Lecture 9: Disjoint Sets / Union-Find

Michael Dinitz

September 28, 2021 601.433/633 Introduction to Algorithms

Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

- Make-Set(x): create a new set containing just x (i.e., {x})
- Union(x, y): Replace set containing x (S) and set containing y (T) with single set $S \cup T$
- Find(x): Return representative of set containing x

Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

- Make-Set(x): create a new set containing just x (i.e., {x})
- Union(x, y): Replace set containing x (S) and set containing y (T) with single set $S \cup T$
- Find(x): Return representative of set containing x

Rules: every set has a *unique* representative.

- If x and y are in same set, Find(x) = Find(y)
- If x and y are in different sets, then $Find(x) \neq Find(y)$
- Make-Set(x): cannot be called on the same x twice

Introduction

Informal: Universe of elements, want to maintain disjoint sets.

Slightly more formally:

- Make-Set(x): create a new set containing just x (i.e., {x})
- Union(x, y): Replace set containing x (S) and set containing y (T) with single set $S \cup T$
- Find(x): Return representative of set containing x

Rules: every set has a *unique* representative.

- If x and y are in same set, Find(x) = Find(y)
- If x and y are in different sets, then $Find(x) \neq Find(y)$
- Make-Set(x): cannot be called on the same x twice

Note: disjoint (and partition) by construction!

Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don't hit a limit to improvement for a very long time!

Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don't hit a limit to improvement for a very long time!

Notation and Notes:

- m operations total
- **n** of which are Make-Sets (so **n** elements)
- Assume have pointer/access to elements we care about (like last class)

First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

Make-Set(x):

x	head	next
\sim		

First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

Make-Set(x):

х	head	next
K	\sim	

Find(x): return $x \rightarrow$ head

Mi	chae	l Dii	nitz
----	------	-------	------

$\mathsf{Union}(\mathbf{x},\mathbf{y})$

Obvious approach:

- Walk down S to final element z (starting from x)
- Set $\mathbf{z} \rightarrow \text{next} = \mathbf{y} \rightarrow \text{head}$
- Walk down T, set every elements head pointer to $\mathbf{x} \rightarrow$ head

Running time:

Running time: O(|S| + |T|)

- ► |S| to walk down S to final element
- |T| to walk down T resetting head pointers

Running time: O(|S| + |T|)

- ► |S| to walk down S to final element
- |T| to walk down T resetting head pointers

Since |S|, |T| could be $\Theta(n)$, can only say O(n) for Unions

Observation: don't need to preserve ordering inside the Union!

Observation: don't need to preserve ordering inside the Union!

Splice T into S right after x

Observation: don't need to preserve ordering inside the Union!

Splice T into S right after x

Running time:

Observation: don't need to preserve ordering inside the Union!

Splice T into S right after x

Running time: **O**(|**T**|)

Observation: don't need to preserve ordering inside the Union!

Splice T into S right after x

Running time: **O**(|**T**|)

Still can't say anything better than O(n)

Even more improved Union(**x**, **y**)

Observation: Why splice **T** into **S**? Could also splice **S** into **T**.

► Time **O(|S|)**

Even more improved Union(**x**, **y**)

Observation: Why splice ${\bf T}$ into ${\bf S}?$ Could also splice ${\bf S}$ into ${\bf T}.$

► Time **O(|S|)**

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time O(min(|S|, |T|))
- Still only **O(n)**. But now can make stronger amortized guarantee!

Even more improved Union(**x**, **y**)

Observation: Why splice T into S? Could also splice S into T.

► Time **O(|S|)**

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time O(min(|S|, |T|))
- Still only **O(n)**. But now can make stronger amortized guarantee!

Theorem

The amortized cost of Find and Union is O(1), and the amortized cost of Make-Set is $O(\log n)$.

Corollary

The total running time is $O(m + n \log n)$.

Banking/accounting argument: bank for every element

- ▶ When an element is created (via Make-Set), add log n tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Banking/accounting argument: bank for every element

- ▶ When an element is created (via Make-Set), add log n tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is **0** (no elements).

