. The details for which
are left to the full version of this paper.

4 Time-dependent Weights, or the Dis-
counted Secretary Problem

In the discounted secretary problem, we are given a
function d(·) that maps time instants to “discounts”,
such that the actual benefit obtained by picking an
element e of intrinsic value v(e) at time t is actually
the product v(e) · d(t). This is a natural model when
picking an item is more valuable at some times rather
than others: while the problem has been studied in the
simple case of d(t) = βt for some β < 1, here we consider
general time-varying functions d(t).

We first show that the problem is fairly hard in general.
We show an Ω(log n/ log log n) lower bound on the
competitive ratio of any algorithm, and show a nearly
matching O(log n) upper bound. Surprisingly, the
problem becomes much easier with a small amount of
information about the input. We show that knowing an
estimate of E [OPT] enables one to design a constant
competitive algorithm.

A Warmup Example. Consider the simple case when
d(t) = βt for some constant β bounded away from 1.
A simple constant-competitive algorithm is one that
always picks the first element. This algorithm has an
expected value of E[ALG] =

∑n
i=1 v(i) · 1

n · β
1. On the

other hand, the expected value that OPT gets from time
step j is at most

∑n
i=1 v(i) · 1

n · βj , thus the expected
value that OPT gets is at most

∑n
i=1 v(i) · 1

n ·
∑

j βj ≤
1

1−β E[ALG]. As β is a fixed constant this is constant-
competitive (even though, as noted in [RP76], OPT → 0
as n →∞).

4.1 Discounted Secretary: General Case

It turns out the the discounted secretary problem is
significantly harder than other variants of the secretary
problem, and we show a lower bound of Ω(log n

log log n) on
the competitive ratio in this case. We also give an
algorithm with an almost-matching competitive ratio
of O(log n).

4.1.1 A Nearly-Logarithmic Lower Bound

We construct a discount function d and a family of
instances I1, . . . , I2c such that no randomized algorithm

can be Θ(log n
log log n)-competitive on all the It’s. More

formally, we use the following definitions:

• Instance Size: Let L = c be an integer and let
n = L4c. Thus L = c = Θ(log n

log log n).

• Discount Function: For t ≤ 2c, let nt = L2t.
For the discount function, we use a step function
d(j) = L−1 for 1 ≤ j ≤ n1, and d(j) = L−t for
nt−1 < j ≤ nt.

• Instances: Let K be a large enough integer (say
n2). The instance I1 consists of n

n1
K’s and the

remaining zeroes. For t < 2c, It+1 is obtained
inductively from It by changing nt/nt+1 of the Kt’s
to Kt+1. Thus It has n

nt
Kt’s.

Lemma 4.1 (Estimate on E[OPT(It)]) For t ≤ 2c,
OPT (It) is at least (1− 1

e)KtL−t

Proof: With probability at least (1 − 1
e) over the

random permutation, one of the n/nt Kt values falls in
the first nt slots, leading to a value of at least KtL−t.

Let A be a c/10-competitive algorithm. We argue that
A must have a large probability of picking in item in
each of the intervals (nt, nt+1).

Lemma 4.2 Let A be a c/10-competitive algorithm.
Then on instance It, the probability that A picks one
of the first nt items is at least t/c.

Proof: We prove the claim by induction on t. For
the base case, note that the most A can get from time
steps n1 + 1 onwards is K/L2 = 1

c (K
L). Thus to be c

10
competitive, it must in expectation get value at least
2
c (K

L) from the first n1 time steps. Since A never gets
more than K/L on I1, the base case holds.

Assume that the claim holds for It. Consider a run of
the algorithm on instance It+1. Note that It+1 differs
from It only in n

nt+1
of the items. The probability that

any one of these items occurs in the first nt time steps is
at most nt

nt+1
. Thus except with probability nt

nt+1
= 1

L2 ,
the behavior of A on It and It+1 is indistinguishable in
the first nt steps. Thus by the induction hypothesis, the
algorithm accepts an item by time nt with probability
at least (1− 1

L2)(t/c).

The expected revenue of A in the first nt

time steps, on instance It+1 is bounded by
Kt+1(L−t nt

nt+1
+L−(t−1) nt−1

nt+1
+ . . .+L−1 n1

nt+1
)+KtL−1,

where the first term bounds the expected contribution
from the Kt+1’s, and the second term bounds the
most one can get from the smaller items. Since this is
at most 4OPT/c, A must get at least 6OPT/c from
time steps nt + 1 onwards. As in the base case, time

6

steps nt+1 + 1 and higher cannot contribute more than
2OPT/c, so that the algorithm must get contribution
4OPT/c from time steps [nt + 1, nt+1]. Thus the
probability that the algorithm picks an item in time
steps [nt + 1, nt+1] is at least 2

c . Since A picks exactly
one item, this event is disjoint from A picking an item
in time steps [1, nt]. Thus the probability that A, on
instance It+1 picks an item in times steps [1, nt+1] is
at least (1 − 1

L2)(t/c) + (2/c) ≥ (t + 1)/c. The claim
follows.

Now we can prove the main lower bound theorem.

Theorem 4.3 (Discounted Sec’y: Lower Bound)
Every algorithm A for the discounted secretary problem
has E[OPT]/E[A] ≥ Ω(log n/ log log n) in the worst
case.

Proof: If A is c/10-competitive, then Lemma 4.2
implies that on instance I2c, the probability that A
picks an item in the first n2c time steps is larger than
1, which is a contradiction. Thus A cannot be c/10-
competitive.

