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Abstract

We discuss the use of K-terminal networks to represent arbitrary clutters. A given clutter has many
different representations, and there does not seem to be any set of simple transformations that can be
used to transform one representation of a clutter into any other. We observe that for t ≥ 2 the class of
clutters that can be represented using no more than t terminals is closed under minors, and has infinitely
many forbidden minors.

1. Introduction

A clutter on a finite set S is a family of subsets of S, none of which contains any other. A graph naturally

gives rise to many clutters, including the families of minimal edge or vertex cuts, edge- or vertex-sets of

simple circuits, edge-sets of spanning trees, edge- or vertex-sets of simple paths between two given vertices,

and so on.

A less familiar construction associates a clutter C(G,K) to a K-terminal network (G,K) consisting of

a graph G and a subset K ⊆ V (G) of terminals: C(G,K) is the clutter on S = V (G) \K which contains

the minimal subsets M ⊆ S such that the full subgraph of G induced by M ∪K is connected. The elements

of C(G,K) are minpaths of (G,K). A K-terminal network may be thought of as a model of a real-world

structure, perhaps a computer or telephone network; the terminals represent users of the network and the

non-terminal vertices represent elements of the network which may or may not operate. Note that this

interpretation does not explicitly allow for the failure of network elements represented by the edges of G;

the possibility of such failures may be incorporated by inserting vertices of degree 2 in edges whose failure is

possible. We refer the interested reader to [1] for a general discussion of K-terminal networks and network

reliability.
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Our interest in the construction of C(G,K) does not lie in the modeling of real-world networks, however.

Rather, we are interested in the following result of [12, 13].

Theorem 1. Every clutter is C(G,K) for some K-terminal network (G,K).

We refer to (G,K) as a graphical representation of C(G,K). The trivial clutters C = {∅} and C = ∅ are

represented by edgeless 1-terminal and 2-terminal networks, respectively. A graphical representation of a

nontrivial clutter C may be constructed using the dual or blocker C∗, defined by: ∅∗ = {∅}, {∅}∗ = ∅, and if

∅ 6= C 6= {∅} then the elements of C∗ are minimal among sets which intersect all the elements of C. A clutter

with |C∗| = 1 and ∅ /∈ C∗ is represented by a K-terminal network with |K| = 2 which has a non-terminal

vertex for each element of an element of C, such that every non-terminal vertex is adjacent to all the other

vertices of G and the two terminal vertices are not adjacent. If C is a clutter on S and |C∗| ≥ 2 then there

is a K-terminal network with C = C(G,K) which has K = C∗ and V (G) \K = S; all of the non-terminal

vertices of G are adjacent to each other, none of the terminal vertices are adjacent to each other, and each

terminal vertex B ∈ C∗ has neighbor-set N(B) = B. That C = C(G,K) follows from the fact that C∗∗ = C

[3].

We call the graphical representations mentioned in the preceding paragraph standard. There is generally

a great variety of other graphical representations of a given clutter. In Section 2 of the paper we discuss

several simple ways to transform a graphical representation of a clutter into another representation of the

same clutter. In some contexts it happens that equivalent combinatorial structures can be changed into each

other using simple transformations; consider the basis exchange property of matroids [5], or the Reidemeister

moves in knot theory [6]. One might suspect that similarly there is a list of simple transformations, some

sequence of which may be performed on a graphical representation of a clutter to obtain any other graphical

representation of the same clutter. Examples indicate that this is not the case, at least if “simple” is

interpreted in a reasonable way.

The terminal number of a K-terminal network is |K| and the minimum terminal number of a clutter,

term(C), is the minimum of the terminal numbers of graphical representations of C; the standard represen-

tations show that in general term(C) ≤ max{2, |C∗|}. We think of term(C) as a measure of the complexity

of C.
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If C is a clutter on S and S1, S2 are disjoint subsets of S then (C/S1) \ S2 = (C \ S2)/S1 is the

clutter on S \ (S1 ∪ S2) consisting of the minimal subsets N ⊆ S \ (S1 ∪ S2) with the property that

N ∪ S1 contains an element of C. This clutter is the minor of C obtained by contracting S1 and deleting

S2. It is common to simplify notation when contracting or deleting single elements: C/x for C/{x} and

C \ x or C − x for C \ {x}. Two simple properties of the minor operations are order-independence (i.e.,

(((C/S1) \ S2)/S3) \ S4 = (C/(S1 ∪ S3)) \ (S2 ∪ S4) ) and duality (i.e., ((C/S1) \ S2)∗ = (C∗/S2) \ S1).

As noted in [13], the minor operations are compatible with graphical representations. If C = C(G,K)

then a (G0,K) with (C/S1) \ S2 = C(G0,K) may be obtained by removing each non-terminal vertex v ∈ S2

and all edges incident on v, and replacing each non-terminal vertex v ∈ S1 with edges connecting all the

neighbors of v. To motivate these representations of deletion and contraction, recall that we may think

of (G,K) as a network whose function is to provide communication among the elements of K, and whose

non-terminal vertices are vulnerable to failure. In (C/S1) \ S2 each non-terminal vertex v ∈ S2 has failed,

and each non-terminal vertex v ∈ S1 has become invulnerable to failure and hence is logically equivalent to a

clique of its neighbors. (G,K) and (G0,K) have the same terminals, so we conclude that term(C) ≥ term(C 0)

for any minor C0 of C. It follows that for each fixed t ≥ 2 the class of clutters satisfying term(C) ≤ t is

closed under minors, and hence is determined by a family of forbidden minors.

