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Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

▸ Make-Set(x): create a new set containing just x (i.e., {x})
▸ Union(x,y): Replace set containing x (S) and set containing y (T) with single set S ∪T

▸ Find(x): Return representative of set containing x

Rules: every set has a unique representative.

▸ If x and y are in same set, Find(x) = Find(y)

▸ If x and y are in different sets, then Find(x) ≠ Find(y)

▸ Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!
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Introduction (II)

We’ll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!

Notation and Notes:

▸ m operations total

▸ n of which are Make-Sets (so n elements)

▸ Assume have pointer/access to elements we care about (like last class)
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First Approach: Lists

Linked list for each set.

▸ Representative of set is head (first element on list)

▸ Each element has pointer to head and to next element, so stored as triple:
(element, head, next)

x z

y

S:

T:

Make-Set(x): x head next

Find(x): return x→ head
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Union(x,y)

x z

y

S:

T:

Obvious approach:

▸ Walk down S to final element z (starting from x)

▸ Set z→ next = y → head

▸ Walk down T, set every elements head pointer to x→ head
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Union(x,y)

x z

y

S:

T:

x z

y

S:

T:

Running time: O(∣S∣ + ∣T∣)
▸ ∣S∣ to walk down S to final

element

▸ ∣T∣ to walk down T
resetting head pointers

Since ∣S∣, ∣T∣ could be Θ(n), can
only say O(n) for Unions
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Improved Union(x,y)

Observation: don’t need to preserve ordering inside the Union!

▸ Splice T into S right after x

x

y

S:

T:

Running time: O(∣T∣)
▸ Still can’t say anything better than O(n)
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Even more improved Union(x,y)
Observation: Why splice T into S? Could also splice S into T.

▸ Time O(∣S∣)

Splice smaller into bigger!

▸ Store size of set in head node.

▸ Splice smaller into bigger: time O(min(∣S∣, ∣T∣))
▸ Still only O(n). But now can make stronger amortized guarantee!

Theorem

The amortized cost of Find and Union is O(1), and the amortized cost of Make-Set is
O(log n).

Corollary

The total running time is O(m + n log n).
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Amortized Analysis of List Algorithm
Banking/accounting argument: bank for every element

▸ When an element is created (via Make-Set), add log n tokens to its bank

▸ Find does not affect banks

▸ When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with log n tokens. When do we remove a token?

▸ When in smaller set of a Union.

▸ Size of set containing e at least doubles!

▸ Can only happen at most log n times.
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Amortized Analysis of List Algorithm (cont’d)
Make-Set:

▸ True cost: O(1)
▸ Change in banks: log n

Ô⇒ Amortized cost: O(1) +O(log n) = O(log n)

Find:

▸ True cost: O(1)
▸ Change in banks: 0

Ô⇒ Amortized cost: O(1) + 0 = O(1)

Union:

▸ True cost: min(∣S∣, ∣T∣)
▸ Change in banks: −min(∣S∣, ∣T∣)

Ô⇒ Amortized cost: min(∣S∣, ∣T∣) −min(∣S∣, ∣T∣) = 0 = O(1).
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Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

▸ Slow part of Union: updating all head pointers in smaller list.

▸ Don’t do it!

▸ Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

▸ Use this time to “update head” pointers: on Find(x), change pointers of x and all
ancestors to point to root

▸ Path Compression

Idea 2: Union By Rank

▸ Size of set was important for lists, less important for trees.

▸ Choose which set to splice into which by rank of trees (related to height)
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Main Result

Theorem

When using Path Compression and Union By Rank, total time at most O(m log∗ n).

log∗: iterated log2.

▸ log∗ n = # times apply log2 until get to 1

▸ log∗(265536) = 1 + log∗(65536) = 2 + log∗(16) = 3 + log∗(4) = 4 + log∗(2) = 5

▸ Basically log∗ n always ≤ 5.

Stronger theorem: total time at most O(m ⋅α(m,n)).
▸ α(m,n): inverse Ackermann function. Grows even slower than log∗.

▸ See CLRS for details
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Formal Procedures: Make-Set and Find

Make-Set(x): Set x→ rank = 0 and x→ parent = x

▸ Running time: O(1).

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to
root.

