▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Compact Routing with Slack

Michael Dinitz

Computer Science Department Carnegie Mellon University

ACM Symposium on Principles of Distributed Computing Portland, Oregon August 13, 2007 Routing in a network: nodes have IDs, packets have headers, routing decisions made based on packet header and local routing table

- Routing in a network: nodes have IDs, packets have headers, routing decisions made based on packet header and local routing table
- Tradeoff between size of routing table and optimality of routes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Routing in a network: nodes have IDs, packets have headers, routing decisions made based on packet header and local routing table
- Tradeoff between size of routing table and optimality of routes
- Compact routing schemes try to have small stretch with small routing tables

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Stretch: $\max_{u,v} \frac{d_R(u,v)}{d(u,v)}$

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
00000			
Routing m	odels		

• Labels:

О

• Labeled: scheme designer gets to choose labels (names) of nodes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Name-independent: node names assigned arbitrarily

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000		00
Routing mode	ls		

- Labels:
 - Labeled: scheme designer gets to choose labels (names) of nodes

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Name-independent: node names assigned arbitrarily
- Ports:
 - Designer port: scheme designer assigns links to ports
 - Fixed port: links assigned to arbitrary ports

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
00●000	00000		00
Previous Res	search		

• Lots of work on routing in all of these models

- Lots of work on routing in all of these models
- Result that we use:
- Thorup-Zwick labeled schemes
 - Tree routing: Stretch 1 (exact routes), small labels
 - General routing: stretch 4k 5, $\tilde{O}(n^{1/k})$ space, $o(k \log^2 n)$ -bit labels, and $o(\log^2 n)$ -bit headers

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Previous Research

- Lots of work on routing in all of these models
- Result that we use:
- Thorup-Zwick labeled schemes
 - Tree routing: Stretch 1 (exact routes), small labels
 - General routing: stretch 4k 5, $\tilde{O}(n^{1/k})$ space, $o(k \log^2 n)$ -bit labels, and $o(\log^2 n)$ -bit headers

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Essentially matching upper and lower bounds for all of the models (see Cyril Gavoille's talk at LOCALITY for more)

Introduction 000000	Labeled Routing	Name-Independent Routing	Conclusion 00
What now?			

• What if large worst case stretch is only caused by a few really bad pairs?

• What if large worst case stretch is only caused by a few really bad pairs?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Would like to make claims of the form "ignoring a small number of pairs, have very small stretch on the rest"

- What if large worst case stretch is only caused by a few really bad pairs?
- Would like to make claims of the form "ignoring a small number of pairs, have very small stretch on the rest"
- Studied before:
 - Metric embeddings: Kleinberg-Slivkins-Wexler '04, ABCDGKNS '05, Abraham-Bartal-Neiman '06, '07
 - Distance oracles/labels: Chan-D-Gupta '06, ABN '06

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spanners: CDG '06

Introduction 000000	Labeled Routing 00000	Name-Independent Routing	Conclusion
<i>e</i> -Neighborhoc	ods		

Definition

o

Given $0 < \epsilon < 1$, for any point $v \in V$, the ϵ -neighborhood $N_{\epsilon}(v)$ consists of the closest ϵn points to v

- $R(v,\epsilon) = \min\{r: |B(v,r)| \ge \epsilon n\}$
- v is ϵ -far from u if $d(u, v) > R(u, \epsilon)$

Introduction	Labeled Routing 00000	Name-Independent Routing	Conclusion 00
Slack defini	tions		

• Given a weighted graph G = (V, E)

Slack defin	itions		
Introduction ○○○○○●	Labeled Routing	Name-Independent Routing	Conclusion 00

• Given a weighted graph G = (V, E)

Definition (Uniform slack routing scheme)

A routing scheme R has ϵ -uniform slack and stretch α if $d_R(u, v) \leq \alpha d(u, v)$ for all $u, v \in V$ such that v is ϵ -far from u

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Slack definit	ions		
Introduction	Labeled Routing 00000	Name-Independent Routing	Conclusion 00

• Given a weighted graph G = (V, E)

Definition (Uniform slack routing scheme)

A routing scheme R has ϵ -uniform slack and stretch α if $d_R(u, v) \leq \alpha d(u, v)$ for all $u, v \in V$ such that v is ϵ -far from u