Banking/accounting argument: bank for every element

- ▶ When an element is created (via Make-Set), add log n tokens to its bank
- Find does not affect banks
- > When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is **0** (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element \mathbf{e} . Starts with $\log n$ tokens. When do we remove a token?

Banking/accounting argument: bank for every element

- ▶ When an element is created (via Make-Set), add log n tokens to its bank
- Find does not affect banks
- > When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is **0** (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element \mathbf{e} . Starts with $\log n$ tokens. When do we remove a token?

• When in smaller set of a Union.

Banking/accounting argument: bank for every element

- \blacktriangleright When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- > When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is **0** (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element \mathbf{e} . Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!

Banking/accounting argument: bank for every element

- ▶ When an element is created (via Make-Set), add log n tokens to its bank
- Find does not affect banks
- > When doing Union, take token from bank of each element in smaller set.

Obvious: initially, total bank is **0** (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element \mathbf{e} . Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!
- Can only happen at most **log n** times.

Amortized Analysis of List Algorithm (cont'd) Make-Set:

- True cost: O(1)
- Change in banks: log n
- \implies Amortized cost: $O(1) + O(\log n) = O(\log n)$

Find:

- True cost: O(1)
- Change in banks: 0
- \implies Amortized cost: O(1) + 0 = O(1)

Union:

- True cost: min(|S|, |T|)
- Change in banks: -min(|S|, |T|)
- \implies Amortized cost: $\min(|S|, |T|) \min(|S|, |T|) = 0 = O(1)$.

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to "update head" pointers: on Find(x), change pointers of x and all ancestors to point to root
- Path Compression

Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to "update head" pointers: on Find(x), change pointers of x and all ancestors to point to root
- Path Compression

Idea 2: Union By Rank

- Size of set was important for lists, less important for trees.
- Choose which set to splice into which by *rank* of trees (related to height)

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

 log^* : iterated log_2 .

• $\log^* n = \#$ times apply \log_2 until get to 1

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

 \log^* : iterated \log_2 .

- $\log^* n = \#$ times apply \log_2 until get to 1
- ▶ $\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5$

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

 \log^* : iterated \log_2 .

- $\log^* n = \#$ times apply \log_2 until get to 1
- ▶ $\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5$
- Basically $\log^* n$ always ≤ 5 .

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log*: iterated log₂.

- $\log^* n = \#$ times apply \log_2 until get to 1
- ▶ $\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5$
- Basically $\log^* n$ always ≤ 5 .

Stronger theorem: total time at most $O(\mathbf{m} \cdot \alpha(\mathbf{m}, \mathbf{n}))$.

- $\alpha(\mathbf{m}, \mathbf{n})$: inverse Ackermann function. Grows even slower than \log^* .
- See CLRS for details

Formal Procedures: Make-Set and Find

 $\mathsf{Make-Set}(x): \ \mathsf{Set} \ x \to rank = 0 \ \mathsf{and} \ x \to parent = x$

▶ Running time: **O(1)**.

Formal Procedures: Make-Set and Find

```
Make-Set(x): Set x \rightarrow rank = 0 and x \rightarrow parent = x
```

• Running time: **O(1)**.

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to root.

- If $x \rightarrow parent = x$ then return x
- $x \rightarrow parent = Find(x \rightarrow parent)$
- ► Return **x** → **parent**

Formal Procedures: Make-Set and Find

```
Make-Set(x): Set x \rightarrow rank = 0 and x \rightarrow parent = x
```

• Running time: **O(1)**.

Find(\mathbf{x}): Walk from \mathbf{x} to root, and return root. Set parent pointers of \mathbf{x} and all ancestors to root.

- If $x \rightarrow parent = x$ then return x
- $x \rightarrow parent = Find(x \rightarrow parent)$
- ► Return **x** → **parent**

Running time of Find: depth of **x** (distance to root)

Find example

Find example

 $Link(r_1, r_2)$: Only applied to root nodes

- If $r_1 \rightarrow rank > r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$
- If $r_2 \rightarrow rank > r_1 \rightarrow rank$, set $r_1 \rightarrow parent = r_2$
- If $r_1 \rightarrow rank = r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$ and increment $r_1 \rightarrow rank$.

