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Routing

Routing in a network: nodes have IDs, packets have headers,
routing decisions made based on packet header and local
routing table

Tradeoff between size of routing table and optimality of routes

Compact routing schemes try to have small stretch with small
routing tables

Stretch: maxu,v
dR(u,v)
d(u,v)
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nodes
Name-independent: node names assigned arbitrarily

Ports:

Designer port: scheme designer assigns links to ports
Fixed port: links assigned to arbitrary ports



Introduction Labeled Routing Name-Independent Routing Conclusion

Routing models

Labels:

Labeled: scheme designer gets to choose labels (names) of
nodes
Name-independent: node names assigned arbitrarily

Ports:

Designer port: scheme designer assigns links to ports
Fixed port: links assigned to arbitrary ports



Introduction Labeled Routing Name-Independent Routing Conclusion

Previous Research

Lots of work on routing in all of these models

Result that we use:

Thorup-Zwick labeled schemes

Tree routing: Stretch 1 (exact routes), small labels
General routing: stretch 4k − 5, Õ(n1/k) space, o(k log2 n)-bit
labels, and o(log2 n)-bit headers

Essentially matching upper and lower bounds for all of the
models (see Cyril Gavoille’s talk at LOCALITY for more)
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What now?

What if large worst case stretch is only caused by a few really
bad pairs?

Would like to make claims of the form “ignoring a small
number of pairs, have very small stretch on the rest”

Studied before:

Metric embeddings: Kleinberg-Slivkins-Wexler ’04,
ABCDGKNS ’05, Abraham-Bartal-Neiman ’06, ’07
Distance oracles/labels: Chan-D-Gupta ’06, ABN ’06
Spanners: CDG ’06
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ε-Neighborhoods

Definition

Given 0 < ε < 1, for any point v ∈ V , the ε-neighborhood Nε(v)
consists of the closest εn points to v

R(v , ε) = min{r : |B(v , r)| ≥ εn}
v is ε-far from u if d(u, v) > R(u, ε)
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Slack definitions

Given a weighted graph G = (V ,E )

Definition (Uniform slack routing scheme)

A routing scheme R has ε-uniform slack and stretch α if
dR(u, v) ≤ αd(u, v) for all u, v ∈ V such that v is ε-far from u

One scheme that works for all ε:

Definition (Gracefully degrading routing scheme)

A routing scheme R is gracefully degrading with stretch α if for all
0 < ε < 1 it has ε-slack and stretch α
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Our Results: Labeled Routing

Uniform slack and gracefully degrading schemes in both fixed
port and designer port models

ε-Uniform Slack Gracefully Degrading

Stretch 24k − 25 O(log 1
ε )

Table Size O( 1
ε4/k

log3−1/k 1
ε

log log 1
ε

+ log n) O(log4 n)

Headers O( log2 n
log log n ) O( log2 n

log log n )

Labels O( log2 n
log log n ) + O(k

log2 1
ε

log log 1
ε

) O(log4 n)

Note: setting k = Θ(log 1
ε ) gives slack scheme with all

parameters polylogarithmic in n and 1
ε

Similar bounds discovered independently by Abraham, Bartal,
and Neiman
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Density Nets

Intuition: Small set of points that approximates the distances
well

Definition

An ε-density net is a subset N of V such that

1 For all x ∈ V , there is some y ∈ N s.t. d(x , y) ≤ 2R(x , ε)

2 |N| ≤ 1
ε

3 For all u, v ∈ N, Nε(u) ∩ Nε(v) = ∅

Always exist, can be constructed in polynomial time [Chan D
Gupta ’06]
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Slack Labeled Scheme

v

u

Create an ε-density net N and
shortest path trees out of net

u, v ∈ V such that v is ε-far
from u

Phase 1: Route to closest node
in density net
(≤ 2R(u, ε) ≤ 2d(u, v))

Phase 2: Route ”inside the net”
to net node closest to v (name
in label of v) (≤ 6d(u, v))

Phase 3: Use a tree routing
scheme to go down the tree to
destination (≤ 3d(u, v))
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Routing Inside the Net

Nodes in net (probably) not adjacent – what is “routing inside
the net”?

Coppersmith-Elkin distance preserver trick:

Graph of shortest paths between net nodes
At most O( 1

ε4 ) intermediate nodes of degree > 2

Use Thorup-Zwick on these nodes + net nodes

Degree 2 intermediate nodes handled trivially
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Gracefully Degrading Scheme

log n levels: εi = 1/2i

Different density net at each level

Create Thorup-Zwick distance labels for each net

Every node’s label includes distance label of closest net node
– allows us to find out distance in each net

Choose and route along the level with smallest total distance

This scheme has constant average stretch (implied by
gracefully degrading)
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Our Results: Name-Independent Routing

Uniform slack scheme in designer-port model, lower bound for
uniform slack in fixed-port model

Designer Port Fixed Port

Stretch 27 2k − 1

Table Size O(1
ε log2 n + log4 n) Ω(n1/k)

Headers O( log2 n
log log n )
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Name-Independent Difficulties

Problem: how do we know which net node is closest to
destination?

Solution: distributed data structure to find label of destination

Problem: even tree routing is hard – how do we make such a
data structure?

Solution: additive tree routing scheme
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Distributing Labels (cont’d)

For each x ∈ N, assign each
node in Nε(x)) a different
“color” in [εn]

h : V → [εn] any easy to
compute balanced hash function
(e.g. ID(v) mod εn)

Node x stores the labels of all
nodes y such that
h(y) = color(x)

New problem: how to route to
node x with the right color
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Tree Routing

In name-independent model, tree routing is basically no easier
than general routing

AGM ’04: Name-independent, designer-port tree routing
scheme on unweighted trees with additive distortion twice the
depth of the tree

Reason for depth: travels to an intermediate node first (along
shortest path)

But by properties of density net, depth of the tree isn’t too
large compared to d(u, v)!

So use this scheme to find node of the right color
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Fixed-Port Lower Bound

AGM ’06: Any name-independent fixed-port routing scheme
with constant average stretch requires polynomial space

Rules out good gracefully degrading schemes, but not slack
schemes

Easy extension:

Theorem

There exists a graph such that for constant 0 < ε < 1/2, every
ε-uniform slack scheme with stretch 2k − 1 uses at least Ω(n1/k)
space
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Conclusions and Open Questions

Density nets make labeled routing with slack straightforward
(and spanners, and distance oracles, and ...)

In name-independent model, large difference between
designer-port and fixed-port schemes

Open questions:

Gracefully degrading name-independent designer-port scheme?
Lower bounds for for ε-slack instead of ε-uniform slack in
name-independent fixed-port model?
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Thank you!
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