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• One scheme that works for all ϵ :

Slack defin	itions		
Introduction ○○○○○●	Labeled Routing	Name-Independent Routing	Conclusion 00

• Given a weighted graph G = (V, E)

Definition (Uniform slack routing scheme)

A routing scheme R has ϵ -uniform slack and stretch α if $d_R(u, v) \leq \alpha d(u, v)$ for all $u, v \in V$ such that v is ϵ -far from u

• One scheme that works for all ϵ :

Definition (Gracefully degrading routing scheme)

A routing scheme R is gracefully degrading with stretch α if for all 0 < ϵ < 1 it has ϵ -slack and stretch α

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	●0000	00000	00
Our Results: L	abeled Routing		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	●0000		00
Our Results:	Labeled Routing		

	ϵ -Uniform Slack	Gracefully Degrading
Stretch	24k - 25	$O(\log \frac{1}{\epsilon})$
Table Size	$O(\frac{1}{\epsilon^{4/k}} \frac{\log^{3-1/k} \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}} + \log n)$	$O(\log^4 n)$
Headers	$O(\frac{\log^2 n}{\log\log n})$	$O(\frac{\log^2 n}{\log\log n})$
Labels	$O(\frac{\log^2 n}{\log \log n}) + O(k \frac{\log^2 \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}})$	$O(\log^4 n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	●0000		00
Our Results:	Labeled Routing		

	ϵ -Uniform Slack	Gracefully Degrading
Stretch	24k - 25	$O(\log \frac{1}{\epsilon})$
Table Size	$O(\frac{1}{\epsilon^{4/k}} \frac{\log^{3-1/k} \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}} + \log n)$	$O(\log^4 n)$
Headers	$O(\frac{\log^2 n}{\log\log n})$	$O(\frac{\log^2 n}{\log \log n})$
Labels	$O(\frac{\log^2 n}{\log\log n}) + O(k \frac{\log^2 \frac{1}{\epsilon}}{\log\log \frac{1}{\epsilon}})$	$O(\log^4 n)$

Note: setting k = Θ(log ¹/_ε) gives slack scheme with all parameters polylogarithmic in n and ¹/_ε

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	●0000		00
Our Results:	Labeled Routing		

	ϵ -Uniform Slack	Gracefully Degrading
Stretch	24k - 25	$O(\log \frac{1}{\epsilon})$
Table Size	$O(\frac{1}{\epsilon^{4/k}} \frac{\log^{3-1/k} \frac{1}{\epsilon}}{\log \log \frac{1}{\epsilon}} + \log n)$	$O(\log^4 n)$
Headers	$O(\frac{\log^2 n}{\log\log n})$	$O(\frac{\log^2 n}{\log \log n})$
Labels	$O(\frac{\log^2 n}{\log\log n}) + O(k \frac{\log^2 \frac{1}{\epsilon}}{\log\log \frac{1}{\epsilon}})$	$O(\log^4 n)$

- Note: setting $k = \Theta(\log \frac{1}{\epsilon})$ gives slack scheme with all parameters polylogarithmic in n and $\frac{1}{\epsilon}$
- Similar bounds discovered independently by Abraham, Bartal, and Neiman

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	0●000	00000	
Density Nets			

• Intuition: Small set of points that approximates the distances well

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	0●000	00000	
Density Nets			

• Intuition: Small set of points that approximates the distances well

Definition

An ϵ -density net is a subset N of V such that

1 For all $x \in V$, there is some $y \in N$ s.t. $d(x, y) \leq 2R(x, \epsilon)$

$$|N| \leq \frac{1}{\epsilon}$$

③ For all $u, v \in N$, $N_{\epsilon}(u) \cap N_{\epsilon}(v) = \emptyset$

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	0●000	00000	
Density Nets			

• Intuition: Small set of points that approximates the distances well

Definition

An ϵ -density net is a subset N of V such that

1 For all $x \in V$, there is some $y \in N$ s.t. $d(x, y) \leq 2R(x, \epsilon)$

$$|N| \leq \frac{1}{\epsilon}$$

3) For all
$$u,v\in {\sf N}$$
, ${\sf N}_\epsilon(u)\cap {\sf N}_\epsilon(v)=\emptyset$

 Always exist, can be constructed in polynomial time [Chan D Gupta '06]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	