Theorem 2. For every t ≥ 2 the family of clutters satisfying term(C) ≤ t has infinitely many forbidden

minors.

We have not completely determined any of these families of forbidden minors, but in Section 3 we

present forbidden minors for various minimum terminal numbers; in particular we show that if t ≥ 2 then

the forbidden minors for term(C) ≤ t include all the degenerate projective planes Js with s ≥ t.

In Section 4 we briefly discuss the special properties of 2-terminal clutters.

2. Clutter-preserving transformations

It is not unusual for nonisomorphic K-terminal networks to represent the same clutter. For instance, each of

the following transformations of a K-terminal network (G,K) does not affect C(G,K). We denote by N(v)

the set of vertices adjacent to v, excluding v itself.

1. A loop at any vertex may be adjoined or deleted.

3



2. If v and w are non-terminal vertices with a common terminal neighbor, an edge between v and w may

be adjoined or deleted.

3. If v is a non-terminal vertex which does not appear in any minpath of (G,K) then any edge incident

on v may be removed; conversely an edge incident on such a v may be adjoined, so long as the edge does

not create a minpath involving v.

4. If (G,K) has two terminal vertices with precisely the same neighbors then one of these terminals may

be removed; conversely a new terminal may be introduced with the same neighbors as an existing terminal.

5. If two terminal vertices are adjacent, the edge connecting them may be contracted; that is, the two

terminals may be combined into a single terminal adjacent to all the neighbors of the original terminals.

Conversely, a terminal vertex τ may be replaced by two adjacent terminals τ1 and τ2 such that ((N(τ1) \

{τ2})) ∪ (N(τ2) \ {τ1})) = N(τ).

6. If τ1 and τ2 are terminal vertices such that neither is adjacent to any terminal and N(τ1) ⊆ N(τ2),

edges connecting all pairs of neighbors of τ2 may be adjoined and then τ2 may be removed.

7. If τ is a terminal cutpoint and G \ {τ} has terminals in separate components, edges connecting all

pairs of neighbors of τ may be adjoined and τ may then be removed.

8. Given a terminal τ and a B ∈ C(G,K)∗ such that B ⊆ N(τ), edges connecting all pairs of neighbors

of τ may be adjoined and then τ may be replaced with a terminal τ 0 such that B = N(τ 0).

We prove that transformations 6 and 8 do not affect C(G,K), and leave the other proofs to the reader.

Observe first that adjoining edges connecting all pairs of neighbors of τ2 does not affect C(G,K) because it

is a combination of instances of transformation 2; we presume that all these edges are present in (G,K). Let

(G0,K0) be obtained from (G,K) by removing τ2. Suppose M ∈ C(G,K); then the full subgraph H of G

induced by M ∪K is connected. The full subgraph H 0 of G0 induced by M ∪K0 is also connected, because a

path in H which does not end at τ2 has a corresponding path in H
0, in which any appearance of τ2 has been

replaced either by an appearance of τ1 or by an edge connecting two neighbors of τ2. IfM
0 ∈ C(G0,K0) then

the full subgraph H 0 of G0 induced by M 0 ∪K0 is connected; the full subgraph H of G induced by M 0 ∪K

is also connected because every neighbor of τ1 is adjacent to τ2. This verifies that transformation 6 does

not affect C(G,K). Observe that in the situation of transformation 8, adjoining τ 0 to (G,K) does not affect
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Figure 2.1: a clutter with three inequivalent reduced representations

C(G,K), because every M ∈ C(G,K) intersects B and hence contains a non-terminal vertex adjacent to τ 0.

Transformation 6 may then be applied to adjoin edges connecting all pairs of neighbors of τ and remove τ .

These transformations may be applied to an arbitrary graphical representation (G,K) of a clutter C to

obtain a representation (G0,K0) with |K0| ≤ |K| which is reduced in the sense that there are no loops, every

non-isolated non-terminal vertex appears in some minpath, no two terminals are adjacent or have the same

neighbor-set, and every terminal’s neighbor-set is an element of C∗. We call two reduced representations

equivalent if the same elements of C∗ appear as neighbor-sets of terminals in both. Transformations 1—8 are

clearly not “complete” in the sense of being adequate to generate all the graphical representations of a given

clutter from any one, for they cannot generally be used to obtain an inequivalent reduced representation

from the standard one.

A ninth transformation may sometimes be used to obtain inequivalent reduced representations, but is

not generally sufficient to obtain all of them.

9. Suppose B ∈ C(G,K)∗ and every two elements of B are adjacent or are connected by a path whose

internal vertices are all terminals. Then a terminal τ with N(τ) = B may be adjoined.

Example 2.1. Consider the clutter C = {{d, e}, {e, f}, {a, c, d}, {a, c, e}, {a, c, g}, {a, d, g}, {b, c, d},

{b, c, e}} corresponding to the three-terminal network given in Figure 2.1. (In the figure non-terminal vertices

are indicated by small, lettered nodes.)

The dual clutter is C∗ = {{a, b, e}, {a, c, e}, {a, d, e}, {a, b, d, f}, {c, d, e}, {c, d, f}, {c, e, g}, {d, e, g}};

notice that the blocker elements corresponding to the terminals in Figure 2.1 are {a, b, e}, {c, d, f} and
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{d, e, g}. We prove that the graphical representation given in Figure 2.1 is the only reduced graphical

representation of C with fewer than seven terminals.

