# Lecture 9: Disjoint Sets / Union-Find 

Michael Dinitz

September 28, 2021
601.433/633 Introduction to Algorithms

## Introduction

Informal: Universe of elements, want to maintain disjoint sets.
Slightly more formally:

- Make-Set( $\mathbf{x}$ ): create a new set containing just $\mathbf{x}$ (i.e., $\{\mathbf{x}\}$ )
- Union $(\mathbf{x}, \mathbf{y})$ : Replace set containing $\mathbf{x}(\mathbf{S})$ and set containing $\mathbf{y}(\mathbf{T})$ with single set $\mathbf{S} \cup \mathbf{T}$
- Find( $\mathbf{x}$ ): Return representative of set containing $\mathbf{x}$


## Introduction

Informal: Universe of elements, want to maintain disjoint sets.
Slightly more formally:

- Make-Set( $\mathbf{x}$ ): create a new set containing just $\mathbf{x}$ (i.e., $\{\mathbf{x}\}$ )
- Union $(\mathbf{x}, \mathbf{y})$ : Replace set containing $\mathbf{x}(\mathbf{S})$ and set containing $\mathbf{y}(\mathbf{T})$ with single set $\mathbf{S} \cup \mathbf{T}$
- Find( $\mathbf{x}$ ): Return representative of set containing $\mathbf{x}$

Rules: every set has a unique representative.

- If $\mathbf{x}$ and $\mathbf{y}$ are in same set, $\operatorname{Find}(\mathbf{x})=\operatorname{Find}(\mathbf{y})$
- If $\mathbf{x}$ and $\mathbf{y}$ are in different sets, then $\operatorname{Find}(\mathbf{x}) \neq \operatorname{Find}(\mathbf{y})$
- Make-Set( $\mathbf{x}$ ): cannot be called on the same $\mathbf{x}$ twice


## Introduction

Informal: Universe of elements, want to maintain disjoint sets.
Slightly more formally:

- Make-Set( $\mathbf{x}$ ): create a new set containing just $\mathbf{x}$ (i.e., $\{\mathbf{x}\}$ )
- Union $(\mathbf{x}, \mathbf{y})$ : Replace set containing $\mathbf{x}(\mathbf{S})$ and set containing $\mathbf{y}(\mathbf{T})$ with single set $\mathbf{S} \cup \mathbf{T}$
- Find( $\mathbf{x}$ ): Return representative of set containing $\mathbf{x}$

Rules: every set has a unique representative.

- If $\mathbf{x}$ and $\mathbf{y}$ are in same set, $\operatorname{Find}(\mathbf{x})=\operatorname{Find}(\mathbf{y})$
- If $\mathbf{x}$ and $\mathbf{y}$ are in different sets, then $\operatorname{Find}(\mathbf{x}) \neq \operatorname{Find}(\mathbf{y})$
- Make-Set(x): cannot be called on the same $\mathbf{x}$ twice

Note: disjoint (and partition) by construction!

## Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

## Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don't hit a limit to improvement for a very long time!

## Introduction (II)

We'll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don't hit a limit to improvement for a very long time!
Notation and Notes:

- m operations total
- $\mathbf{n}$ of which are Make-Sets (so $\mathbf{n}$ elements)
- Assume have pointer/access to elements we care about (like last class)


## First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)



## First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)


Make-Set( $\mathbf{x}$ ):


## First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)


Make-Set( $\mathbf{x}$ ):


Find( $\mathbf{x}$ ): return $\mathbf{x} \rightarrow$ head

## Union $(\mathbf{x}, \mathrm{y})$



Obvious approach:

- Walk down $\mathbf{S}$ to final element $\mathbf{z}$ (starting from $\mathbf{x}$ )
- Set $\mathbf{z} \rightarrow$ next $=\mathbf{y} \rightarrow$ head
- Walk down T, set every elements head pointer to $\mathbf{x} \rightarrow$ head


## Union $(\mathbf{x}, \mathrm{y})$



## Union $(\mathbf{x}, \mathrm{y})$



## Union $(\mathbf{x}, \mathrm{y})$



Running time:

## Union $(\mathbf{x}, \mathrm{y})$



Running time: $\mathbf{O}(|\mathbf{S}|+|\mathbf{T}|)$

## Union $(\mathbf{x}, \mathrm{y})$



Running time: $\mathbf{O}(|\mathbf{S}|+|\mathbf{T}|)$

- $|\mathbf{S}|$ to walk down $\mathbf{S}$ to final element
- |T| to walk down T resetting head pointers


## Union $(\mathbf{x}, \mathrm{y})$



Running time: $\mathbf{O}(|\mathbf{S}|+|\mathbf{T}|)$

- $|\mathbf{S}|$ to walk down $\mathbf{S}$ to final element
- |T| to walk down T resetting head pointers

Since $|\mathbf{S}|,|\mathbf{T}|$ could be $\boldsymbol{\Theta}(\mathbf{n})$, can only say $\mathbf{O}(\mathbf{n})$ for Unions

## Improved Union $(\mathbf{x}, \mathbf{y})$

Observation: don't need to preserve ordering inside the Union!

## Improved Union $(\mathbf{x}, \mathbf{y})$

Observation: don't need to preserve ordering inside the Union!

- Splice $\mathbf{T}$ into $\mathbf{S}$ right after $\mathbf{x}$



## Improved Union $(\mathbf{x}, \mathbf{y})$

Observation: don't need to preserve ordering inside the Union!

- Splice $\mathbf{T}$ into $\mathbf{S}$ right after $\mathbf{x}$


Running time:

## Improved Union $(\mathbf{x}, \mathbf{y})$

Observation: don't need to preserve ordering inside the Union!

- Splice $\mathbf{T}$ into $\mathbf{S}$ right after $\mathbf{x}$


Running time: $\mathbf{O}(|\mathbf{T}|)$

## Improved Union $(\mathbf{x}, \mathbf{y})$

Observation: don't need to preserve ordering inside the Union!

- Splice $\mathbf{T}$ into $\mathbf{S}$ right after $\mathbf{x}$


Running time: $\mathbf{O}(|\mathbf{T}|)$

- Still can't say anything better than $\mathbf{O}(\mathbf{n})$


## Even more improved Union $(\mathbf{x}, \mathbf{y})$

Observation: Why splice $\mathbf{T}$ into $\mathbf{S}$ ? Could also splice $\mathbf{S}$ into $\mathbf{T}$.

- Time O(|S|)


## Even more improved Union $(\mathbf{x}, \mathbf{y})$

Observation: Why splice $\mathbf{T}$ into $\mathbf{S}$ ? Could also splice $\mathbf{S}$ into $\mathbf{T}$.

- Time O(|S|)

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time $\mathbf{O}(\boldsymbol{\operatorname { m i n }}(|\mathbf{S}|,|\mathbf{T}|))$
- Still only O(n). But now can make stronger amortized guarantee!


## Even more improved Union $(\mathbf{x}, \mathbf{y})$

Observation: Why splice $\mathbf{T}$ into $\mathbf{S}$ ? Could also splice $\mathbf{S}$ into $\mathbf{T}$.

- Time $\mathbf{O}(|\mathbf{S}|)$

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time $\mathbf{O}(\boldsymbol{\operatorname { m i n }}(|\mathbf{S}|,|\mathbf{T}|))$
- Still only O(n). But now can make stronger amortized guarantee!


## Theorem

The amortized cost of Find and Union is $\mathbf{O ( 1 )}$, and the amortized cost of Make-Set is $\mathbf{O}(\log \mathrm{n})$.

## Corollary

The total running time is $\mathbf{O}(\mathbf{m}+\mathbf{n} \log \mathbf{n})$.

## Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log \mathbf{n}$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set.


## Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log \mathbf{n}$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set. Obvious: initially, total bank is $\mathbf{0}$ (no elements).


## Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log \mathbf{n}$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set. Obvious: initially, total bank is $\mathbf{0}$ (no elements).


## Lemma

No bank is ever negative.

## Proof.

Fix element e. Starts with $\log \mathbf{n}$ tokens. When do we remove a token?

## Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log \mathbf{n}$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set. Obvious: initially, total bank is $\mathbf{0}$ (no elements).


## Lemma

No bank is ever negative.

## Proof.

Fix element e. Starts with $\log \mathbf{n}$ tokens. When do we remove a token?

- When in smaller set of a Union.


## Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log \mathbf{n}$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set. Obvious: initially, total bank is $\mathbf{0}$ (no elements).


## Lemma

No bank is ever negative.

## Proof.

Fix element e. Starts with $\log \mathbf{n}$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!


## Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log \mathbf{n}$ tokens to its bank
- Find does not affect banks
- When doing Union, take token from bank of each element in smaller set. Obvious: initially, total bank is $\mathbf{0}$ (no elements).


## Lemma

No bank is ever negative.

## Proof.

Fix element e. Starts with $\log \mathbf{n}$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!
- Can only happen at most $\log \mathbf{n}$ times.


## Amortized Analysis of List Algorithm (cont'd)

Make-Set:

- True cost: O(1)
- Change in banks: $\log n$
$\Longrightarrow$ Amortized cost: $\mathbf{O}(\mathbf{1})+\mathbf{O}(\log n)=\mathbf{O}(\log n)$
Find:
- True cost: O(1)
- Change in banks: 0
$\Longrightarrow$ Amortized cost: $\mathbf{O}(\mathbf{1})+\mathbf{0}=\mathbf{O}(\mathbf{1})$
Union:
- True cost: $\boldsymbol{\operatorname { m i n }}(|\mathbf{S}|,|\mathbf{T}|)$
- Change in banks: - $\boldsymbol{\operatorname { m i n }}(|\mathbf{S}|,|\mathbf{T}|)$
$\Longrightarrow$ Amortized cost: $\boldsymbol{\operatorname { m i n }}(|S|,|\mathbf{T}|)-\boldsymbol{\operatorname { m i n }}(|\mathbf{S}|,|\mathbf{T}|)=\mathbf{0}=\mathbf{O}(\mathbf{1})$.


## Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!


## Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)


## Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

## Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to "update head" pointers: on Find( $\mathbf{x}$ ), change pointers of $\mathbf{x}$ and all ancestors to point to root
- Path Compression


## Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don't do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use this time to "update head" pointers: on Find( $\mathbf{x}$ ), change pointers of $\mathbf{x}$ and all ancestors to point to root
- Path Compression

Idea 2: Union By Rank

- Size of set was important for lists, less important for trees.
- Choose which set to splice into which by rank of trees (related to height)


## Main Result

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
$\boldsymbol{\operatorname { l o g }}^{*}$ : iterated $\boldsymbol{\operatorname { l o g }}_{2}$.

- $\log ^{*} \mathbf{n}=\#$ times apply $\log _{2}$ until get to $\mathbf{1}$


## Main Result

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
$\boldsymbol{l o g}^{*}$ : iterated $\boldsymbol{\operatorname { l o g }}_{2}$.

- $\log ^{*} \mathbf{n}=\#$ times apply $\log _{2}$ until get to $\mathbf{1}$
- $\log ^{*}\left(2^{65536}\right)=1+\log ^{*}(65536)=2+\log ^{*}(16)=3+\log ^{*}(4)=4+\log ^{*}(2)=5$


## Main Result

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
$\boldsymbol{\operatorname { l o g }}^{*}$ : iterated $\boldsymbol{\operatorname { l o g }}_{2}$.

- $\log ^{*} \mathbf{n}=\#$ times apply $\log _{2}$ until get to $\mathbf{1}$
- $\log ^{*}\left(2^{65536}\right)=1+\log ^{*}(65536)=2+\log ^{*}(16)=3+\log ^{*}(4)=4+\log ^{*}(2)=5$
- Basically $\log ^{*} n$ always $\leq 5$.


## Main Result

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
$\boldsymbol{\operatorname { l o g }}^{*}$ : iterated $\boldsymbol{\operatorname { l o g }}_{2}$.

- $\boldsymbol{\operatorname { l o g }}^{*} \mathbf{n}=\#$ times apply $\boldsymbol{\operatorname { l o g }}_{2}$ until get to $\mathbf{1}$
- $\log ^{*}\left(2^{65536}\right)=1+\log ^{*}(65536)=2+\log ^{*}(16)=3+\log ^{*}(4)=4+\log ^{*}(2)=5$
- Basically $\log ^{*} \mathbf{n}$ always $\leq 5$.

