Lecture 4: Linear Time Selection/Median

Michael Dinitz

September 9, 2021
601.433/633 Introduction to Algorithms

Intro and Problem Definition

Last time: sorting in expected $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time (randomized quicksort)

- Should already know (from Data Structures) deterministic $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ algorithms for sorting (mergesort, heapsort)

Today: two related problems

- Median: Given array \mathbf{A} of length \mathbf{n}, find the median: $\lceil\mathbf{n} / \mathbf{2}$ Пnd smallest element.
- Selection: Given array \mathbf{A} of length \mathbf{n} and $\mathbf{k} \in[\mathbf{n}]=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$, find \mathbf{k} 'th smallest element.

Can solve both in $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ time via sorting. Faster?

Warmup

$$
\mathbf{k}=1
$$

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.
$\mathrm{k}=\mathbf{n}$:

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time. $\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time. $\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.
$\mathrm{k}=\mathbf{O}(\mathbf{1})$ or $\mathrm{k}=\mathrm{n}-\mathbf{O}(\mathbf{1})$:

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{O}(\mathbf{1})$ or $\mathbf{k}=\mathbf{n}-\mathbf{O}(\mathbf{1})$: keep track of \mathbf{k} smallest/largest. $\mathbf{O}(\mathbf{n})$ time.

$$
u-k
$$

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{O}(\mathbf{1})$ or $\mathbf{k}=\mathbf{n} \mathbf{-} \mathbf{O}(\mathbf{1})$: keep track of \mathbf{k} smallest/largest. $\mathbf{O}(\mathbf{n})$ time.
Does this work when $\mathbf{k}=\mathbf{n} / \mathbf{2}$?

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{O}(\mathbf{1})$ or $\mathbf{k}=\mathbf{n}-\mathbf{O}(\mathbf{1})$: keep track of \mathbf{k} smallest/largest. $\mathbf{O}(\mathbf{n})$ time.
Does this work when $\mathbf{k}=\mathbf{n} / \mathbf{2}$? $=\frac{n}{2}$

- Need to keep track of $\mathbf{k} / 2 /$ smallest.

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{O}(\mathbf{1})$ or $\mathbf{k}=\mathbf{n}-\mathbf{O}(\mathbf{1})$: keep track of \mathbf{k} smallest/largest. $\mathbf{O}(\mathbf{n})$ time.
Does this work when $\mathbf{k}=\mathbf{n} / \mathbf{2}$?

- Need to keep track of $\mathbf{k} / 2$ smallest.
- When scanning, see an element, need to determine if one of \mathbf{k} smallest. If yes, remove previous max of the $\% / 2$ we've been keeping track of.
- Not easy to do! Foreshadow: would need to use a heap. $\boldsymbol{\Theta}(\log \mathbf{n})$-worst case time.

Warmup

$\mathbf{k}=\mathbf{1}$: Scan through array, keeping track of smallest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{n}$: Scan through array, keeping track of largest. $\mathbf{O}(\mathbf{n})$ time.
$\mathbf{k}=\mathbf{O}(\mathbf{1})$ or $\mathbf{k}=\mathbf{n}-\mathbf{O}(\mathbf{1})$: keep track of \mathbf{k} smallest/largest. $\mathbf{O}(\mathbf{n})$ time.
Does this work when $\mathbf{k}=\mathbf{n} / \mathbf{2}$?

- Need to keep track of $\mathbf{k} / 2$ smallest.
- When scanning, see an element, need to determine if one of \mathbf{k} smallest. If yes, remove previous max of the $\mathbf{k} / \mathbf{2}$ we've been keeping track of.
- Not easy to do! Foreshadow: would need to use a heap. $\boldsymbol{\Theta}(\log \mathbf{n})$-worst case time.
- $\Theta(n \log n)$ worst-case time.