The smallest element of C∗ has three elements, so Menger’s Theorem tells us that if C were to have

a 2-terminal representation then there would be three pairwise disjoint minpaths. This is not the case, so

C has no 2-terminal representation. It is a tedious but trivial task to verify that no 3-element subset of

C∗ other than {{a, b, e}, {c, d, f}, {d, e, g}} corresponds to a 3-terminal representation of C. For instance,

if a 3-terminal network has terminals with neighbor-sets {a, b, d, f}, {c, d, e}, and {c, e, g} then the second

terminal is adjacent to both c and d, which are adjacent to the other two terminals; hence {c, d} is a minpath

which is not an element of C.

Suppose we are given a reduced representation (G,K) of C with four or more terminals; we claim that

{c, d, e} is the only element of C∗ which might not be the neighbor-set of some τ ∈ K. This implies that

transformations 1-9 cannot be used to obtain the standard representation from the representation given in

Figure 2.1.

If every τ ∈ K is adjacent to either c or d and at least one τ ∈ K is adjacent to both c and d then

{c, d} contains a minpath of (G,K), contradicting C = C(G,K). If every τ ∈ K is adjacent to either c or

d and no τ ∈ K is adjacent to both c and d then the neighbor-sets of terminals in (G,K) are four or five

of {a, c, e}, {a, d, e}, {a, b, d, f}, {c, e, g}, {d, e, g}. Hence {a, e} contains a minpath of (G,K), contradicting

C = C(G,K). It follows that some τ1 ∈ K is adjacent to neither c nor d; then {a, b, e} = N(τ1).

If {c, d, f} is not the neighbor-set of any τ ∈ K then {a, b, e} contains a minpath of (G,K), because every

terminal is adjacent to one of a, b, e and the presence of τ1 guarantees that the full subgraph of G induced

by K ∪ {a, b, e} is connected. This is impossible, because no element of C is contained in {a, b, e}; hence

there is a τ2 ∈ K with {c, d, f} = N(τ2).

If {d, e, g} is not the neighbor-set of any τ ∈ K then it must be a cutset separating terminals. If τ1 and

τ2 are in the same connected component of G \ {d, e, g} then this component contains all the non-terminals

outside {d, e, g}; Lemma 2.2 implies that this cannot occur.

Lemma 2.2. Suppose (G,K) is a reduced representation of C, and suppose B ∈ C∗. If there is a

component of G \B without any non-terminals, then there is a terminal in G whose neighbor-set is B.
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Proof: Let H be a component of G \ B without any non-terminals. G is reduced, so it has no adjacent

terminals; hence H consists solely of a single terminal τ with N(τ) ⊆ B. N(τ) cannot be a proper subset of

B, because B ∈ C∗; hence B = N(τ). ¥

Hence if {d, e, g} is not the neighbor-set of any τ ∈ K then G\{d, e, g} must have a component containing

τ1, a and b and another containing τ2, c and f . It follows that neither {a, c, e} nor {a, b, d, f} is the neighbor-

set of a terminal of (G,K), and consequently the neighbor-sets of terminals of (G,K) are {a, b, e}, {c, d, f} and

two or three of {a, d, e}, {c, d, e}, {c, e, g}. Hence {c, e} is a minpath of (G,K), contradicting C = C(G,K).

It follows that there is a terminal τ3 ∈ K with N(τ3) = {d, e, g}.

If {a, b, d, f} is not the neighbor-set of any τ ∈ K then Lemma 2.2 tells us that G \ {a, b, d, f} must

have a component containing τ3, e and g and another component containing c. It follows that none of

{a, c, e}, {c, d, e}, {c, e, g} can be the neighbor-set of a terminal of (G,K), and consequently the neighbor-

sets of terminals of (G,K) are {a, b, e}, {c, d, f}, {d, e, g} and {a, d, e}. Hence {a, d} is a minpath of (G,K),

contradicting C = C(G,K). It follows that there is a terminal τ4 ∈ K with N(τ4) = {a, b, d, f}.

The existence of a τ5 ∈ K with N(τ5) = {c, e, g} follows from Lemma 2.2 and the fact that a component

of G\{c, e, g} not containing τ4 cannot contain any non-terminal vertices. A single component of G\{a, c, e}

contains b, f , τ4, d, τ3 and g; hence Lemma 2.2 implies that there is a τ6 ∈ K with N(τ6) = {a, c, e}. A

single component of G \ {a, d, e} contains g, τ5, c, τ2, f , τ4, and b; hence Lemma 2.2 implies that there is a

τ7 ∈ K with N(τ7) = {a, d, e}.

This completes the proof that Figure 2.1 gives the only reduced representation of C with fewer than

seven terminals. We leave it to the reader to find a reduced 7-terminal representation of C in which {c, d, e}

is not the neighbor-set of any terminal.

Example 2.3. We also leave to the reader the more difficult task of verifying that every reduced

representation of the clutter represented by the 3-terminal network pictured in Figure 2.2 is equivalent to

either the standard representation or the one in the figure.