Stronger theorem: total time at most $\mathbf{O}(\mathbf{m} \cdot \boldsymbol{\alpha}(\mathbf{m}, \mathbf{n}))$.

- $\boldsymbol{\alpha}(\mathbf{m}, \mathbf{n})$ : inverse Ackermann function. Grows even slower than $\boldsymbol{l o g}^{*}$.
- See CLRS for details


## Formal Procedures: Make-Set and Find

Make-Set( $\mathbf{x}$ ): Set $\mathbf{x} \rightarrow \mathbf{r a n k}=\mathbf{0}$ and $\mathbf{x} \rightarrow$ parent $=\mathbf{x}$

- Running time: $\mathbf{O}(\mathbf{1})$.


## Formal Procedures: Make-Set and Find

Make-Set( $\mathbf{x}$ ): Set $\mathbf{x} \rightarrow \mathbf{r a n k}=\mathbf{0}$ and $\mathbf{x} \rightarrow$ parent $=\mathbf{x}$

- Running time: $\mathbf{O}(\mathbf{1})$.

Find $(\mathbf{x})$ : Walk from $\mathbf{x}$ to root, and return root. Set parent pointers of $\mathbf{x}$ and all ancestors to root.

- If $x \rightarrow$ parent $=x$ then return $x$
- $x \rightarrow$ parent $=$ Find $(x \rightarrow$ parent $)$
- Return $x \rightarrow$ parent


## Formal Procedures: Make-Set and Find

Make-Set( $\mathbf{x}$ ): Set $\mathbf{x} \rightarrow \mathbf{r a n k}=\mathbf{0}$ and $\mathbf{x} \rightarrow$ parent $=\mathbf{x}$

- Running time: $\mathbf{O}(\mathbf{1})$.

Find $(\mathbf{x})$ : Walk from $\mathbf{x}$ to root, and return root. Set parent pointers of $\mathbf{x}$ and all ancestors to root.

- If $x \rightarrow$ parent $=x$ then return $x$
- $x \rightarrow$ parent $=$ Find $(x \rightarrow$ parent $)$
- Return $x \rightarrow$ parent

Running time of Find: depth of $\mathbf{x}$ (distance to root)

## Find example



## Find example



## Formal Procedure: Union

$\operatorname{Link}\left(\mathbf{r}_{1}, \boldsymbol{r}_{2}\right)$ : Only applied to root nodes

- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow$ rank $>\boldsymbol{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\boldsymbol{r}_{\mathbf{1}}$
- If $\boldsymbol{r}_{2} \rightarrow$ rank $>\boldsymbol{r}_{1} \rightarrow$ rank, set $\mathbf{r}_{1} \rightarrow$ parent $=r_{2}$
- If $\mathbf{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}=\mathbf{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\mathbf{r}_{\mathbf{1}}$ and increment $\mathbf{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}$.


## Formal Procedure: Union

$\operatorname{Link}\left(\mathbf{r}_{1}, \boldsymbol{r}_{\mathbf{2}}\right)$ : Only applied to root nodes

- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}>\boldsymbol{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\boldsymbol{r}_{\mathbf{1}}$
- If $\boldsymbol{r}_{2} \rightarrow$ rank $>\boldsymbol{r}_{\mathbf{1}} \rightarrow$ rank, set $\mathbf{r}_{1} \rightarrow$ parent $=\boldsymbol{r}_{2}$
- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}=\mathbf{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\mathbf{r}_{\mathbf{1}}$ and increment $\mathbf{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}$.

Running time of Link: $\mathbf{O ( 1 )}$

## Formal Procedure: Union

$\operatorname{Link}\left(\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}\right)$ : Only applied to root nodes

- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow$ rank $>\boldsymbol{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\boldsymbol{r}_{\mathbf{1}}$
- If $\boldsymbol{r}_{2} \rightarrow$ rank $>\boldsymbol{r}_{\mathbf{1}} \rightarrow$ rank, set $\mathbf{r}_{1} \rightarrow$ parent $=\boldsymbol{r}_{2}$
- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}=\mathbf{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\mathbf{r}_{\mathbf{1}}$ and increment $\mathbf{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}$.

