Lecture 6: Balanced Search Trees

Michael Dinitz

September 16, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 1/24

Introduction

Today, and next few weeks: data structures.

» Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 2 /24

Introduction
Today, and next few weeks: data structures.
» Since “Data Structures” a prereq, focus on advanced structures and on interesting

analysis

Today and later: data structures for dictionaries

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 2 /24

Introduction

Today, and next few weeks: data structures.

» Since “Data Structures” a prereq, focus on advanced structures and on interesting
analysis

Today and later: data structures for dictionaries

Definition

A dictionary data structure is a data structure supporting the following operations:
» insert(key,object): insert the (key, object) pair.
> lookup(key): return the associated object

» delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 2 /24

Obvious Approaches

Reminder: all running times for worst case

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case 1| (¢ 78] /,é/"cc_J-)

Approach 1: Sorted array
» Lookup:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)

» |nsert:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case
Approach 1: Sorted array ’E
» Lookup: O(logn) f / / /

» Insert: Q(n) . / Wv

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list

» |nsert:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list

 Insert: O(1) @AW)@

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list
> Insert: O(1)
» Lookup:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list
> Insert: O(1)
» Lookup: €2(n)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list
> Insert: O(1)
» Lookup: €2(n)

Goal: O(logn) for both.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Obvious Approaches

Reminder: all running times for worst case

Approach 1: Sorted array
» Lookup: O(logn)
» Insert: (n)

Approach 2: Unsorted (linked) list
> Insert: O(1)
» Lookup: €2(n)

Goal: O(logn) for both.
Approach today: search trees

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 3/24

Binary Search Tree Review

Binary search tree:

v

All nodes have at most 2 children

v

Each node stores (key, object) pair

v

All descendants to left have smaller keys

v

All descendants to the right have larger keys

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 4 /24

Binary Search Tree Review

Binary search tree:

All nodes have at most 2 children

v

v

Each node stores (key, object) pair

v

All descendants to left have smaller keys

v

All descendants to the right have larger keys

Lookup: follow path from root!

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 4 /24

Dictionary Operations in Simple Binary Search Tree
insert(x):

» If tree empty, put x at root

» Else if x < root.key recursively insert into left child

» Else (if x > root.key) recursively insert into right child

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 5/ 24

Dictionary Operations in Simple Binary Search Tree
insert(x):

» If tree empty, put x at root

» Else if x < root.key recursively insert into left child

» Else (if x > root.key) recursively insert into right child

Example: HO P K I N S

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 5/ 24

Simply Binary Search Tree: Analysis

Pluses: easy to implement

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 6 /24

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 6 /24

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d, then ©(d)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 6 /24

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d, then ©(d)
» If very unbalanced d could be (n)!

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 6 /24

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d, then ©(d)
» If very unbalanced d could be (n)!

Want to make tree balanced.

Michael Dinitz Lecture 6: Balanced Search Trees

September 16, 2021

6/ 24

Simply Binary Search Tree: Analysis

Pluses: easy to implement

(Worst-case) Running time: if depth d, then ©(d)
» If very unbalanced d could be (n)!

Want to make tree balanced.

Rest of today:
» B-trees: perfect balance, not binary

» Red-black trees: approximate balance, binary

» Turn out to be related!

Michael Dinitz Lecture 6: Balanced Search Trees

September 16, 2021

6/ 24

B-Trees

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 7/ 24

B-tree Definition

Parameter t > 2.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 8 /24

B-tree Definition
k |

Parameter t > 2.
Definition (B-tree with parameter t) A

1. Each node has between t -1 and 2t - 1 keys in it (except the root has between 1 and
2t - 1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1,ap,...,ak] and the children are [v1,Vv2,...,Vk1], then the
tree rooted at v; contains only keys that are at least a;_; and at most a; (except the the
edge cases: the tree rooted at vy has keys less than aj, and the tree rooted at vg,1 has

keys at least ay).

3. All leaves are at the same depth.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 8 /24

B-tree Definition

Parameter t > 2.

Definition (B-tree with parameter t)

1. Each node has between t -1 and 2t - 1 keys in it (except the root has between 1 and
2t - 1 keys). Keys in a node are stored in a sorted array.

2. Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. If
v is a node with keys [a1,ap,...,ak] and the children are [v1,Vv2,...,Vk1], then the
tree rooted at v; contains only keys that are at least a;_; and at most a; (except the the
edge cases: the tree rooted at vy has keys less than aj, and the tree rooted at vg,1 has

keys at least ay).