▸ If x→ parent = x then return x

▸ x→ parent = Find(x→ parent)
▸ Return x→ parent

Running time of Find: depth of x (distance to root)
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Find example

a

z

b

c

x

a

z

bcx
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Formal Procedure: Union

Link(r1, r2): Only applied to root nodes

▸ If r1 → rank > r2 → rank, set r2 → parent = r1

▸ If r2 → rank > r1 → rank, set r1 → parent = r2

▸ If r1 → rank = r2 → rank, set r2 → parent = r1 and increment r1 → rank.

Running time of Link: O(1)

Union(x,y): Link(Find(x), Find(y))

▸ Running time: depth(x) + depth(y)
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Union example

x

z w

y

x

z

w

y

If z→ rank ≥ w → rank

If z→ rank = w → rank,
then (z→ rank) + +
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Properties of Ranks

1. If x not a root, then (x→ rank) < (x→ parent→ rank)
2. When doing path compression, if parent of x changes, new parent has rank strictly larger

than old parent

3. x→ rank can change only if x a root, and once x is a non-root it never becomes a root
again.

4. When x first reaches rank r, there are at least 2r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r = 0. ✓
Inductive case: Suppose true for r − 1.
When x first gets rank r, must be because x had rank r − 1 (and was root), unioned with
another set with root z of rank r − 1.
Ô⇒ By induction, at least 2r−1 nodes in each tree
Ô⇒ At least 2r−1 + 2r−1 = 2r nodes in combined tree.
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Nodes of rank r

Lemma

There are at most n/2r nodes of rank at least r.

Proof.

Let x node of rank at least r. Let Sx be descendants of x when it first got rank r.
Ô⇒ ∣Sx∣ ≥ 2r by property 4.

Let z some other node of rank ≥ r. Without loss of generality, suppose x got rank r before z.
Consider some e ∈ Sx. Then e can’t be in Sz (already in tree with rank ≥ r). So Sx ∩ Sz = ∅.

Ô⇒ At most n/2r nodes of rank ≥ r.
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Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most O(m log∗ n).

m operations total. Analyze each type separately:

▸ Make-Set: O(1) time each

▸ Union: two Find operations, plus O(1) other work.

▸ Find(x): proportional to depth of x. Count number of parent pointers followed, call this
the time.

So at most 2m Finds, want to bound total # parent pointers followed.

▸ At most one parent pointer to root per Find Ô⇒ at most O(m) parent pointers to roots.

▸ So only need to worry about parent pointers to non-roots.
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Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: 2 ↑ i denote a tower of i 2’s

▸ 2 ↑ 1 = 2, 2 ↑ 2 = 22 = 4, 2 ↑ 3 = 222 = 24 = 16, 2 ↑ 4 = 2222

= 216 = 65536

▸ log∗(2 ↑ i) = i

B(i) (Bucket i): All elements of rank at least 2 ↑ (i − 1), at most (2 ↑ i) − 1

▸ Bucket 0: nodes with rank 0

▸ Bucket 1: rank at least 1, at most 1

▸ Bucket 2: rank at least 2, at most 3

▸ Bucket 3: rank at least 4, at most 15

▸ Bucket 4: rank at least 16, at most 65535

▸ At most log∗ n buckets.

From Lemma: at most n/(22↑(i−1)) = n/(2 ↑ i) elements in bucket i.
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Main Result III
Want to bound total # parent pointers (to non-roots) followed over all ≤ 2m Finds.

Type 1: Parent pointers that cross buckets
▸ ≤ log∗ n buckets Ô⇒ ≤ log∗ n per Find Ô⇒ ≤ 2m log∗ n = O(m log∗ n) total

Type 2: Parent pointers that do not cross buckets
▸ For each x, let α(x) = # times follow parent point from x to parent in same bucket, not

root. Want to show ∑xα(x) ≤ O(m log∗ n).
▸ Since x not root when following pointers, always has same rank
▸ Whenever x’s pointer followed, gets new parent (path compression)
Ô⇒ rank of parent goes up by at least 1 (properties of rank)
Ô⇒ happens at most 2 ↑ i times if x in bucket i
Ô⇒ α(x) ≤ 2 ↑ i.

∑
x

α(x) =
O(log∗ n)

∑
i=0

∑
x∈B(i)

α(x) ≤
O(log∗ n)

∑
i=0

∑
x∈B(i)

(2 ↑ i) ≤
O(log∗ n)

∑
i=0

n

2 ↑ i
(2 ↑ i) = O(n log∗ n)

≤ O(m log∗ n),
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