 $Link(r_1, r_2)$: Only applied to root nodes

- If $r_1 \rightarrow rank > r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$
- If $r_2 \rightarrow rank > r_1 \rightarrow rank$, set $r_1 \rightarrow parent = r_2$
- If $\mathbf{r}_1 \rightarrow \mathbf{rank} = \mathbf{r}_2 \rightarrow \mathbf{rank}$, set $\mathbf{r}_2 \rightarrow \mathbf{parent} = \mathbf{r}_1$ and increment $\mathbf{r}_1 \rightarrow \mathbf{rank}$.

Running time of Link: **O(1)**

 $Link(r_1, r_2)$: Only applied to root nodes

- If $r_1 \rightarrow rank > r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$
- If $r_2 \rightarrow rank > r_1 \rightarrow rank$, set $r_1 \rightarrow parent = r_2$

• If $r_1 \rightarrow rank = r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$ and increment $r_1 \rightarrow rank$. Running time of Link: O(1)

Union(**x**, **y**): Link(Find(**x**), Find(**y**))

 $Link(r_1, r_2)$: Only applied to root nodes

- If $r_1 \rightarrow rank > r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$
- If $r_2 \rightarrow rank > r_1 \rightarrow rank$, set $r_1 \rightarrow parent = r_2$

• If $r_1 \rightarrow rank = r_2 \rightarrow rank$, set $r_2 \rightarrow parent = r_1$ and increment $r_1 \rightarrow rank$. Running time of Link: O(1)

Union(**x**, **y**): Link(Find(**x**), Find(**y**))

Running time: depth(x) + depth(y)

If $z \rightarrow rank \ge w \rightarrow rank$

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. $\mathbf{x} \rightarrow \mathbf{rank}$ can change only if \mathbf{x} a root, and once \mathbf{x} is a non-root it never becomes a root again.

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. $\mathbf{x} \rightarrow \mathbf{rank}$ can change only if \mathbf{x} a root, and once \mathbf{x} is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. $\mathbf{x} \rightarrow \mathbf{rank}$ can change only if \mathbf{x} a root, and once \mathbf{x} is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $\mathbf{r} = \mathbf{0}$.

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. $\mathbf{x} \rightarrow \mathbf{rank}$ can change only if \mathbf{x} a root, and once \mathbf{x} is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $\mathbf{r} = \mathbf{0}$. \checkmark

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. **x** → **rank** can change only if **x** a root, and once **x** is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $\mathbf{r} = \mathbf{0}$. \checkmark Inductive case: Suppose true for $\mathbf{r} - \mathbf{1}$.

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. $\mathbf{x} \rightarrow \mathbf{rank}$ can change only if \mathbf{x} a root, and once \mathbf{x} is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: r = 0. \checkmark Inductive case: Suppose true for r - 1. When x first gets rank r, must be because x had rank r - 1 (and was root), unioned with another set with root z of rank r - 1.

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. **x** → **rank** can change only if **x** a root, and once **x** is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $\mathbf{r} = \mathbf{0}$. \checkmark

Inductive case: Suppose true for r - 1.

When **x** first gets rank **r**, must be because **x** had rank $\mathbf{r} - \mathbf{1}$ (and was root), unioned with another set with root **z** of rank $\mathbf{r} - \mathbf{1}$.

 \implies By induction, at least 2^{r-1} nodes in each tree

- 1. If x not a root, then $(x \rightarrow rank) < (x \rightarrow parent \rightarrow rank)$
- 2. When doing path compression, if parent of \mathbf{x} changes, new parent has rank strictly larger than old parent
- 3. $\mathbf{x} \rightarrow \mathbf{rank}$ can change only if \mathbf{x} a root, and once \mathbf{x} is a non-root it never becomes a root again.
- 4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $\mathbf{r} = \mathbf{0}$. \checkmark

Inductive case: Suppose true for $\mathbf{r} - \mathbf{1}$.