4.1.2 A Logarithmic Upper Bound

Theorem 4.4 (Discounted Sec’y: Upper Bound)
There is an algorithm A for the discounted secretary
problem such that E[OPT]/E[A] ≤ O(log n).

Proof: Let dmax be the maximum discount and let
vmax be the maximum value. For c ≥ 1 let Ic =
(2−cdmax, 2−(c−1)dmax] be the interval defining the c-
th discount class, let Pc = {i ∈ [n] : d(i) ∈ Ic} be the
set of times that have discount value in class c. Thus
OPT =

∑
c

∑
i∈Pc

d(i)
∑

j v(j)Pr[π(i) = j ∧ d(i)v(j) ∈
OPT]. Let OPTc denote the term corresponding to Pc so
that OPT =

∑
c OPTc. Clearly OPT1 ≥ vmaxdmax/n,

since vmax occurs in the location corresponding to dmax

with probability at least 1
n . Moreover, OPTc equals∑

i∈Pc

d(i)
∑

j

v(j)Pr[π(i) = j ∧ d(i)v(j) ∈ OPT]

≤
∑
i∈Pc

2−(c−1)dmax

∑
j

v(j)

≤ 2−(c−1)dmax|Pc|nvmax

since each v(j) is bounded by vmax. Moreover,
since |Pc| is at most n, we conclude that
OPTc ≤ 2−c2n2dmaxvmax. It follows that∑

c≥3 log n+2 OPTc ≤ OPT/2, so that
∑3 log n+1

c=1 OPTc ≥
OPT/2. Thus OPT gets most of its value for the top
O(log n) discount scales.

Our algorithm A chooses a c ∈ [3 log n+2] uniformly at
random, and then runs the classical secretary algorithm
in the time steps i ∈ Pc. Clearly the expected value

that the offline optimum gets from time steps in Pc

equals OPTc. Thus the expected value of the offline
optimum for this restricted problem is at least as large,
and the classical secretary algorithm gets an expected
value OPTc/2e (we lose an additional factor of two since
we treat the discount values in Pc equally). The claim
follows.

When there are both weights and discounts, we can
combine Theorem 4.4 with Theorem 3.4 to get the
following result. We defer the proof to the full version.

Theorem 4.5 There is an algorithm for the weighted
discounted secretary problem that is O(log n)-
competitive

Proof Sketch: In the unweighted case the proof of
Theorem 4.4 implies that we can ignore all but the first
Θ(log n) discount classes. Using the same reasoning,
in the weighted case we can ignore all but the first
Θ(log(nK)) discount classes, where the extra K is due
to the ability to assign K goods. Now we can just choose
a c ∈ [Θ(log(nK))] uniformly at random and run the
weighted secretary algorithm of Theorem 3.4 in the time
steps with discount in class c. Following the analysis
of Theorem 4.4, this is an O(log(nK))-competitive
algorithms, and thus is also O(log n)-competitive.

4.2 Discounted Secretary with Known OPT

In this section we consider the case when the algorithm
knows a good estimate for E [OPT] ahead of time.
Interestingly, we can show that even if we know all
the values and not just E [OPT] in advance, no online
algorithm can be perfectly competitive. This is in
contrast to the case without discounts (i.e., d(t) =
1), in which the näıve algorithm that knows all the
values can pick a element of maximal value. (Proof in
Appendix A.1.)

Theorem 4.6 (Known-OPT: Lower Bound) For
any ε > 0, every algorithm A for the discounted
secretary problem has E[OPT]/E[A] ≥

√
2 − ε, even

when A knows the set of values (and hence E[OPT]) in
advance.

The main result of this section shows that one can get
a constant competitive algorithm if we have a good
estimate Z of E [OPT] = E π[maxt∈[n] d(t) · v(π(t))].

Algorithm A: Suppose Z ≤ E[OPT]. Pick
the first element e seen (say, at time j) that
satisfies v(i)d(j) ≥ Z/2.

Theorem 4.7 (Known-OPT: Upper Bound) If
Z ≤ E [OPT], the algorithm A for the discounted
secretary problem satisfies E[A] ≥ Z/4.

7

Proof: The proof considers two cases. In the
first (easier) case, suppose the algorithm A picks some
element with probability at least 1/2. Then with
probability at least 1/2, it gets benefit at least Z/2,
and hence its expected performance is at least Z/4.

In the second case, suppose the algorithm A does not
pick an element with probability at least 1/2: i.e., we
are in the case where at least half the permutations
cause all products {v(e) d(π(e))}e∈U to be small (and
hence are “rejecting”). In this case, we can show
that OPT gets most of its benefit from the other, “ac-
cepting” permutations. Moreover, on these accepting
permutations, we would pick an element differently from
OPT only when there was some ‘blocking’ element with
v(e) d(π(e)) ≥ Z/2: but for the same reason that there
are few accepting permutations, there are few accepting
permutations with such a blocking element. Hence we
pick the same elements OPT picks on the “accepting”
permutations with high probability, and have a good
performance.