3. All leaves are at the same depth.

When t = 2 known as a 2-3-4 tree, since # children either 2, 3, or 4

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 8 /24

B-tree: Example

t=3:
» Root has between 1 and 5 keys, non-roots have between 2 and 5 keys

> Non-leaves have between 3 and 6 children (root can have fewer).

ard towm-vel
HMR)
(ABCD)(KL]) (NoJ(TYZ)
Michael Dinitz Lecture 6: Balanced Search Trees

September 16, 2021

9/ 24

Lookups

Binary search in array at root. Finished if find item, else get pointer to appropriate child,
recurse.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 10 / 24

Insert(x)

Obvious approach: do a lookup, put x in leaf where it should be.
» Example: insert E

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 11 /24

Insert(x)

Obvious approach: do a lookup, put x in leaf where it should be.
» Example: insert E
Problem: What if leaf is full (already has 2t - 1 keys)?

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 11 /24

Insert(x)

HMR)

N\

@ 0 @@(fz

ABCMDE[KL]) (NO) (TYZ)

Obvious approach: do a lookup, put x in leaf where it should be.
» Example: insert E

Problem: What if leaf is full (already has 2t - 1 keys)?

Split:
> Only used on full nodes (nodes with 2t — 1 keys) whose parents are not full.
» Pull median of its keys up to its parent

» Split remaining 2t - 2 keys into two nodes of t — 1 keys each. Reconnect appropriately.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 11 /24

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 12 / 24

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

H MR

(ABCcD](KL) (No)(TYZ)

Insert E, F into example.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 12 / 24

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

H MR

(ABCcD](KL) (No)(TYZ)

Insert E, F into example.

CHMR

(AB)(PEF(KL)(NO) (TYZ)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 12 / 24

Insert (continued)

Insert: do a lookup and insert at leaf, but when we encounter a full node on way down, split it.

Insert E, F into example.

H MR

(ABCcD](KL) (No)(TYZ)

CHMR

(AB)(PEF(KL)(NO) (TYZ)

Note: since split on the way down, when a node is split, its parent is not full!

Michael Dinitz

Lecture 6: Balanced Search Trees

September 16, 2021

12 / 24

Example continued

(pEF(KL)(NO) (TYZ)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 13 / 24

Example continued

Insert S, U, V:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 13 / 24

Example continued

(pEF(KL)(NO) (TYZ)

Insert S, U, V:

(aB)(pEF(KL)(NO)sT)(VYZ)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 13 / 24

Example continued

(pEF(KL)(NO) (TYZ)

Insert S, U, V:

Insert P:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 13 / 24

Example continued

(pEF(KL)(NO) (TYZ)

Insert S, U, V:

(aB)(pEF(KL)(NO)sT)(VYZ)

Insert P:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 13 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.

Third property (all leaves at same depth):

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.

Third property (all leaves at same depth): Tree grows up. v/

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):

» No split:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):

> No split: only leaf changes, was not full (or would have split)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):
> No split: only leaf changes, was not full (or would have split)
» Split:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):
> No split: only leaf changes, was not full (or would have split)

» Split: Parent was not full. New nodes have exactly t — 1 keys.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):
> No split: only leaf changes, was not full (or would have split)

» Split: Parent was not full. New nodes have exactly t — 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges):

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

14 / 24

Insert: Correctness sketch

Induction. Start with a valid B-tree, insert x.
Third property (all leaves at same depth): Tree grows up. v/

First property (all non-leaves other than root have between t -1 and 2t - 1 keys):
> No split: only leaf changes, was not full (or would have split)

» Split: Parent was not full. New nodes have exactly t — 1 keys.

Second property (correct degrees, subtrees have keys in correct ranges): Hooked nodes up
correctly after split. v/

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 14 / 24

B-tree running time

Suppose n keys, depth d

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n) p/C q ” 4. L; L\,,.,{ J 2+

¢5.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)

Lookup:

» Binary search on array in each node we pass through

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)

Lookup:

» Binary search on array in each node we pass through = O(logt) time per node.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)

Lookup:

» Binary search on array in each node we pass through = O(logt) time per node.

» Total time O(d x logt) = O(log, n x logt) = O(x logt) = O(logn)

logn
logt

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node.

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node.

» Total time O(d x logt) = O(log, n x logt) = O('Izz': x logt) = O(logn)

Insert: (e (C"‘p

» Same as _insert; but need to split on the way down & insert into leaf

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
» Total: lookup time + splitting time + time to insert into leaf

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
» Insert into leaf:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
» Insert into leaf: O(t)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
» Insert into leaf: O(t)
» Splitting time:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
» Total: lookup time + splitting time + time to insert into leaf

» Insert into leaf: O(t)

» Splitting time: O(t) per split

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf

» Total: lookup time + splitting time + time to insert into leaf
» Insert into leaf: O(t)

» Splitting time: O(t) per split = O(td) = O(tlog, n) total

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree running time

Suppose n keys, depth d < O(log, n)
Lookup:
» Binary search on array in each node we pass through = O(logt) time per node