When x first gets rank r, must be because x had rank r - 1 (and was root), unioned with another set with root z of rank r - 1.

- \implies By induction, at least 2^{r-1} nodes in each tree
- \implies At least $2^{r-1} + 2^{r-1} = 2^r$ nodes in combined tree.

Nodes of rank ${\bf r}$

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r. $\implies |S_x| \ge 2^r$ by property 4.

Nodes of rank ${\bf r}$

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r. $\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can't be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.

Nodes of rank ${\bf r}$

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r. $\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can't be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.

 \implies At most $n/2^r$ nodes of rank $\ge r$.

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- Make-Set: O(1) time each
- Union: two Find operations, plus **O(1)** other work.
- Find(x): proportional to depth of x. Count number of parent pointers followed, call this the time.

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- Make-Set: O(1) time each
- ▶ Union: two Find operations, plus **O(1)** other work.
- Find(x): proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most 2m Finds, want to bound total # parent pointers followed.

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- Make-Set: O(1) time each
- ▶ Union: two Find operations, plus **O(1)** other work.
- Find(x): proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most 2m Finds, want to bound total # parent pointers followed.

- At most one parent pointer to root per Find \implies at most O(m) parent pointers to roots.
- So only need to worry about parent pointers to non-roots.

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

▶
$$2 \uparrow 1 = 2$$
, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
▶ $\log^*(2 \uparrow i) = i$

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

▶
$$2 \uparrow 1 = 2$$
, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
▶ $\log^*(2 \uparrow i) = i$

B(i) (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

▶
$$2 \uparrow 1 = 2$$
, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
▶ $\log^*(2 \uparrow i) = i$

B(i) (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most **log*** **n** buckets.

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

▶
$$2 \uparrow 1 = 2$$
, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
▶ $\log^*(2 \uparrow i) = i$

B(i) (Bucket i): All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most **log*** **n** buckets.

From Lemma: at most $n/(2^{2\uparrow(i-1)}) = n/(2\uparrow i)$ elements in bucket i.

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

▶ $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

▶ $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Type 2: Parent pointers that do not cross buckets

- For each x, let α(x) = # times follow parent point from x to parent in same bucket, not root. Want to show Σ_x α(x) ≤ O(m log* n).
- Since **x** not root when following pointers, always has same rank

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

▶ $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Type 2: Parent pointers that do not cross buckets

- For each x, let α(x) = # times follow parent point from x to parent in same bucket, not root. Want to show Σ_x α(x) ≤ O(m log* n).
- Since **x** not root when following pointers, always has same rank
- Whenever x's pointer followed, gets new parent (path compression)
 - \implies rank of parent goes up by at least 1 (properties of rank)
 - \implies happens at most $2 \uparrow i$ times if x in bucket i
 - $\implies \alpha(\mathbf{x}) \leq \mathbf{2} \uparrow \mathbf{i}.$

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

▶ $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Type 2: Parent pointers that do not cross buckets

- For each x, let α(x) = # times follow parent point from x to parent in same bucket, not root. Want to show Σ_x α(x) ≤ O(m log* n).
- Since **x** not root when following pointers, always has same rank
- Whenever x's pointer followed, gets new parent (path compression)
 - \implies rank of parent goes up by at least 1 (properties of rank)
 - \implies happens at most $2\uparrow i$ times if x in bucket i

$$\implies \alpha(\mathsf{x}) \leq 2 \uparrow \mathsf{i}.$$

$$\sum_{\mathbf{x}} \alpha(\mathbf{x}) = \sum_{i=0}^{O(\log^* n)} \sum_{\mathbf{x} \in B(i)} \alpha(\mathbf{x}) \le \sum_{i=0}^{O(\log^* n)} \sum_{\mathbf{x} \in B(i)} (2 \uparrow i) \le \sum_{i=0}^{O(\log^* n)} \frac{n}{2 \uparrow i} (2 \uparrow i) = O(n \log^* n)$$
$$\le O(m \log^* n),$$