Example 2.4. The clutter represented by the 3-terminal network pictured in Figure 2.3 has an auto-

morphism which reverses c and d, and fixes the other elements of S. Consequently it has another 3-terminal

representation, isomorphic to the one in the figure; these give the only two equivalence classes of reduced
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Figure 2.2: a clutter with two inequivalent reduced representations

Figure 2.3: a clutter with six inequivalent reduced representations

3-terminal representations. The clutter also has two inequivalent but isomorphic reduced 4-terminal rep-

resentations, each obtained by adjoining a terminal with neighbor-set {c, d, e} to one of the 3-terminal

representations. It has a reduced 5-terminal representation, but {c, d, e} is the only element of the blocker

which cannot appear as the neighbor-set of a terminal in such a representation. The standard representation

of the clutter has 6 terminals.

3. Forbidden minors

Any clutter C can be represented by a K-terminal network (G,K) with max{2, |C∗|} terminals, and many

clutters can be represented by K-terminal networks with fewer than |C∗| terminals. A clutter that actually

requires |C∗| terminals seems especially interesting because it has no graphical representation which is

essentially simpler than the standard one.
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Some preliminary definitions and results will be convenient in our discussion of examples.

Definition 3.1. Two vertices of a K-terminal network have perfect communication if they are equal, adja-

cent, or connected by a path whose internal vertices are all terminals.

The terminology reflects the idea that the only elements of a K-terminal network which are subject to

failure are the non-terminal vertices; vertices which communicate perfectly may be connected with a path

which is invulnerable or “perfect.”

Lemma 3.2. If two vertices have perfect communication then they appear in the same connected component

of G \B for every B ∈ C(G,K)∗ which does not contain either of them.

Proof: The assertion follows immediately from the fact that B ∈ C(G,K)∗ is a vertex cut consisting of

non-terminal vertices. ¥

Corollary 3.3. If all elements of V (G) \K have perfect communication, then |K| ≥ |C(G,K)∗|.

Proof: Let B ∈ C∗. All of the non-terminals in G \ B are in one component of G \ B, so there is a

component ΓB of G \ B with only terminal vertices. ΓB cannot intersect ΓB0 for any B0 6= B ∈ C(G,K)∗,

for if τ ∈ ΓB∩ΓB0 then ΓB = {terminals σ for which there is a στ path which contains only terminals} = ΓB0

and hence B = { non-terminal neighbors of elements of ΓB } = B0. ¥

For s > 1, the degenerate projective plane Js is the clutter {{x1, x2, ..., xs}, {x1, y}, {x2, y}, ..., {xs, y}};

note that J∗s = Js. These clutters are well-known as forbidden minors for binary clutters [7], for matroid

ports [8], and for the width-length property [4]. It will come as no surprise that they play a similar role here:

Js is a forbidden minor for term(C) ≤ t whenever 2 ≤ t ≤ s.

Theorem 3.4. For every s ≥ 2, term(Js) = |J∗s | = s + 1. Every proper minor of Js has a 2-terminal

representation.

Proof: Let (G,K) represent Js. Consider B = {x1, ..., xs} ∈ J∗s . Only one non-terminal vertex, y, remains

in G \B. But B ∈ J∗s , so G \B has at least two components; at least one component must consist entirely

of terminals. This component provides perfect communication among the elements of B. Now consider
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{xi, y}, where 1 ≤ i ≤ s. The non-terminals not in {xi, y} have perfect communication, so they all appear

in one component of G \ {xi, y}. There must be another component whose vertices are all terminals, and

this component provides perfect communication between xi and y. Corollary 3.3 implies that |K| ≥ |J∗s |.

Js/y = {{x1}, ..., {xs}} may be graphically represented with two nonadjacent terminals, each adjacent

to every xi. Js/xj = {{y}, {xi : 1 ≤ i ≤ s, i 6= j}} may be represented by a 2-terminal network, with y

adjacent to both terminals and all the xi other than xj appearing on a path connecting the two terminals.

Js \ y = {{x1, ..., xs}} may be represented by a 2-terminal network with all the xi as vertices of a path

connecting the two terminals. Js \ xj = {{y, xi} : 1 ≤ i ≤ s, i 6= j} may be represented by a 2-terminal

network in which y is the only neighbor of one terminal, and all the xi other than xj are adjacent to y and

the second terminal. ¥

We denote by Ua,n the uniform clutter consisting of the a-element subsets of an n-element set; note that

U∗a,n = Un−a+1,n. U0,n = {∅}may be represented with just one terminal. U1,n is represented by aK-terminal

network (G,K) with two nonadjacent terminals, both of which are adjacent to all n non-terminal vertices.

Un,n may be represented with two terminals, connected by a path of length n.

The following lemma will be useful in analyzing the Ua,n with 1 < a < n− 1.

Lemma 3.5. Suppose 1 < a < n− 1, and let (G,K) be a K-terminal network representing Ua,n. If there is

an X ⊂ S = V (G) \K such that |X| ≥ a− 1 and every element of X has perfect communication with every

other, then |K| ≥ |U∗a,n|.

Proof: Suppose |X| > a − 1 and let Y = S \ X; then |Y | < n − a + 1. Consider any D ⊂ S with

|D| = n − a + 1 and Y ⊂ D; note that D ∈ U∗a,n. Every non-terminal of G \D is an element of X and so

has perfect communication with all the others; hence every non-terminal is in the same component of G\D.

Another component of G \D must consist entirely of terminals; it provides perfect communication among

the elements of D. Iterating over all possible choices of D provides perfect communication within Y and

between any element of Y and any element of X. Thus every non-terminal has perfect communication with

every other, so Corollary 3.3 applies.