Let us now make this general idea for the second case
precise. Let us write

E[OPT] =
∑

π∈Sn

1
n!

n
max
i=1

{d(i)v(π(i))}

Let Sacc = {π ∈ Sn : maxn
i=1{d(i)v(π(i)) ≥ Z/2} be

the “accepting permutations” on which the algorithm
picks some element. The contribution to E [OPT] from
these accepting permutations is

L
def
=

∑
π∈Sacc

1
n! maxn

i=1{d(i)v(π(i))}
= E[OPT]−

∑
π 6∈Sacc

1
n! maxn

i=1{d(i)v(π(i))}
≥ E[OPT]−

∑
π 6∈Sacc

1
n! (Z/2)

≥ E[OPT]− Z
2 ≥ Z

2 , (4.1)

where we used the fact that Z ≤ E [OPT]. To complete
the proof, it suffices to show that A has expected value
at least L/2, which is at least Z/4 by (4.1). We begin
by rewriting L as

L =
∑n

i=1

∑
j:d(i)v(j)≥Z

2

1
n · d(i)v(j)

×Pr[d(i)v(j) highest |π(i) = j] (4.2)

(Here we implicitly assume that there is exactly one
product d(i)v(j) which is highest: we break ties in some
consistent fashion.) Combining (4.1) and (4.2) gives us∑n

i=1

∑
j:d(i)v(j)≥Z

2

1
n · d(i)v(j) ≥ Z

2 (4.3)

For each such i, j pair where d(i)v(j) ≥ Z/2, let Gij be
the set of permutations on which A chooses element j at
time i, getting benefit d(i)v(j): let us call these “good”.
(Note that, in these permutations, d(i)v(j) must be the

first product which is at least Z/2.) The performance
of the algorithm is

E[A] =
∑n

i=1

∑
j:d(i)v(j)≥Z

2
d(i)v(j) · |Gij |

|Sn| (4.4)

The following claim shows there are many “good”
permutations.

Claim 4.8 For each i, j such that d(i)v(j) ≥ Z/2,
|Gij | ≥ |Sn \ Sacc|/n ≥ |Sn|/2n.

Proof: We show the first inequality by giving an n-to-
1 map fij from Sn \ Sacc to Gij , the second inequality
follows from the fact that at most half the permutations
are in Sacc.

Define fij(π) by changing π and mapping element j
to location i, swapping it with whatever was there
originally. In other words, if i′ = π−1(j), let fij(π)(i) =
π(i′) = j, let fij(π)(i′) = π(i), and for k 6= i, i′ let
fij(π)(k) = π(k). Showing fij is a n-to-1 map is
straight-forward; to show that π′ = fij(π) is in Gij ,
we need to show that d(i)v(π′(i)) = d(i)v(j) ≥ Z/2
(which follows from our choice of i, j), and that no
other position i′ has d(i′)v(π′(i′)) ≥ Z/2 (which follows
almost as easily from the fact that π 6∈ Sacc and hence
did not have any positions i′ such that d(i′)v(π(i′)) ≥
Z/2.

The rest of the proof of Theorem 4.7 is immediate:
by (4.4) and Claim 4.8, it follows that

E [A] ≥
∑n

i=1

∑
j:d(i)v(j)≥Z

2
d(i)v(j) · 1

2n ≥ Z/4,

where the last step is by equation (4.3).

To use Theorem 4.7 fruitfully and obtain benefit ≈
E [OPT]/4, the bound Z should be close to E [OPT]:
such an estimate could come from expert knowledge,
prior runs of the problem, or some other source. A
special case when such an estimate of E [OPT] can be
obtained is the situation when we know the values of all
the elements. In this case, we can use a sampling-based
estimator for E [OPT] (as shown in Lemma A.1) to get
E [A] ≥ (1−δ)(1−ε)

4 E [OPT].

5 Extensions to Matroid Secretary
Problems

In this section, we show how the secretary problem on
many classes of matroids can be “reduced” to partition
matroids. Moreover, we extend our results for the
discounted and weighted secretary problems to partition
matroids, and hence to such classes of matroids as well.
This reduction to partition matroids also gives a simple
unified view of several results of Babaioff et al. [BIK07],
and also improves some of the results from their paper.

Recall that a matroid M = (U, I) consists of a ground
set U , and a collection I of subsets of U that is

8

closed under taking subsets satisfying the well-known
exchange conditions. A partition matroid (U, I) is one
where there is some partition P of U , and S ∈ I if
and only if I has at most one element from each set
in P . The following definition formalizes the notion
of a “reduction” from arbitrary matroids to partition
matroids.

Definition 5.1 (An α-Partition Property) A ma-
troid M = (U, I) satisfies an α-partition property if
one can (randomly) define a partition matroid M′ =
(U ′, I ′) on some subset U ′ of the universe U such that
for any values of the elements U , we have

• E(value of max-weight base in M′) ≥ 1/α × value
of max-weight base in M.
• Every independent set in M′ is an independent
set in M .

In a graphic matroid the ground set is the set of edges
of some graph G = (V,E), and S ⊆ E is independent
if and only if it does not contain a cycle. In a uniform
matroid the independent sets are all subsets of size at
most some k. Finally, in a transversal matroid the
ground set is the set of left vertices from some bipartite
graph G = (L,R,E), and a set S ⊆ L is independent if
and only if there is a perfect matching of S to nodes in
R. All of these matroids satisfy an α-partition property:

Theorem 5.2 An α-partition property can be shown
for the following classes of matroids:

• Any graphical matroid satisfies a 3-partition prop-
erty.
• Any uniform matroid satisfies a e/(e−1)-partition
property.
• Transversal matroids satisfy a d-partition prop-
erty, where d is the maximum degree of vertices on
the left, as well as a 4k/d-partition property, where
k is the rank of the matroid.