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
R-Quickselect(\mathbf{A}, \mathbf{k}):

1. If $|\mathbf{A}|=\mathbf{1}$, return the element.

2. Pick a pivot element \mathbf{p} uniformly at random from \mathbf{A}.
3. Compare each element of \mathbf{A} to \mathbf{p}, creating subarrays \mathbf{L} of elements less than \mathbf{p} and \mathbf{G} of elements greater than \mathbf{p}.
4. 4.1 If $|\mathbf{L}|=\mathbf{k - 1}$:

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
R-Quickselect(\mathbf{A}, \mathbf{k}):

1. If $|\mathbf{A}|=\mathbf{1}$, return the element.
2. Pick a pivot element \mathbf{p} uniformly at random from \mathbf{A}.
3. Compare each element of \mathbf{A} to \mathbf{p}, creating subarrays \mathbf{L} of elements less than \mathbf{p} and \mathbf{G} of elements greater than \mathbf{p}.
4. 4.1 If $|\mathbf{L}|=\mathbf{k - 1}$: return \mathbf{p}.

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
R-Quickselect(\mathbf{A}, \mathbf{k}):

1. If $|\mathbf{A}|=\mathbf{1}$, return the element.
2. Pick a pivot element \mathbf{p} uniformly at random from \mathbf{A}.
3. Compare each element of \mathbf{A} to \mathbf{p}, creating subarrays \mathbf{L} of elements less than \mathbf{p} and \mathbf{G} of elements greater than \mathbf{p}.
4. 4.1 If $|\mathbf{L}|=\mathbf{k - 1}$: return \mathbf{p}. 4.2 if $|\mathbf{L}|>\mathbf{k} \mathbf{- 1}$:

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
R-Quickselect(\mathbf{A}, \mathbf{k}):

1. If $|\mathbf{A}|=\mathbf{1}$, return the element.
2. Pick a pivot element \mathbf{p} uniformly at random from \mathbf{A}.
3. Compare each element of \mathbf{A} to \mathbf{p}, creating subarrays \mathbf{L} of elements less than \mathbf{p} and \mathbf{G} of elements greater than \mathbf{p}.
4. 4.1 If $|\mathrm{L}|=\mathbf{k - 1}$: return \mathbf{p}.
4.2 if $|\mathbf{L}|>\mathbf{k}-\mathbf{1}$: return R-Quickselect (\mathbf{L}, \mathbf{k}).

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
R-Quickselect(\mathbf{A}, \mathbf{k}):

1. If $|\mathbf{A}|=\mathbf{1}$, return the element.
2. Pick a pivot element \mathbf{p} uniformly at random from \mathbf{A}.
3. Compare each element of \mathbf{A} to \mathbf{p}, creating subarrays \mathbf{L} of elements less than \mathbf{p} and \mathbf{G} of elements greater than \mathbf{p}.
4. 4.1 If $|\mathbf{L}|=\mathbf{k - 1}$: return \mathbf{p}.
4.2 if $|\mathbf{L}|>\mathbf{k}-\mathbf{1}$: return R-Quickselect(\mathbf{L}, \mathbf{k}).
4.3 If \mid L $\mid<\mathbf{k}-\mathbf{1}$:

$$
R-Q_{\ldots, i k s e} e_{c} t(G, k) \quad \text { BAD }
$$

(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we're looking for.
R-Quickselect(\mathbf{A}, \mathbf{k}):

1. If $|\mathbf{A}|=\mathbf{1}$, return the element.
2. Pick a pivot element \mathbf{p} uniformly at random from \mathbf{A}.
3. Compare each element of \mathbf{A} to \mathbf{p}, creating subarrays \mathbf{L} of elements less than \mathbf{p} and \mathbf{G} of elements greater than \mathbf{p}.
4. 4.1 If $|\mathrm{L}|=\mathbf{k - 1}$: return \mathbf{p}.
4.2 if $|\mathbf{L}|>\mathbf{k}-\mathbf{1}$: return R -Quickselect (\mathbf{L}, \mathbf{k}).
4.3 If $|\mathbf{L}|<\mathbf{k}-\mathbf{1}$: return R-Quickselect($\mathbf{G}, \mathbf{k}-|\mathbf{L}| \mathbf{- 1})$.

Quickselect: Correctness

Sketch here: good exercise to do at home!