Running time of Link: $\mathbf{O ( 1 )}$
$\operatorname{Union}(\mathbf{x}, \mathbf{y}): \operatorname{Link}(\operatorname{Find}(\mathbf{x}), \operatorname{Find}(\mathbf{y}))$

## Formal Procedure: Union

$\operatorname{Link}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)$ : Only applied to root nodes

- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow$ rank $>\boldsymbol{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\boldsymbol{r}_{\mathbf{2}} \rightarrow$ parent $=\boldsymbol{r}_{\mathbf{1}}$
- If $\boldsymbol{r}_{2} \rightarrow$ rank $>\boldsymbol{r}_{\mathbf{1}} \rightarrow$ rank, set $\mathbf{r}_{1} \rightarrow$ parent $=\boldsymbol{r}_{2}$
- If $\boldsymbol{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}=\mathbf{r}_{\mathbf{2}} \rightarrow \mathbf{r a n k}$, set $\mathbf{r}_{\mathbf{2}} \rightarrow$ parent $=\mathbf{r}_{\mathbf{1}}$ and increment $\mathbf{r}_{\mathbf{1}} \rightarrow \mathbf{r a n k}$.

Running time of Link: $\mathbf{O ( 1 )}$
$\operatorname{Union}(\mathbf{x}, \mathbf{y}): \operatorname{Link}(\operatorname{Find}(\mathbf{x}), \operatorname{Find}(\mathbf{y}))$

- Running time: depth $(\mathbf{x})+\operatorname{depth}(\mathbf{y})$


## Union example



## Union example



## If $\mathbf{z} \rightarrow \mathbf{r a n k} \geq \mathbf{w} \rightarrow \mathbf{r a n k}$

## Union example



## If $\mathbf{z} \rightarrow \mathbf{r a n k} \geq \mathbf{w} \rightarrow \mathbf{r a n k}$



## Union example



$$
\text { If } z \rightarrow \text { rank } \geq \mathbf{w} \rightarrow \text { rank }
$$

$$
\text { If } z \rightarrow \text { rank }=\mathbf{w} \rightarrow \text { rank, }
$$ then ( $\mathbf{z} \rightarrow$ rank $)++$

## Properties of Ranks

1. If $x$ not a root, then $(x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.

## Properties of Ranks

1. If $x$ not a root, then $(x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Properties of Ranks

1. If $x$ not a root, then $(x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Proof of Property 4.

Induction. Base case: $\mathbf{r}=\mathbf{0}$.

## Properties of Ranks

1. If $x$ not a root, then $(x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Proof of Property 4.

Induction. Base case: $\mathbf{r}=\mathbf{0} . \checkmark$

## Properties of Ranks

1. If $x$ not a root, then $(x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Proof of Property 4.

Induction. Base case: $\mathbf{r}=\mathbf{0} . \checkmark$
Inductive case: Suppose true for $\mathbf{r - 1}$.

## Properties of Ranks

1. If $x$ not a root, then $(x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Proof of Property 4.

Induction. Base case: $\mathbf{r}=\mathbf{0} . \checkmark$
Inductive case: Suppose true for $\mathbf{r - 1}$.
When $\mathbf{x}$ first gets rank $\mathbf{r}$, must be because $\mathbf{x}$ had rank $\mathbf{r}-\mathbf{1}$ (and was root), unioned with another set with root $\mathbf{z}$ of rank $\mathbf{r - 1}$.

## Properties of Ranks

1. If $x$ not a root, then ( $x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Proof of Property 4.

Induction. Base case: $\mathbf{r}=\mathbf{0} . \checkmark$
Inductive case: Suppose true for $\mathbf{r - 1}$.
When $\mathbf{x}$ first gets rank $\mathbf{r}$, must be because $\mathbf{x}$ had rank $\mathbf{r}-\mathbf{1}$ (and was root), unioned with another set with root $\mathbf{z}$ of rank $\mathbf{r - 1}$.
$\Longrightarrow$ By induction, at least $\mathbf{2}^{\text {r-1 }}$ nodes in each tree

## Properties of Ranks

1. If $x$ not a root, then ( $x \rightarrow$ rank $)<(x \rightarrow$ parent $\rightarrow$ rank $)$
2. When doing path compression, if parent of $\mathbf{x}$ changes, new parent has rank strictly larger than old parent
3. $\mathbf{x} \rightarrow$ rank can change only if $\mathbf{x}$ a root, and once $\mathbf{x}$ is a non-root it never becomes a root again.
4. When $\mathbf{x}$ first reaches rank $\mathbf{r}$, there are at least $\mathbf{2}^{\mathbf{r}}$ nodes in tree rooted at $\mathbf{x}$.