Labeled Routing 00●00 Name-Independent Routing

Conclusion

Slack Labeled Scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Labeled Routing 00●00 Name-Independent Routing

Conclusion

Slack Labeled Scheme

- Create an ϵ -density net N and shortest path trees out of net
- *u*, *v* ∈ *V* such that *v* is *ϵ*-far from *u*

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Labeled Routing

Name-Independent Routing

Conclusion 00

Slack Labeled Scheme

- Create an ϵ -density net N and shortest path trees out of net
- $u, v \in V$ such that v is ϵ -far from u
- Phase 1: Route to closest node in density net (≤ 2R(u, ε) ≤ 2d(u, v))

Labeled Routing

Name-Independent Routing

Conclusion 00

Slack Labeled Scheme

- Create an ϵ -density net N and shortest path trees out of net
- $u, v \in V$ such that v is ϵ -far from u
- Phase 1: Route to closest node in density net (≤ 2R(u, ϵ) ≤ 2d(u, v))
- Phase 2: Route "inside the net" to net node closest to v (name in label of v) (≤ 6d(u, v))

Labeled Routing

Name-Independent Routing

Conclusion 00

Slack Labeled Scheme

- Create an ϵ -density net N and shortest path trees out of net
- $u, v \in V$ such that v is ϵ -far from u
- Phase 1: Route to closest node in density net (≤ 2R(u, ε) ≤ 2d(u, v))
- Phase 2: Route "inside the net" to net node closest to v (name in label of v) (≤ 6d(u, v))
- Phase 3: Use a tree routing scheme to go down the tree to destination (≤ 3d(u, v))

Douting Inc	ida tha Nat		
Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	000●0	00000	00

 \circ

 Nodes in net (probably) not adjacent – what is "routing inside the net"?

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	000●0		00
Routing Inside	the Net		

 Nodes in net (probably) not adjacent – what is "routing inside the net"?

- Coppersmith-Elkin distance preserver trick:
 - Graph of shortest paths between net nodes
 - At most $O(\frac{1}{\epsilon^4})$ intermediate nodes of degree > 2
- Use Thorup-Zwick on these nodes + net nodes
- Degree 2 intermediate nodes handled trivially

Gracefully	Degrading Scheme	ح	
Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	○○○○●		00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- log *n* levels: $\epsilon_i = 1/2^i$
- Different density net at each level

Introduction

Labeled Routing ○○○○● Name-Independent Routing

Conclusion

Gracefully Degrading Scheme

- log *n* levels: $\epsilon_i = 1/2^i$
- Different density net at each level
- Create Thorup-Zwick distance labels for each net
- Every node's label includes distance label of closest net node - allows us to find out distance in each net
- Choose and route along the level with smallest total distance

Introduction	

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Gracefully Degrading Scheme

- log *n* levels: $\epsilon_i = 1/2^i$
- Different density net at each level
- Create Thorup-Zwick distance labels for each net
- Every node's label includes distance label of closest net node - allows us to find out distance in each net
- Choose and route along the level with smallest total distance
- This scheme has constant average stretch (implied by gracefully degrading)

Introduction	Labeled Routing	Name-Independent Routing	Conclusio
000000	00000	●0000	00
Our Results:	Name-Indeper	ndent Routing	

• Uniform slack scheme in designer-port model, lower bound for uniform slack in fixed-port model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusi
000000	00000	●0000	00
Our Results:	Name-Indeper	ndent Routing	

• Uniform slack scheme in designer-port model, lower bound for uniform slack in fixed-port model

	Designer Port	Fixed Port
Stretch	27	2k - 1
Table Size	$O(\frac{1}{\epsilon}\log^2 n + \log^4 n)$	$\Omega(n^{1/k})$
Headers	$O(\frac{\log^2 n}{\log\log n})$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	○●○○○	00
Name-Independ	dent Difficulties		

• Problem: how do we know which net node is closest to destination?

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	0●000	00
Name-Indepen	dent Difficulties		

- Problem: how do we know which net node is closest to destination?
- Solution: distributed data structure to find label of destination

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	○●○○○	
Name-Independ	dent Difficulties		

- Problem: how do we know which net node is closest to destination?
- Solution: distributed data structure to find label of destination
- Problem: even tree routing is hard how do we make such a data structure?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	○●○○○	00
Name-Indepen	dent Difficulties		

- Problem: how do we know which net node is closest to destination?
- Solution: distributed data structure to find label of destination
- Problem: even tree routing is hard how do we make such a data structure?