The proofs for these reductions appear in Appendix B;
as an example, we give the reduction for graphical
matroids.

Lemma 5.3 (Graphical Matroids) Any graphical
matroid satisfies a 3-partition property.

Proof: Let G be a graph defining a graphic matroid.
Pick an edge {u, v} from G uniformly at random, with
probability 1

2 color u red and v blue, and with probabil-
ity 1

2 color u blue and v red. Then independently color
every other node red or blue, each with probability 1

2 .
Create a part in the partition matroid for each red
node x, and add to it all the red-blue edges incident
on x. Then run this procedure recursively on the graph
induced by the edges that have both endpoints colored
blue to create more sets in the partition.

It is easy to see that picking one bichromatic edge
incident on each red node will result in a forest. It
is also clear that taking the union of such a forest with
any set of blue-blue edges that is itself a forest still gives
a forest, implying that any set which is independent in
the partition matroid we create is independent in the
original graphic matroid.

For a graph G, let OPT(G) be the value of the optimal
independent set in the graphic matroid defined by G.
Let v(G) be a random variable denoting the value of
the maximum independent set in the partition matroid
constructed by this reduction. We claim that E[v(G)] ≥
1
3OPT(G), and prove it by induction on the number of
edges of G. For the base case, if G only has one edge
then we color it bichromatically with probability 1, so
E[v(G)] = OPT(G) ≥ 1

3OPT(G) as claimed.

For the inductive step, let Xrb be a random variable
denoting the value of the optimal independent set from
the partition matroid corresponding just to the sets
we created for the red nodes. Let T be the optimal
forest (which without loss of generality is a tree, since
otherwise we just analyze each component separately).
Root T arbitrarily. After the random coloring, the set of
edges that go from a red node to a blue parent are clearly
bichromatic and will get assigned to different sets in the
partition corresponding to red nodes, so the optimal
independent set in the partition matroid is at least as
large as their sum. Every edge in T has probability 1/m
(where m is the number of edges in G) of being the
initial edge chosen to be colored bichromatically, and if
it is the one chosen then with probability 1/2 the parent
is blue and the child is red. If it is not chosen then it still
has probability 1/4 of having its parent colored blue and
its child red. So the total probability that it is colored
in this way is at least 1

2m + (1 − 1
m) 1

4 = 1
4 + 1

4m , so by
linearity of expectations E[Xrb] ≥ (1

4 + 1
4m)OPT(G).

Clearly v(G) = Xrb + v(Gbb), where Gbb is the graph
induced by edges that have both endpoints colored blue.
The probability that an edge in T is colored monochro-
matically blue is at least (1− 1

m) 1
4 = 1

4−
1

4m , since if it is
not picked as the initial bichromatic edge its endpoints
are both colored blue with probability 1/4. By linearity
of expectations this means that E[OPT(Gbb)] ≥ (1

4 −
1

4m)OPT(G). Also, since we colored at least one edge
bichromatically by induction we know that E[v(Gbb)] ≥
1
3OPT(Gbb). So E[v(G)] = E[Xrb + v(Gbb)] = E[Xrb] +
E[v(Gbb)] ≥ (1

4 + 1
4m)OPT(G) + E

[
1
3OPT(Gbb)

]
≥

(1
4 + 1

4m)OPT(G) + 1
3 (1

4 −
1

4m)OPT(G) ≥ 1
3OPT(G)

The reductions of Theorem 5.2 motivate the study of
the matroid secretary problem, the weighted version,
and the discounted version on partition matroids.

Theorem 5.4 On partition matroids, there is an e-
competitive algorithm for the matroid secretary problem,

9

a (16 + 3e)-competitive algorithm for the weighted ma-
troid secretary problem, an O(log n)-competitive algo-
rithm for the discounted matroid secretary problem, and
a ((1−δ)(1−ε)

4)-competitive algorithm for the discounted
matroid secretary problem if we know all of the values.

Proof: The e-competitive algorithm for the matroid
secretary problem is trivial: just run the classical
secretary algorithm on each set in the partition. The
same argument combined with Theorem 4.4 gives the
theorem for the discounted case, and combined with
Theorem 4.7 and Lemma A.1 gives the theorem for the
discounted case with known-OPT (we defer the details
to the full version). The proof for the weighted problem
is given in Appendix C.

This theorem, combined with the definition of the
α-partition property, immediately implies that if a
matroid satisfies an α-partition property, then there is
an (eα)-competitive algorithm for the matroid secretary
problem, a ((16 + 3e)α)-competitive algorithm for the
weighted secretary problem, an O(α log n)-competitive
algorithm for the discounted matroid secretary prob-
lem, and a ((1−δ)(1−ε)

4 α)-competitive algorithm for the
discounted matroid secretary problem if we know all of
the values. Thus Theorem 5.2 implies that there are
constant-competitive algorithms for graphic, uniform,
and low- and high-degree transversal matroids in all
variants but the general discounted setting, in which
case there are O(log n)-competitive algorithms.

If we do not know that the matroid we are working with
satisfies an α-partition property, we extend Theorem 4.4
to give the following bound for the discounted problem.
We defer the proof to Appendix D.

Theorem 5.5 There is an algorithm A for the
discounted secretary problem on matroids such that
E[OPT]/E[A] ≤ O(log k · log n) where k is the rank of
the matroid M which is the input to the algorithm.