Suppose |X| = a − 1, and again let Y = S \ X; then |Y | = n − a + 1 and hence Y ∈ U∗a,n. All of the
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non-terminals in G\Y are elements of X and therefore in the same component of G\Y ; any other component

of G \ Y must consist entirely of terminals, and such a component provides perfect communication among

the elements of Y . If |Y | > |X| the conclusion of the lemma is obtained by applying the argument of the

preceding paragraph to Y in place of X.

Suppose |Y | ≤ |X|, and choose a fixed subset A ⊂ X with |A| = n−a; then A∪{y} ∈ U∗a,n for every y ∈ Y .

We claim that there is at least one yA ∈ Y such that the elements of A∪ {yA} have perfect communication.

The elements of X communicate perfectly, so Lemma 3.2 tells us that for any y ∈ Y there is one component

of G \ (A ∪ {y}) which contains all the elements of X \ A; choose yA ∈ Y so that G \ (A ∪ {yA}) has a

component H which contains no vertices from X, and contains as few vertices from Y as possible given that

it contains none from X. Suppose y ∈ V (H) ∩ Y . Every component of G \ (A ∪ {yA}) contains a vertex

adjacent to yA, because G \A is connected; consequently all the components of G \ (A∪ {yA}) other than H

will be contained in the one component of G\ (A∪{y}) which contains yA. The non-terminal vertices which

appear in the remaining component(s) of G \ (A ∪ {y}) include only those from V (H) \ {y}, contradicting

the minimality of H. It follows that V (H) ∩ Y = ∅, and hence that H contains no non-terminal vertices, so

H provides perfect communication among the elements of A ∪ {yA}.

Suppose x ∈ X and consider B = (Y ∪ {x}) \ {yA} ∈ U∗a,n. The component of G \B which contains yA

also contains A \ {x}, because the elements of A communicate perfectly with yA; observe that a < n − 1

implies that |A| = n−a > 1, guaranteeing that A\{x} 6= ∅. This component of G\B also contains the other

elements of X, because they communicate perfectly with the elements of A \ {x}. Any other component of

G \B contains only terminal vertices, and hence provides perfect communication among the elements of B.

This shows that every x ∈ X communicates perfectly with every element of Y other than yA. The elements

of Y communicate perfectly with each other, so there is perfect communication between any two elements

of X ∪ (Y \ {yA}). This set is strictly larger than X, so the argument of the first paragraph may be applied

to it. ¥

Theorem 3.6. If 1 < a < n− 1 then term(Ua,n) = |U∗a,n| =
¡

n
n−a+1

¢
.
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Proof: Consider any terminal vertex τ in a graphical representation (G,K) of Ua,n. Let T be the set of

terminals which are connected to τ by paths whose internal vertices are all terminals. Then X = N(T )

consists entirely of non-terminals, and T provides perfect communication among the elements of X. Observe

that T is separated from the rest of K in G \X, so X contains an element of U∗a,n; hence |X| ≥ n− a+ 1.

If |V (G) \ (K ∪X)| = n− |X| ≤ n− a+ 1 then |X| ≥ a− 1 and Lemma 3.5 tells us that |K| ≥ ¯̄U∗a,n ¯̄.
Otherwise |V (G) \ (K ∪X)| = n− |X| > n− a+ 1. Suppose Y ⊂ V (G) \ (K ∪X) and |Y | = n− a+ 1.

The elements of X communicate perfectly through T , so they appear in one component of G \ Y ; any other

component of G\Y contains no elements of X. Choose Y ⊂ V (G)\ (K∪X) so that a component H of G\Y

which does not contain any member of X contains the smallest possible number of non-terminal vertices.

Suppose v ∈ V (H) \ K and let V = {v} ∪ (Y \ {y1}). G \ (Y \ {y1}) is connected, so every component

of G \ Y contains a vertex adjacent to y1; hence the component of G \ V which contains y1 contains all of

the components of G \ Y other than H. The vertex-set of any other component of G \ V is contained in

V (H) \ {v}, contradicting the minimality of H; hence there is no v ∈ V (H) \K. Thus V (H) ⊆ K, and H

provides perfect communication among the elements of Y .

Recall that X ∪Y is a proper subset of S, because n− |X| > n−a+1. Let Z = S \ (X ∪Y ), and suppose

∅ 6= A ⊂ X and ∅ 6= B ⊂ Y have |A| + |B| = n − a. If z ∈ Z then A ∪ B ∪ {z} ∈ U∗a,n; Lemma 3.2 tells

us that all the elements of Y appear in a single component of G \ (A ∪ B ∪ {z}). Choose z ∈ Z so that a

component H of G \ (A∪B ∪ {z}) which doesn’t contain any element of Y has the smallest possible number

of non-terminals. Suppose v ∈ V (H)∩Z. G \ (A∪B) is connected, so every component of G \ (A∪B ∪ {z})

contains a vertex adjacent to z; consequently the component of G\(A∪B∪{v}) containing z contains all the

components of G \ (A∪B ∪ {z}) other than H. The vertex-set of any other component of G \ (A∪B ∪ {v})

is contained in V (H) \ {v}, violating the minimality of H. We conclude that V (H) contains no element of

Z. V (H) also contains no element of Y , so all the non-terminal vertices of H are elements of X.

If V (H) ∩ X = ∅ then H contains no non-terminals, so it provides perfect communication among the

elements of A ∪B ∪ {z}.