## Proof of Property 4.

Induction. Base case: $\mathbf{r}=\mathbf{0} . \checkmark$
Inductive case: Suppose true for $\mathbf{r - 1}$.
When $\mathbf{x}$ first gets rank $\mathbf{r}$, must be because $\mathbf{x}$ had rank $\mathbf{r}-\mathbf{1}$ (and was root), unioned with another set with root $\mathbf{z}$ of rank $\mathbf{r - 1}$.
$\Longrightarrow$ By induction, at least $\mathbf{2}^{\text {r-1 }}$ nodes in each tree
$\Longrightarrow$ At least $\mathbf{2}^{r-1}+\mathbf{2}^{r-1}=2^{r}$ nodes in combined tree.

## Nodes of rank r

## Lemma

There are at most $\mathbf{n} / 2^{\mathbf{r}}$ nodes of rank at least $\mathbf{r}$.

## Proof.

Let $\mathbf{x}$ node of rank at least $\mathbf{r}$. Let $\mathbf{S}_{\mathbf{x}}$ be descendants of $\mathbf{x}$ when it first got rank $\mathbf{r}$. $\Longrightarrow\left|S_{x}\right| \geq \mathbf{2}^{r}$ by property 4 .

## Nodes of rank r

## Lemma

There are at most $\mathbf{n} / \mathbf{2}^{\mathbf{r}}$ nodes of rank at least $\mathbf{r}$.

## Proof.

Let $\mathbf{x}$ node of rank at least $\mathbf{r}$. Let $\mathbf{S}_{\mathbf{x}}$ be descendants of $\mathbf{x}$ when it first got rank $\mathbf{r}$. $\Longrightarrow\left|S_{x}\right| \geq 2^{r}$ by property 4 .
Let $\mathbf{z}$ some other node of rank $\geq \mathbf{r}$. Without loss of generality, suppose $\mathbf{x}$ got rank $\mathbf{r}$ before $\mathbf{z}$. Consider some $\mathbf{e} \in \mathbf{S}_{\mathbf{x}}$. Then $\mathbf{e}$ can't be in $\mathbf{S}_{\mathbf{z}}$ (already in tree with rank $\geq \mathbf{r}$ ). So $\mathbf{S}_{\mathrm{x}} \cap \mathbf{S}_{\mathbf{z}}=\varnothing$.

## Nodes of rank r

## Lemma

There are at most $\mathbf{n} / \mathbf{2}^{\mathbf{r}}$ nodes of rank at least $\mathbf{r}$.

## Proof.

Let $\mathbf{x}$ node of rank at least $\mathbf{r}$. Let $\mathbf{S}_{\mathbf{x}}$ be descendants of $\mathbf{x}$ when it first got rank $\mathbf{r}$. $\Longrightarrow\left|S_{x}\right| \geq \mathbf{2}^{r}$ by property 4 .
Let $\mathbf{z}$ some other node of rank $\geq \mathbf{r}$. Without loss of generality, suppose $\mathbf{x}$ got rank $\mathbf{r}$ before $\mathbf{z}$. Consider some $\mathbf{e} \in \mathbf{S}_{\mathbf{x}}$. Then $\mathbf{e}$ can't be in $\mathbf{S}_{\mathbf{z}}$ (already in tree with rank $\geq \mathbf{r}$ ). So $\mathbf{S}_{\mathbf{x}} \cap \mathbf{S}_{\mathbf{z}}=\varnothing$. $\Longrightarrow$ At most $\mathbf{n} / 2^{\mathbf{r}}$ nodes of rank $\geq \mathbf{r}$.

## Main Result I

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.

## Main Result I

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
$\mathbf{m}$ operations total. Analyze each type separately:

- Make-Set: O(1) time each
- Union: two Find operations, plus $\mathbf{O ( 1 )}$ other work.
- Find( $\mathbf{x}$ ): proportional to depth of $\mathbf{x}$. Count number of parent pointers followed, call this the time.