» Total time O(d x logt) = O(log, n x logt) = O('Izirt' x logt) = O(logn)

Insert:

» Same as insert, but need to split on the way down & insert into leaf
» Total: lookup time + splitting time + time to insert into leaf
» Insert into leaf: O(t)
» Splitting time: O(t) per split = O(td) = O(tlog, n) total
t
» O(tlog:n) = O(@ logn) total

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

15 / 24

B-tree notes

Used a lot in databases

» Large t: shallow trees. Fits well with memory hierarchy

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 16 / 24

B-tree notes

Used a lot in databases

» Large t: shallow trees. Fits well with memory hierarchy

t=2:
» 2-3-4 tree

» Can be implemented as binary tree using red-black trees

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 16 / 24

Red-Black Trees

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 17 / 24

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 18 / 24

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

» Classical and super important data structure question

» Many solutions!

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 18 / 24

Red-Black Trees: Intro

B-Trees great, but binary is nice: lookups very simple!
Want binary balanced tree.

» Classical and super important data structure question

» Many solutions!

Most famous: red-black trees
» Default in Linux kernel, used to optimize Java HashMap, ...
» Today: Quick overview, connection to 2-3-4 trees.

» Not traditional or practical point of view on red-black trees. See book!

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 18 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4
» Degree 2: good!

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4
» Degree 2: good! @
» Degree 4:
a0r C N
e k
‘)

/ﬁ({é@ ®4'J D

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4

» Degree 2: good!

» Degree 4:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4
» Degree 2: good!

» Degree 4:
» Degree 3:
| F
(.
A @ 7)
Michael Dinitz Lecture 6: Balanced Search Trees

September 16, 2021

19 / 24

2-3-4 trees to binary

Can we turn a 2-3-4 tree into a binary tree with all the same properties?

» No: can’t have perfect balance!
» Just need depth O(logn)

Nodes in 2-3-4 tree have degree 2, 3, or 4

» Degree 2: good!
red glue

» Degree 4:
|:> or
A 95~/
Michael Dinitz Lecture alanced Search TReES September 16, 2021 19 / 24

» Degree 3:

Important Properties

red glue

R RELTR

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 20 / 24

Important Properties

e R

1. Never have two red edges in a row.
» Red edge is “internal”, never have more than one “internal” edge in a row.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 20 / 24

Important Properties

e R

1. Never have two red edges in a row.
» Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

» Each black edge is a 2-3-4 tree edge
» All leaves in 2-3-4 tree at same distance from root

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 20 / 24

Important Properties

e R Ry

1. Never have two red edges in a row.
» Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

» Each black edge is a 2-3-4 tree edge
» All leaves in 2-3-4 tree at same distance from root

== path from root to deepest leaf <2 x path to shallowest leaf

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 20 / 24

Important Properties

o R

1. Never have two red edges in a row.
» Red edge is “internal”, never have more than one “internal” edge in a row.

2. Every leaf has same number of black edges on path to root (black-depth)

» Each black edge is a 2-3-4 tree edge
» All leaves in 2-3-4 tree at same distance from root

== path from root to deepest leaf <2 x path to shallowest leaf
== depth < O(logn)

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 20 / 24

Insert
Want to insert while preserving two properties.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 21 / 24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 21 / 24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 21 / 24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

o T

Easy cases:

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 21 / 24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

TR AR

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 21 / 24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

' A P
S R

Michael Dinitz Lecture 6: Balanced Search Trees

September 16, 2021

21 /24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

' A P
it R R Ty

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 21 / 24

Insert

Want to insert while preserving two properties.
2-3-4 trees: split full nodes on way down.

Easy cases:

Harder cases:

Michael Dinitz

U

gy

7, ¥

7y

Dgﬁéjbg%%
T

Lecture 6: Balanced Search Trees

R
%’3 @DQD %

?
?

September 16, 2021

21 /24

Tree Rotations

Used in many different tree constructions.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 22 / 24

Tree Rotations

Used in many different tree constructions.
() (4
(4] ' ' (0]

Michael Dinitz

F

12X N E1
September 16, 2021

22 /24

Using Rotations

Can use rotations to “fix" hard cases. Example:

inserting 6

change colors

right rotate R —

left rotate E —

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 23 / 24

End

A few more complications to deal with — see lecture notes, textbook.

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021 24 / 24

End

A few more complications to deal with — see lecture notes, textbook.

Main points:
» Red-Black trees can be thought of as a binary implementation of 2-3-4 trees
» Approximately balanced, so O(logn) lookup time
> Insert time (basically) same as 2-3-4 tree, so also O(logn).

» See book for direct approach (not through 2-3-4 trees).

Michael Dinitz Lecture 6: Balanced Search Trees September 16, 2021

24 / 24