On the other hand, suppose V (H) ∩ X 6= ∅; Lemma 3.2 tells us that X \ A ⊆ V (H). G \ (A ∪ B) is

connected and H is a component of G \ (A ∪B ∪ {z}), so H must have a vertex u adjacent to z. If u may
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be chosen in X then we may also choose x 6= u ∈ X \ A, because |X −A| ≥ n − a + 1 − (n − a − 1) = 2.

If u cannot be chosen in X then u is a terminal. H is connected, so there is a path in H from u to an

element of X; by shortening the path if necessary we may assume that its internal vertices are all terminals.

|X −A| ≥ 2, so we may choose an x ∈ X \ A which is not the element of X which appears on this path.

Either way, u is a vertex of H which is adjacent to z, x ∈ V (H)∩X, and u has perfect communication with

an element of V (H)∩X in H \x. G\ (A∪B) is connected, so every component of G\ (A∪B∪{z}) contains

a vertex adjacent to z; consequently all the components of G \ (A ∪ B ∪ {z}) other than H are contained

in the component of G \ (A ∪ B ∪ {x}) which contains z. V (H) \ {x} contains u which is adjacent to z,

and also contains an element of X which communicates perfectly with u in H \ x; because there is perfect

communication among the elements of X, Lemma 3.2 tells us that every element of (V (H) ∩ X) \ {x} is

contained in the component of G\ (A∪B∪{x}) which contains z. Any other component of G\ (A∪B∪{x})

contains only vertices from V (H) \ (V (H)∩X). The non-terminals appearing in H are all elements of X, so

any other component of G\(A∪B∪{x}) contains only terminal vertices and provides perfect communication

among the elements of A ∪B ∪ {x}.

We conclude that whether V (H)∩X = ∅ or V (H)∩X 6= ∅ there is perfect communication between any

element of A and any element of B. We can repeat this for all nonempty A ⊂ X and B ⊂ Y such that

|A| + |B| = n − a, and conclude that there is perfect communication between any element of X and any

element of Y . There is perfect communication among the elements of X and also among the elements of Y ,

so there is perfect communication among the elements of X ∪ Y .

Denote X ∪ Y by X1. We may apply the argument above, starting with the second paragraph of the

proof, to X1 in place of X. We conclude that either |V (G) \ (K ∪X1)| = n − |X1| ≤ n − a + 1 (in which

case |X1| ≥ a− 1 and Lemma 3.5 tells us that |K| ≥
¯̄
U∗a,n

¯̄
) or |V (G) \ (K ∪X1)| = n− |X1| > n−a+1 (in

which case the argument produces a Y1 ∈ U∗a,n which is contained in V (G) \ (K ∪X1) and has the property

that there is perfect communication among the elements of X2 = X1 ∪ Y1). Repeating as many times as

necessary, we conclude that |K| ≥ ¯̄U∗a,n¯̄.
The standard representation shows that term(Ua,n) ≤

¯̄
U∗a,n

¯̄
. ¥

Corollary 3.7. If n ≥ 5, 2 < a < n − 2 and max{¡ n−1
n−a+1

¢
,
¡
n−1
n−a

¢} < t < ¡ n
n−a+1

¢
then Ua,n is a forbidden
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minor for term(C) ≤ t.

Proof. Theorem 3.6 implies that term(Ua,n) =
¯̄
U∗a,n

¯̄
=
¡

n
n−a+1

¢
. Observe that a deletion Ua,n \x consists

of the a-element subsets of S which do not contain x, and hence is isomorphic to Ua,n−1. It follows that

term(Ua,n \ x) =
¯̄
U∗a,n−1

¯̄
=
¡
n−1
n−a

¢
. On the other hand, a contraction Ua,n/x consists of the (a− 1)-element

subsets of S\{x}, and hence is isomorphic to Ua−1,n−1. It follows that term(Ua,n/x) =
¯̄
U∗a−1,n−1

¯̄
=
¡
n−1
n−a+1

¢
.

¥

Corollary 3.8. If n ≥ 3 then U2,n is a forbidden minor for term(C) ≤ n− 1.

Proof. If n ≥ 4 then Theorem 3.6 implies that term(U2,n) =
¯̄
U∗2,n

¯̄
=
¡
n
n−1

¢
= n. It is a simple matter to

determine directly that term(U2,2) = 2 and term(U2,3) = 3.

Observe that if n ≥ 3 then a deletion U2,n \x consists of the 2-element subsets of S which do not contain

x, and hence is isomorphic to U2,n−1. It follows that term(U2,n\x) = n−1. On the other hand, a contraction

Ua,n/x consists of the 1-element subsets of S \ {x}, and hence is 2-terminal. ¥

Theorem 3.9. If n ≥ 2 then Un−1,n has precisely one type of nonstandard reduced graphical representation:

a cycle in which n terminals and n non-terminals appear alternately, which may have an edge between the

two neighbors of any terminal. Consequently, term(Un−1,n) = n.

Proof: Suppose (G,K) is a reduced graphical representation of Un−1,n. U∗n−1,n = U2,n, so every terminal

vertex in (G,K) is of degree 2.

Suppose P is a simple path v1, τ1, v2, τ2, ..., τ c−1, vc in G which involves non-terminals vi and terminals

τ i. Note that c ≤ n, for there are only n non-terminal vertices in G. We claim that there is a terminal

adjacent to one of the ends of the path.

Suppose c < n, and let Z = S \ {v1, ..., vc} contain all the non-terminals not in P . Every 2-element

subset of S is a vertex cut of G, because U∗n−1,n = U2,n. If z ∈ Z then a single component of G \ {v1, z}

contains the path τ1, v2, τ2, ..., τ c−1, vc. Choose z ∈ Z so that a component H of G \ {v1, z} which does not

intersect P contains the smallest possible number of non-terminals. Suppose u ∈ V (H) \K; then u ∈ Z.