## Main Result I

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
$\mathbf{m}$ operations total. Analyze each type separately:

- Make-Set: O(1) time each
- Union: two Find operations, plus $\mathbf{O ( 1 )}$ other work.
- Find( $\mathbf{x}$ ): proportional to depth of $\mathbf{x}$. Count number of parent pointers followed, call this the time.

So at most $\mathbf{2 m}$ Finds, want to bound total \# parent pointers followed.

## Main Result I

## Theorem

When using Path Compression and Union By Rank, total time at most $\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
m operations total. Analyze each type separately:

- Make-Set: O(1) time each
- Union: two Find operations, plus $\mathbf{O ( 1 )}$ other work.
- Find( $\mathbf{x}$ ): proportional to depth of $\mathbf{x}$. Count number of parent pointers followed, call this the time.

So at most $\mathbf{2 m}$ Finds, want to bound total \# parent pointers followed.

- At most one parent pointer to root per Find $\Longrightarrow$ at most $\mathbf{O}(\mathbf{m})$ parent pointers to roots.
- So only need to worry about parent pointers to non-roots.


## Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).
Notation: $\mathbf{2} \uparrow \mathbf{i}$ denote a tower of i 2's

- $2 \uparrow 1=2, \quad 2 \uparrow 2=2^{2}=4, \quad 2 \uparrow 3=2^{2^{2}}=2^{4}=16, \quad 2 \uparrow 4=2^{2^{2^{2}}}=2^{16}=65536$
- $\log ^{*}(2 \uparrow i)=i$


## Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).
Notation: $\mathbf{2 \uparrow i}$ denote a tower of $\mathbf{i} \mathbf{2 ' s}$

- $2 \uparrow 1=2, \quad 2 \uparrow 2=2^{2}=4, \quad 2 \uparrow 3=2^{2^{2}}=2^{4}=16, \quad 2 \uparrow 4=2^{2^{2^{2}}}=2^{16}=65536$
- $\log ^{*}(2 \uparrow i)=i$
$\mathbf{B}(\mathbf{i})$ (Bucket $\mathbf{i}$ ): All elements of rank at least $\mathbf{2} \uparrow(\mathbf{i}-\mathbf{1})$, at most $(\mathbf{2} \uparrow \mathbf{i}) \mathbf{- 1}$
- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535


## Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).
Notation: $\mathbf{2 \uparrow i}$ denote a tower of $\mathbf{i} \mathbf{2 ' s}$

- $2 \uparrow 1=2, \quad 2 \uparrow 2=2^{2}=4, \quad 2 \uparrow 3=2^{2^{2}}=2^{4}=16, \quad 2 \uparrow 4=2^{2^{2^{2}}}=2^{16}=65536$
- $\log ^{*}(2 \uparrow i)=i$
$\mathbf{B}(\mathbf{i})$ (Bucket $\mathbf{i}$ ): All elements of rank at least $\mathbf{2} \uparrow(\mathbf{i}-\mathbf{1})$, at most $(\mathbf{2} \uparrow \mathbf{i}) \mathbf{- 1}$
- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\boldsymbol{l o g}^{*} \mathbf{n}$ buckets.


## Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).
Notation: $\mathbf{2 \uparrow i}$ denote a tower of $\mathbf{i} \mathbf{2 ' s}$

- $2 \uparrow 1=2, \quad 2 \uparrow 2=2^{2}=4, \quad 2 \uparrow 3=2^{2^{2}}=2^{4}=16, \quad 2 \uparrow 4=2^{2^{2^{2}}}=2^{16}=65536$
- $\log ^{*}(2 \uparrow i)=i$
$\mathbf{B}(\mathbf{i})$ (Bucket $\mathbf{i}$ ): All elements of rank at least $\mathbf{2} \uparrow(\mathbf{i}-\mathbf{1})$, at most $(\mathbf{2} \uparrow \mathbf{i}) \mathbf{- 1}$
- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\log ^{*} \mathbf{n}$ buckets.

From Lemma: at most $\mathbf{n} /\left(\mathbf{2}^{\mathbf{2 \uparrow ( i - 1 )}}\right)=\mathbf{n} /(\mathbf{2 \uparrow i})$ elements in bucket $\mathbf{i}$.

## Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all $\leq \mathbf{2 m}$ Finds.

## Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all $\leq \mathbf{2 m}$ Finds.
Type 1: Parent pointers that cross buckets
$\bullet \leq \log ^{*} \mathbf{n}$ buckets $\Longrightarrow \leq \log ^{*} \mathbf{n}$ per Find $\Longrightarrow \leq 2 \mathbf{m} \log ^{*} \mathbf{n}=\mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$ total

## Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all $\leq \mathbf{2 m}$ Finds.
Type 1: Parent pointers that cross buckets

- $\leq \log ^{*} n$ buckets $\Longrightarrow \leq \log ^{*} n$ per Find $\Longrightarrow \leq 2 m \log ^{*} n=\mathbf{O}\left(\mathbf{m} \log ^{*} n\right)$ total

Type 2: Parent pointers that do not cross buckets

- For each $\mathbf{x}$, let $\boldsymbol{\alpha}(\mathbf{x})=\#$ times follow parent point from $\mathbf{x}$ to parent in same bucket, not root. Want to show $\sum_{\mathrm{x}} \alpha(\mathrm{x}) \leq \mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
- Since $\mathbf{x}$ not root when following pointers, always has same rank


## Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all $\leq \mathbf{2 m}$ Finds.
Type 1: Parent pointers that cross buckets

- $\leq \log ^{*} n$ buckets $\Longrightarrow \leq \log ^{*} n$ per Find $\Longrightarrow \leq 2 m \log ^{*} n=\mathbf{O}\left(\mathbf{m} \log ^{*} n\right)$ total

Type 2: Parent pointers that do not cross buckets

- For each x , let $\boldsymbol{\alpha}(\mathrm{x})=\#$ times follow parent point from x to parent in same bucket, not root. Want to show $\sum_{\mathrm{x}} \alpha(\mathrm{x}) \leq \mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
- Since $x$ not root when following pointers, always has same rank
- Whenever $\mathbf{x}$ 's pointer followed, gets new parent (path compression)
$\Longrightarrow$ rank of parent goes up by at least $\mathbf{1}$ (properties of rank)
$\Longrightarrow$ happens at most $\mathbf{2} \uparrow \mathbf{i}$ times if $\mathbf{x}$ in bucket $\mathbf{i}$
$\Longrightarrow \alpha(x) \leq 2 \uparrow$ i.


## Main Result III

Want to bound total \# parent pointers (to non-roots) followed over all $\leq \mathbf{2 m}$ Finds.
Type 1: Parent pointers that cross buckets

- $\leq \log ^{*} n$ buckets $\Longrightarrow \leq \log ^{*} n$ per Find $\Longrightarrow \leq 2 m \log ^{*} n=\mathbf{O}\left(\mathbf{m} \log ^{*} n\right)$ total

Type 2: Parent pointers that do not cross buckets

- For each x , let $\boldsymbol{\alpha}(\mathrm{x})=\#$ times follow parent point from x to parent in same bucket, not root. Want to show $\sum_{\mathrm{x}} \alpha(\mathrm{x}) \leq \mathbf{O}\left(\mathbf{m} \log ^{*} \mathbf{n}\right)$.
- Since $\mathbf{x}$ not root when following pointers, always has same rank
- Whenever x's pointer followed, gets new parent (path compression) $\Longrightarrow$ rank of parent goes up by at least $\mathbf{1}$ (properties of rank)
$\Longrightarrow$ happens at most $\mathbf{2} \uparrow \mathbf{i}$ times if $\mathbf{x}$ in bucket $\mathbf{i}$
$\Longrightarrow \alpha(x) \leq 2 \uparrow$ i.

$$
\begin{aligned}
\sum_{x} \alpha(x) & =\sum_{i=0}^{O\left(\log ^{*} n\right)} \sum_{x \in B(i)} \alpha(x) \leq \sum_{i=0}^{O\left(\log ^{*} n\right)} \sum_{x \in B(i)}(2 \uparrow i) \leq \sum_{i=0}^{O\left(\log ^{*} n\right)} \frac{n}{2 \uparrow i}(2 \uparrow i)=O\left(n \log ^{*} n\right) \\
& \leq O\left(m \log ^{*} n\right),
\end{aligned}
$$