In Section 4.2 we saw that if one knows all the values,
or knows (a good estimate of) the expectation of OPT
this is enough to break the lower bound and achieve
a constant competitive algorithm. For discounted
secretary problem on matroids knowing the maximal
value is also very helpful. In such case we can improve
the result of Theorem 5.5.

Theorem 5.6 There is an algorithm A for the dis-
counted secretary problem on matroids when the maxi-
mal value is known such that E[OPT]/E[A] ≤ O(log n).

Proof: For i ∈ Z, let scale Pc be the set of all
pairs i, j such that d(i)v(j) ∈ (2c−1, 2c]. Thus OPT ≤
2c

∑
(i,j)∈Pc

Pr[π(i) = j ∧ d(i)v(j) ∈ OPT]. Since vmax

falls in the maximum discount location with probability
1
n , OPT ≥ vmaxdmax/n. Let cmax = dlog vmaxdmaxe be

the index of the highest non-empty scale. Since |Pc| <
kn, it follows that that contribution of level c to OPT ,
2c

∑
(i,j)∈Pc

Pr[π(i) = j ∧ d(i)v(j) ∈ OPT] is bounded
above by nk2c. Thus for cmin = cmax − dlog n2ke − 2,
the total contribution to E[OPT] for scales cmin and
below is at most OPT/2.

The algorithm A samples a random integer c in [cmin +
1, cmax] and runs the greedy algorithm, restricted to
elements at scale c or higher. The expected contribution
of this scale to OPT is Ω(OPT

log n). It is easy to check that
this gives an O(log n)-competitive ratio.

References

[BIK07] Moshe Babaioff, Nicole Immorlica, and Robert
Kleinberg. Matroids, secretary problems, and
online mechanisms. In SODA ’07, pages 434–443,
2007.

[BIKK07] M. Babaioff, N. Immorlica, D. Kempe, and
R. Kleinberg. A knapsack secretary problem with
applications. In APPROX ’07, 2007.

[DLR71] Cyrus Derman, Gerald J. Lieberman, and Shel-
don M. Ross. A sequential stochastic assignment
problem. Management Sci., 18:349–355, 1971.

[Dyn63] E. B. Dynkin. Optimal choice of the stopping
moment of a Markov process. Dokl. Akad. Nauk
SSSR, 150:238–240, 1963.

[Fer89] T.S. Ferguson. Who solved the secretary prob-
lem? Statistical Science, 4:282–296, 1989.

[Fre83] P. R. Freeman. The secretary problem and its
extensions: a review. Internat. Statist. Rev.,
51(2):189–206, 1983.

[GM07] A. Gershkov and B. Moldovanu. The dynamic as-
signment of heterogenous objects: A mechanism
design approach. Technical report, University of
Bonn, 2007.

[HKP04] Mohammad Taghi Hajiaghayi, Robert Kleinberg,
and David C. Parkes. Adaptive limited-supply
online auctions. In EC ’04, pages 71–80, 2004.

[Kle05] Robert Kleinberg. A multiple-choice secretary
algorithm with applications to online auctions. In
16th SODA, pages 630–631. ACM, 2005.

[Lin61] D.V. Lindley. Dynamic programming and de-
cision theory. Applied Statistics, 10(1):39–51,
March 1961.

[LN00] Ron Lavi and Noam Nisan. Competitive analysis
of incentive compatible on-line auctions. In EC
’00, pages 233–241, 2000.

[LN05] Ron Lavi and Noam Nisan. Online ascending auc-
tions for gradually expiring items. In SODA ’05,
pages 1146–1155, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[MMP08] M. Mahdian, P. McAffee, and D. Pennock. The
secretary problem with durable employment. per-
sonal communication, 2008.

[RP76] Willis T. Rasmussen and Stanley R. Pliska.
Choosing the maximum from a sequence with a
discount function. Appl. Math. Optim., 2(3):279–
289, 1975/76.

10

A Discounted Secretary Problems:
Missing Proofs

A.1 Lower Bound on the Competitive Ra-
tio

Recall that we wanted to show that any algorithm A
for the Discounted Secretary problem has a competitive
ratio of no better than

√
2− ε even when A knows the

set of values.

Proof of Theorem 4.6. Let c =
√

2 − 1. Let t =
bn(1− c)c, and note that nc ≤ n− t ≤ nc + 1. Assume
that v(1) = v(2) = 1 and that v(i) = 0 for any i ≥ 3.
Let d(i) = 1 for i < t, d(t) = c · n + 1 and d(i) = 0
for any i > t. The expected value that OPT gets is
E[OPT] = 1∗ (1− (n−t

n)2)+c ·n · 2
n ≥ 1− (nc+1

n)2 +2c =

1 + 2c− c2 − 2cn+1
n2 = 4(

√
2− 1)− 2(

√
2−1)n+1

n2 .

We next show that if A observes one of the two valuable
elements (with value 1) before time t it immediately
picks it (this is the optimal online algorithm for this
input). This is true as the expected value from picking
the element is 1. On the other hand, if there are still k
element to come, the expected value from skipping the
current element and picking the next valuable element
is 1 · k−(n−t)

k + cn · 1
k ≤ k−cn

k + cn · 1
k = 1. Thus the

algorithm is always (weakly) better off picking the first
valuable element it sees.