Consider the mincut {v1, u}. Every component of G\{v1, z} contains a vertex adjacent to z, because G\{v1}
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is connected; hence all of the components of G \ {v1, z} other than H are contained in the component of

G \ {v1, u} which contains z. Any other component of G \ {v1, u} contains only vertices from V (H) \ {u},

contradicting the minimality of H. Therefore H contains no non-terminals. H is connected and (G,K) is

reduced, so H is just a single terminal adjacent only to v1 and z.

If c = n then all the non-terminals appear in P . Consider the mincut {v1, vc}. One component of

G \ {v1, vc} contains the path τ1, v2, τ2, ..., τ c−1, which includes all the non-terminal vertices of G \ {v1, vc}.

Any other component ofG\{v1, vc} cannot contain any non-terminals; (G,K) is reduced, so such a component

is simply a single terminal adjacent to v1 and vc.

This completes the proof of the claim. Observe that we have actually proven a more detailed assertion:

if c < n there is a terminal adjacent to v1 and some z ∈ S \ {v1, ..., vc}, and if c = n there is a terminal

adjacent to v1 and vc. If τ1 is any terminal then τ1 is of degree 2, and hence there is a path v1, τ1, v2 in G;

applying the assertion repeatedly, we extend this path until we obtain a cycle v1, τ1, v2, τ2, ..., τ c−1, vc, τ c, v1

with c = n.

To complete the proof we show that if (G,K) has any terminal which does not appear in this cycle Γ,

or any edge which does not appear in Γ and does not connect two non-terminal vertices adjacent to a given

terminal, then (G,K) is equivalent to the standard representation of Un−1,n.

Suppose first that (G,K) has a terminal τ which does not appear in Γ; sayN(τ) = {v1, vi} with 2 < i < n.

If 1 < a < i and i < b ≤ n then {va, vb} ∈ U∗n−1,n. The component of G \ {va, vb} which contains τ also

contains paths within Γ which connect all the non-terminals other than va and vb to either v1 or vi. Another

component of G\{va, vb} cannot contain any non-terminal vertex and hence must be simply a single terminal

with neighbor-set {va, vb}. Applying the same argument to the various values of a and b instead of 1 and

i, we conclude that every pair of non-terminals {vp, vq} is the neighbor-set of a terminal, i.e., (G,K) is

equivalent to the standard representation.

Suppose now that every terminal of (G,K) appears in Γ. Suppose further that there is an edge in G

between two non-terminal vertices vi and vj which are not adjacent to the same terminal. Then {vi−1, vi+1}

is not a cut, contradicting the fact that {vi−1, vi+1} ∈ U∗n−1,n. ¥

Corollary 3.10. If n ≥ 3 then Un−1,n is a forbidden minor for term(C) ≤ n− 1.
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Proof: Contracting one element from Un−1,n yields Un−2,n−1, whose minimum terminal number is n− 1.

Deleting one element from Un−1,n yields Un−1,n−1, whose minimum terminal number is 2. ¥

Corollary 3.11. If n ≥ 5 and ¡n−13 ¢ < t < ¡n3¢ then Un−2,n is a forbidden minor for term(C) ≤ t.
Proof: Theorem 3.6 tells us that term(Un−2,n) =

¡
n
3

¢
. Contracting one element from Un−2,n yields

Un−3,n−1, and deleting one element yields Un−2,n−1. The corollary follows, because term(Un−2,n−1) =

n− 1 ≤ ¡n−13 ¢ = term(Un−2,n). ¥
If 1 ≤ k ≤ n then the circulant clutter Ckn contains all the sets of k consecutive elements of Zn. We use

consecutive in the natural sense in Zn; for instance, C35 = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 0}, {4, 0, 1}}.

The particular circulant clutters C2n with n odd are forbidden minors for the width-length inequality [4], and

they turn out to be forbidden minors for us as well.

Theorem 3.12. If n > 1 is odd then the circulant clutter C2n has no nonstandard reduced representation.

Proof: Any B ∈ (C2n)∗ must contain at least one of every two consecutive elements of Zn; otherwise it

would miss an element of C2n. It follows that every B ∈ (C2n)∗ must contain at least one pair of consecutive

elements of Zn, because n is odd. In addition, a B ∈ (C2n)∗ cannot contain three consecutive elements of Zn,

because if x1, x2, x3 ∈ B are consecutive then B \ x2 would also intersect all the elements of C2n and thus B

would be non-minimal. These two conditions – that B must contain one of every two consecutive elements

of Zn and cannot contain any three consecutive elements – completely characterize the elements of (C2n)
∗.

Let (G,K) be a reduced graphical representation of C2n. (G,K) obviously has at least one terminal τ0;

suppose N(τ0) = B0 ∈ (C2n)∗. Let B1 = {x+ 1 : x ∈ B0}, where we interpret + in Zn. Clearly B1 ∈ (C2n)∗,

for it inherits the two characterizing properties from B0. Every x /∈ B1 is an element of B0, for if x /∈ B0

then x+1 /∈ B1 and B1 must contain at least one of x and x+1. Therefore the component of G \B1 which

contains τ0 also contains all the non-terminal vertices of G \ B1; another component of G \ B1 must have

only terminal vertices, and hence must consist of a single terminal τ1 with N(τ1) = B1.