• Solution: additive tree routing scheme

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000		00
Distributing L	abels (cont'd)		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Labeled Routing

Name-Independent Routing

Conclusion

Distributing Labels (cont'd)

 For each x ∈ N, assign each node in N_ϵ(x)) a different "color" in [ϵn]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Labeled Routing

Name-Independent Routing

Conclusion 00

Distributing Labels (cont'd)

- For each x ∈ N, assign each node in N_ϵ(x)) a different "color" in [ϵn]
- h: V → [en] any easy to compute balanced hash function (e.g. ID(v) mod en)

Labeled Routing

Name-Independent Routing

Conclusion 00

Distributing Labels (cont'd)

- For each x ∈ N, assign each node in N_ϵ(x)) a different "color" in [ϵn]
- h: V → [en] any easy to compute balanced hash function (e.g. ID(v) mod en)
- Node x stores the labels of all nodes y such that h(y) = color(x)

Labeled Routing

Name-Independent Routing

Conclusion 00

Distributing Labels (cont'd)

- For each x ∈ N, assign each node in N_ϵ(x)) a different "color" in [ϵn]
- h: V → [εn] any easy to compute balanced hash function (e.g. ID(v) mod εn)
- Node x stores the labels of all nodes y such that h(y) = color(x)

Labeled Routing

Name-Independent Routing

Conclusion 00

Distributing Labels (cont'd)

- For each x ∈ N, assign each node in N_ϵ(x)) a different "color" in [ϵn]
- h: V → [en] any easy to compute balanced hash function (e.g. ID(v) mod en)
- Node x stores the labels of all nodes y such that h(y) = color(x)
- New problem: how to route to node x with the right color

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	000●0	00
Tree Routing			

• In name-independent model, tree routing is basically no easier than general routing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	000●0	00
Tree Routing			

- In name-independent model, tree routing is basically no easier than general routing
- AGM '04: Name-independent, designer-port tree routing scheme on unweighted trees with additive distortion twice the depth of the tree

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	000€0	00
Tree Routing			

- In name-independent model, tree routing is basically no easier than general routing
- AGM '04: Name-independent, designer-port tree routing scheme on unweighted trees with additive distortion twice the depth of the tree
- Reason for depth: travels to an intermediate node first (along shortest path)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	000●0	00
Tree Routing			

- In name-independent model, tree routing is basically no easier than general routing
- AGM '04: Name-independent, designer-port tree routing scheme on unweighted trees with additive distortion twice the depth of the tree
- Reason for depth: travels to an intermediate node first (along shortest path)
- But by properties of density net, depth of the tree isn't too large compared to d(u, v)!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• So use this scheme to find node of the right color

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	○○○○●	
Fixed-Port Low	ver Bound		

- AGM '06: Any name-independent fixed-port routing scheme with constant average stretch requires polynomial space
- Rules out good gracefully degrading schemes, but not slack schemes

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
000000	00000	○○○○●	00
Fixed-Port Lov	ver Bound		

- AGM '06: Any name-independent fixed-port routing scheme with constant average stretch requires polynomial space
- Rules out good gracefully degrading schemes, but not slack schemes
- Easy extension:

Theorem

There exists a graph such that for constant $0 < \epsilon < 1/2$, every ϵ -uniform slack scheme with stretch 2k - 1 uses at least $\Omega(n^{1/k})$ space

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Labeled Routing

Name-Independent Routing

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusions and Open Questions

- Density nets make labeled routing with slack straightforward (and spanners, and distance oracles, and ...)
- In name-independent model, large difference between designer-port and fixed-port schemes

Conclusions and Open Questions

- Density nets make labeled routing with slack straightforward (and spanners, and distance oracles, and ...)
- In name-independent model, large difference between designer-port and fixed-port schemes
- Open questions:
 - Gracefully degrading name-independent designer-port scheme?
 - Lower bounds for for ϵ -slack instead of ϵ -uniform slack in name-independent fixed-port model?

Introduction	Labeled Routing	Name-Independent Routing	Conclusion
			00

Thank you!