Now, the expected value that A gets is E[A] = 1 ∗ (1−
(n−t

n)2)+cn·2·n−t
n · 1n ≤ 1−(cn

n)2+2c cn+1
n = 1+c2+ 2c

n =

4− 2
√

2 + 2(
√

2−1)
n . We conclude that

E[OPT]/E[A] ≥
4(
√

2− 1)− 2(
√

2−1)n+1
n2

4− 2
√

2 + 2(
√

2−1)
n

As this expression clearly tends to 4(
√

2−1)

4−2
√

2
=
√

2 as n

goes to infinity, the claim follows. 2

A.2 A Sampling Lemma

The following lemma shows that given access to the
element values, one can estimate the expected optimum
for the discounted secretary fairly efficiently.

Lemma A.1 Given access to the element values and
an ε > 0, one can obtain an estimate Ẑ ∈ ((1 −
ε)E [OPT], (1+ε)E [OPT]) with probability 1−δ in time
poly(n, ε−1, log δ−1).

Proof: For a parameter M to be specified later,
sample m permutations π1, π2, . . . , πM independently
from Sn and define

Ẑ =
1
M

∑
t

max
i
{d(i)v(πt(i))}.

Clearly, E [Ẑ] = E [OPT], and it just remains to show
that Ẑ is tightly concentrated about its mean. Let vmax

denote the value of the most valuable element, and let
dmax denote the largest discount. For a given trial t, let
Yt = maxi{d(i)v(πt(i))}

vmaxdmax
, and let Y = 1

M

∑M
i=1 Yi. (Hence

Yi ∈ [0, 1], Y = Ẑ/vmaxdmax.)

A quick observation: if we pick the element that
appears in the location with the highest discount,
the expected benefit is dmaxvmax/n, and hence
E[OPT] ≥ dmaxvmax/n, which in turn implies that
E [Y] ≥ E [Ẑ]/vmaxdmax ≥ 1/n. By standard Chernoff
bounds, it follows that for ε ≤ 1,

Pr[|Y −E [Y]| ≥ εE [Y]] ≤ 2 exp{−ε2 ·ME[Y]
2 + ε

)

≤ 2 exp(−Mε2

3n
),

and thus if we set M ≥ 3
ε2 n ln 2

δ , this probability is at
most δ, which proves the lemma.

Note that bZ
1+ε is a lower bound for E [OPT] with

probability 1 − δ, and hence when the values of the
elements are known, we can use Theorem 4.7 to get
(1−δ)(1−ε)

4 E [OPT].

B Reductions for Several Matroid
Classes

Lemma B.1 (Graphical Matroids) Any graphical
matroid satisfies a 3-partition property.

Lemma B.2 (Uniform Matroids) Any uniform
matroid satisfies a e/(e− 1)-partition property.

Proof: Create k bins (where k is the rank of the
uniform matroid), and place each element in U into one
of these bins uniformly at random. The i-th largest
value v(i) is not in the same bin as any larger value
with probability at least (1−1/k)i−1. This implies that
the expected value of the maximal weight basis of the
partition matroid is at least∑k

i=1 v(i) · (1− 1
k)i−1 ≥

∑k
i=1 v(i) · 1

k

∑k
j=1(1−

1
k)j−1

= 1
k ·

1−(1−1/k)k

1−(1−1/k) ·
∑n

1=1 v(i)

= (1− (1− 1/k)k) ·
∑n

1=1 v(i)
≥ (1− 1/e) ·

∑n
1=1 v(i)

Lemma B.3 (Low-Degree Transversal Matroids)
Transversal matroids satisfy a d-partition property,
where d is the maximum degree of vertices on the left.

Proof: Create a partition in the partition matroid for
each vertex on the right, and put a vertex on the left

11

(i.e., an element of U) in one of the bins corresponding
to its neighbors uniformly at random.

Given a maximum independent set I in the transversal
matroid, there is some matching between I and the
vertices on the right. Clearly each node x in I gets put in
the bin corresponding to its neighbor y in this matching
with probability at least 1/d. If this even does happen,
then the maximum independent set in the partition
matroid contains either x or an element of greater value.
Thus the expected value of the maximum independent
set is at least

∑
x∈I

1
dv(x) = 1

d

∑
x∈I v(x) = 1

dOPT

Lemma B.4 (High-Degree Transversal Matroids)
Any transversal matroid satisfies a 4k/d-partition
property, where d is the minimum degree of vertices on
the left and k is the rank of the matroid.

Proof: We use the same reduction as for low-degree
transversal matroids. Without loss of generality, let
v(1) ≥ v(2) ≥ · · · ≥ v(n). Then the probability that
element i is the most valuable in the set that it is
assigned to is at least 1 − i−1

d , since at most i − 1 of
its neighbors can contain more valuable elements and it
has at least d neighbors. Considering only the elements
{1, 2, . . . , d/2} and using linearity of expectations, we
get that the expected value of the max base in the
partition matroid is at least

∑d/2
i=1

(
1− i−1

d

)
v(i) ≥ 1

2

d/2∑
i=1

v(i)

≥ d

4k

k∑
i=1

v(i) ≥ d

4k
OPT

C The Weighted Matroid Secretary
Problem

In this section, we extend our algorithm for the
Weighted Secretary problem to its matroid version.
We first give an algorithm and analysis for partition
matroids, and then extend this to a wider class of
matroids using our general reduction theorems. In this
setting we refer to items as seats, and we try to assign
elements to seats. The matroid condition is just that
the set of elements which get assigned a seat must be
independent in the matroid in which we are working.