We define B2, B3, ..., Bn−1 in the corresponding fashion. From identical arguments, applied first to B2

and then in succession to the others, we conclude that for each i there is a terminal τ i with N(τ i) = Bi.
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It is not always the case that these n blocker elements are distinct – for instance if n = 9 then B0 =

{0, 1, 3, 4, 6, 7} = B3 – but this is irrelevant to our argument.

We now show that these terminals τ0, ..., τn−1 provide perfect communication among the non-terminal

vertices of G; suppose x is a non-terminal vertex. Some consecutive pair {a − 1, a} is contained in B0;

then {x − 1, x} = {a − 1 + x − a, a + x − a} ⊆ Bx−a. Clearly x has perfect communication, through

τx−a, with all other elements of Bx−a. Every y /∈ Bx−a is an element of Bx−a+1, for if y /∈ Bx−a then

y + 1 /∈ Bx−a+1 and Bx−a+1 must contain at least one of y and y + 1. Since x − 1 ∈ Bx−a, x ∈ Bx−a+1,

so x has perfect communication, through τx−a+1, with all other elements of Bx−a+1. It follows that x has

perfect communication with every non-terminal vertex.

The theorem now follows from Corollary 3.3. ¥

The reader can easily verify that in contrast, if n is even then term(C2n) = 2.

Corollary 3.13. If n > 1 is odd and 2 ≤ t < ¯̄(C2n)∗¯̄ then the circulant clutter C2n is a forbidden minor for
term(C) ≤ t.

Proof: We leave it to the reader to verify that contracting or deleting a single element from C2n results in

a 2-terminal clutter. ¥

The circulant clutters C2n have the property that
¯̄
(C2n)

∗¯̄ = ¯̄(C2n−2)∗¯̄ + ¯̄(C2n−3)∗ ¯̄ for n > 4. It follows
that

¯̄
(C2n)

∗ ¯̄ is monotonically increasing for n > 4, and hence for every t ≥ 2 the circulant clutters C2n with
n odd and sufficiently large are all forbidden minors for term(C) ≤ t. The only other clutters we know to

have this property are the degenerate projective planes.

4. 2-terminal clutters

In this section we briefly summarize the special properties of clutters which can be represented using two

terminals. Some of these properties have been studied extensively in the literature; see [2] for a survey.

Menger’s Theorem tells us that if a clutter has a 2-terminal representation then the maximum number of

pairwise disjoint elements of the clutter is the minimum cardinality of an element of its blocker. That is, in

the terminology of [10] a 2-terminal clutter packs. A more complicated-seeming property is the width-length

inequality. According to [4, 11] this property defines a class of clutters which is closed under minors, and
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none of whose forbidden minors packs. Consequently any minor-closed class of clutters whose elements all

pack also has the property that its elements all satisfy the width-length inequality; the 2-terminal clutters

constitute such a class.

The clutter Q6 of edge-sets of triangles in K4 is {{a, b, d}, {b, c, e}, {a, e, f}, {c, d, f}}; it does not pack.

Consider the clutter Q+6 obtained from Q6 by adjoining a common element x to every minpath. Given

any graphical representation of Q6, we obtain a representation of Q
+
6 by replacing some terminal τ by a

non-terminal vertex x with N(x) = N(τ) and a terminal τ 0 with N(τ 0) = {x}; this shows that term(Q6) ≥

term(Q+6 ). The reverse inequality follows from the fact that Q6 = Q+6 /x, so term(Q
+
6 ) = term(Q6) > 2.

This example shows that not all clutters which pack and satisfy the width-length inequality have 2-terminal

representations, for Q+6 has both properties [2].

By the way, all the minors of Q6 and its dual are 2-terminal. It turns out that Q6 is a forbidden minor

for term(C) ≤ t, 2 ≤ t ≤ 6, and Q∗6 is a forbidden minor for term(C) ≤ t, 2 ≤ t ≤ 3.

While studying this material we often jokingly quoted the motto “Everything is a forbidden minor,”

because so many of the clutters which have appeared in the literature turn out to be forbidden minors for

term(C) ≤ t for some t. One exception is the clutter of lines in the Fano plane, F7 = {{a, b, d}, {b, c, e},

{c, d, f}, {d, e, g}, {e, f, a}, {f, g, b}, {g, a, c}}. The reader might like to verify that Q6 is the minor of F7

obtained by deleting a single element and that term(Q6) = 7 = term(F7).

If (G,K) is a 2-terminal network with K = {s, t} then the clutter of st-paths in (G,K) is the clutter on

E(G) whose elements are the edge-sets of simple paths connecting s to t in G. As remarked in [10], these

clutters are all 2-terminal.

Proposition 4.1. Clutters of st-paths constitute a proper subclass of the class of 2-terminal clutters.

Proof. Let (G,K) be a 2-terminal network and C the associated clutter of st-paths, defined on S = E(G).

To represent C with a 2-terminal network we insert into each edge e of G a degree-2 vertex named e, and

replace each non-terminal vertex v of G with a clique consisting of the newly introduced vertices e such that

v is incident on the edge e in G.

To verify that not all 2-terminal clutters are clutters of st-paths, consider the 2-terminal network given

in Figure 4.1. It represents the clutter P4 = {{1, 2}, {2, 3}, {3, 4}}, which is not a clutter of st-paths [9]. ¥
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Figure 4.1: the clutter P4
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