Let M = (U, I) be a partition matroid of rank r(M)
with partition P. Consider the following matroid
reservation algorithm. First, sample the beginning
using Kleinberg’s trick to randomly choose a stopping
point so that the distribution of elements in the sampled
portion is identical to choosing every element indepen-
dently at random with probability 1/2. Then consider

the maximum independent set I in the sample and
count how many of these elements are in each value
class, where value class i contains elements with values
between 2i−1 and 2i. Suppose that there are ri elements
of I in value class i. If a is the largest value class with at
least one element, then we reserve the highest weight ra

seats for value class a, then the next ra−1 seats for value
class a− 1, and so on down to the smallest value class.
Now when we see some element e from a set A ∈ P, we
add it to our solution if e is at least as valuable as the
most valuable element from A in the sample, nothing
else from A has been added to the solution, and there
are still seats remaining among those reserved for the
value class that contains v(e). If we do choose to add e,
then we assign it to the heaviest seat that has not been
used yet among the seats reserved for value class i.

Theorem C.1 The matroid reservation algorithm is
16-competitive for partition matroids, if there is no
value class with exactly one element from the optimal
solution in that class.

Proof: Given a set A ∈ P, let m(A) = argmaxe∈A v(e)
be the element in the set of maximum value. Let Pi =
{A ∈ P : v(m(A)) ∈ [2i−1, 2i)}, and let ui = |Pi|. Note
that ui is the number of seats used for elements in value
class i by the optimal solution. Let fi be the number
of seats into which the reservation algorithm places
elements with value in value class i. For each set A ∈ Pi,
we define two random variables: let XA be 1 if the most
valuable element from A appeared in the sample and 0
otherwise, and let YA be 1 if the second most valuable
element from A appeared in the sample and 0 otherwise.
Clearly fi ≥ min{

∑
A∈Pi

XA,
∑

A∈Pi
YA(1−XA)} since

the algorithm reserves at least
∑

A∈Pi
XA seats and

tries to put at least
∑

A∈Pi
YA(1 − XA) elements from

value class i into seats. Let Yi = {YA : A ∈ Pi}
and let Xi = {XA : A ∈ Pi} be the set of Y
and X variables. Taking expectations, we see that
E[fi] ≥ E

[
min{

∑
A∈Pi

XA,
∑

A∈Pi
YA(1−XA)}

]
=

EYi

[
EXi

[
min{

∑
A∈Pi

XA,
∑

A∈Pi
YA(1−XA)}|Yi

]]
.

When the Y values are fixed, we claim that
EXi

[
min{

∑
A∈Pi

XA,
∑

A∈Pi
YA(1−XA)}|Yi

]
≥

1
4

∑
A∈Pi

YA. We consider three cases depending on∑
u∈Pi

YA. If this sum is 0 then the claim is trivially
true. If the sum is at least 2 then there are at least two
sets in Pi with Y value equal to 1, so

EXi

[
min{

∑
A∈Pi

XA,
∑

A∈Pi

YA(1−XA)}|Yi

]

≥ EXi

[
min{

∑
A∈Pi

YAXA,
∑

A∈Pi

YA(1−XA)}|Yi

]

≥ 1
4

∑
A∈Pi

YA.

12

If the sum equals 1 then there is only one set
A ∈ Pi that has YA = 1. Since every value class
has either zero or at least two elements from the
optimal solution, this means that there is some
other A′ ∈ Pi with YA′ = 0. If XA = 0 and
XA′ = 1 then min{

∑
A∈Pi

XA,
∑

A∈Pi
YA(1 −

XA)} ≥ 1 =
∑

A∈Pi
YA, which implies that

EXi

[
min{

∑
A∈Pi

XA,
∑

A∈Pi
YA(1−XA)}|Yi

]
≥

1
4

∑
A∈Pi

YA.

With this claim established, we have that E[fi] ≥
EYi

[
1
4

∑
A∈Pi

YA

]
= 1

8ui. So in expectation the
reservation algorithm reserves at least 1

8 as many seats
for value class i the optimal solution does.

Now we show that the seats reserved by the algorithm
are at least as heavy as the seats used by the optimal
solution. In the optimal solution each set in the
partition reserves a seat for the value class containing
its most valuable element, and in the algorithm each set
reserves a seat for either the value class containing its
most valuable element or a smaller value class. Thus∑a

j=i rj ≤
∑a

j=i uj for all i ∈ [a]. Let bi =
∑a

j=i rj and
let oi =

∑a
j=i uj .

Let sO be the seating function of the optimal solution,
and let sR be the seating function of the solution
returned by the reservation algorithm. Let OPTi =∑oi−1+ui

j=oi−1+1 v(s−1
O (j))w(j) be the contribution of value

class i to the optimal solution, so OPT =
∑

i OPTi.
Similarly, let Ri =

∑bi−1+fi

j=bi−1+1 v(s−1
R (j))w(j) be the

contribution of class i to the solution given by the
algorithm. Then

E[Ri] ≥ E

2i−1

bi−1+fi∑
j=bi−1+1

w(j)


≥ E

2i−1

oi−1+fi∑
j=oi−1+1

w(j)


≥ 1

8
2i−1

oi−1+ui∑
j=oi−1+1

w(j)

≥ 1
16

2i

oi−1+ui∑
j=oi−1+1

w(j) ≥ 1
16

OPTi.

Thus by linearity of expectation the expected value of
the reservation algorithm is at least 1/16 of the optimal
value.

If there are value classes that only have one element
in the optimal solution, then the reservation algorithm
might not work because if that one element appears in
the sample then it will not appear in the final solution,
and if it appears after the sample then there might
not be a spot reserved for it.We handle this case by

essentially running the normal secretary algorithm in
parallel: with probability 16

3e+16 we run the reservation
algorithm, and with probability 3e

3e+16 we just run the
basic secretary algorithm and assign the element we
choose to the heaviest seat. Call this algorithm A.

Theorem C.2 A is (16 + 3e)-competitive.

Proof: Let H be the set of value classes that have
at least 2 elements in the optimal solution, and let T
be the other value classes. Let OPTH =

∑
i∈H OPTi,

and similarly let OPTT =
∑

i∈T OPTi. Clearly OPT =
OPTH + OPTT . Be Theorem C.1 the reservation
algorithm returns a solution with expected value at
least 1

16OPTH . Let vmax = maxe∈U v(e) be the largest
value, and let wmax be the weight of the heaviest seat.
Since the value classes are defined by powers of two,
it is easy to see that vmaxwmax ≥ 1

3OPTT , and thus
the basic secretary algorithm gets at least 1

3eOPTT in
expectation. We conclude that the expected value of
the solution returned by A is at least

3e

3e + 16
· 1
3e
·OPTT +

16
3e + 16

· 1
16
·OPTH =

1
3e + 16

OPT

which completes the proof.

The matroid reductions of Section 5 now immediately
imply results for graphical, uniform, and low-and high-
degree transversal matroids.

Corollary C.3 There are algorithms for the weighted
secretary problem on graphical, uniform, and low- and
high-degree transversal matroids that have constant
competitive ratio.

D Discounted Matroid Secretary: Gen-
eral Matroids

Proof of Theorem 5.5. The algorithm and proof
are similar to those of Theorem 4.4. For c ≥ 1 let
Ic be the interval (2−idmax, 2−(i−1)dmax] and let Pc =
{i ∈ [n] : d(π(i)) ∈ Ic}. The algorithm works by
first choosing a random discount class c ∈ [log(nk)]
uniformly at random and then running the Threshold
Price Algorithm of [BIK07, Section 3] only on Pc. As
before, we first show that we can ignore discounts that
are too small. Given a permutation π ∈ Sn, let Iπ =
argmaxI∈I

∑
i∈I d(π(i))v(i) be the optimal independent

13

set, and let Ic
π = {i ∈ Iπ : π(i) ∈ Pc}. Clearly

E[OPT] =
1
n!

 ∑
π∈Sn

∞∑
c=1

∑
i∈Ic

π

d(π(i))v(i)


=

1
n!

 ∑
π∈Sn

log(nk)∑
c=1

∑
i∈Ic

π

d(π(i))v(i)

+
∑

π∈Sn

∞∑
c=log(nk)+1

∑
i∈Ic

π

d(π(i))v(i)


Note that

∑
π∈Sn

∑log(nk)
c=1

∑
i∈Ic

π
d(π(i))v(i) ≥ (n −

1)!dmaxvmax, since in at least (n− 1)! permutations the
most valuable element is put in the location with the
largest discount. Also,

∑
π∈Sn

∞∑
c=log(nk)+1

∑
i∈Ic

π

d(π(i))v(i)

≤ n!kvmaxdmax/(nk) ≤ (n− 1)!dmaxvmax, (D.5)

since at most k elements can be picked and they are all
in a location with discount at most dmax/(nk). So if we
only consider the large discount classes, we have that

E[OPT]/2 ≤ 1
n!

∑
π∈Sn

log(nk)∑
c=1

∑
i∈Ic

π

d(π(i))v(i)

≤ 1
n!

∑
π∈Sn

log(nk)∑
c=1

max
I∈I

 ∑
i∈I:π(i)∈Pc

d(π(i))v(i)


≤

log(nk)∑
c=1

2−(c−1) 1
n!

∑
π∈Sn

max
I∈I

∑
i∈I:π(i)∈Pc

v(i)

≤
log(nk)∑

c=1

2−(c−1)E

max
I∈I

∑
i∈I:π(i)∈Pc

v(i)


We know from [BIK07, Theorem 3.2] that the Threshold
Prince Algorithm is 32 dlog ke-competitive. It is easy to
see (by conditioning on the set of elements which actu-
ally appear in the locations in Pc) that the threshold
price algorithm is actually 32 dlog ke competitive when
restricted to locations in Pc, i.e. in expectation it returns
an independent set I the sum of whose values is at least

1
32dlog keE

[
maxI∈I

∑
i∈I:π(i)∈Pc

v(i)
]
. This means that

the expected value of the algorithm is at least

log(nk)∑
c=1

1
log(nk)

2−c 1
32 dlog ke

E

max
I∈I

∑
i∈I:π(i)∈Pc

v(i)


≥ 1

128 log(nk) dlog ke
E[OPT]

Since k ≤ n this implies that the algorithm is
O(log n log k)-competitive as claimed. 2

14

	Introduction
	Model, Preliminaries, and Notation
	The Weighted Secretary Problem
	Time-dependent Weights, or the Discounted Secretary Problem
	Discounted Secretary: General Case
	A Nearly-Logarithmic Lower Bound
	A Logarithmic Upper Bound

	Discounted Secretary with Known OPT

	Extensions to Matroid Secretary Problems
	Discounted Secretary Problems: Missing Proofs
	Lower Bound on the Competitive Ratio
	A Sampling Lemma

	Reductions for Several Matroid Classes
	The Weighted Matroid Secretary Problem
	Discounted Matroid Secretary: General Matroids