Quickselect: Correctness

Sketch here: good exercise to do at home!
Prove by induction ("loop invariant") that on any call to R-Quickselect(\mathbf{X}, \mathbf{a}), the element we're looking for is a'th smallest of \mathbf{X}.

- Base case: first call to R-Quickselect($\mathbf{A}, \mathbf{k})$. Correct by definition.
- Inductive case: suppose was true for call R-Quickselect(Y,b).
- If we return element: correct
- If we recurse on L: correct
- If we recurse on \mathbf{G} : correct

Quickselect: Running Time

 Intuition:
Quickselect: Running Time

Intuition:

- Random pivot should be "near middle", so splits array "approximately in half".
- $\mathbf{O}(\log \mathbf{n})$ recursive calls, but each one on an array of half the size $\Longrightarrow \mathbf{T}(n)=\mathbf{T}(\mathbf{n} / 2)+\mathbf{c n} \Longrightarrow \mathbf{O}(n)$ time

Quickselect: Running Time

Intuition:

- Random pivot should be "near middle", so splits array "approximately in half".
- $\mathbf{O}(\log n)$ recursive calls, but each one on an array of half the size $\Longrightarrow \mathbf{T}(\mathrm{n})=\mathbf{T}(\mathrm{n} / 2)+\mathbf{c n} \Longrightarrow \mathbf{O}(\mathrm{n})$ time

Formalize this. Let $\mathbf{T}(\mathbf{n})$ be expected \# comparisons on array of size \mathbf{n}.

Quickselect: Running Time

Intuition:

- Random pivot should be "near middle", so splits array "approximately in half".
- $\mathbf{O}(\log n)$ recursive calls, but each one on an array of half the size $\Longrightarrow \mathbf{T}(\mathrm{n})=\mathbf{T}(\mathrm{n} / 2)+\mathbf{c n} \Longrightarrow \mathbf{O}(\mathrm{n})$ time

Formalize this. Let $\mathbf{T}(\mathbf{n})$ be expected \# comparisons on array of size \mathbf{n}.

- Splitting around pivot: $\mathbf{n - 1}$ comparisons

Quickselect: Running Time

Intuition:

- Random pivot should be "near middle", so splits array "approximately in half".
- $\mathbf{O}(\log n)$ recursive calls, but each one on an array of half the size $\Longrightarrow \mathbf{T}(\mathrm{n})=\mathbf{T}(\mathrm{n} / 2)+\mathbf{c n} \Longrightarrow \mathbf{O}(\mathrm{n})$ time

Formalize this. Let $\mathbf{T}(\mathbf{n})$ be expected \# comparisons on array of size \mathbf{n}.

- Splitting around pivot: n-1 comparisons
- Recurse on either \mathbf{L} or $\mathbf{G} \Longrightarrow$ recursion costs at most $\max (\mathbf{T}(|\mathrm{L}|), \mathbf{T}(|\mathbf{G}|))=\mathbf{T}(\max (|\mathrm{L}|,|\mathrm{G}|))$.

Quickselect: Running Time

Intuition:

- Random pivot should be "near middle", so splits array "approximately in half".
- $\mathbf{O}(\log n)$ recursive calls, but each one on an array of half the size $\Longrightarrow \mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} / 2)+\mathbf{c n} \Longrightarrow \mathbf{O}(\mathbf{n})$ time

Formalize this. Let $\mathbf{T}(\mathbf{n})$ be expected \# comparisons on array of size \mathbf{n}.

- Splitting around pivot: n-1 comparisons
- Recurse on either \mathbf{L} or $\mathbf{G} \Longrightarrow$ recursion costs at most $\max (\mathbf{T}(|\mathrm{L}|), \mathbf{T}(|\mathrm{G}|))=\mathbf{T}(\max (|\mathrm{L}|,|\mathrm{G}|))$.
- $|\mathbf{L}|,|\mathbf{G}|$ distributed uniformly among [0, $\mathbf{n}-\mathbf{1}]$.

Quickselect: Running Time

Intuition:

- Random pivot should be "near middle", so splits array "approximately in half".
- $\mathbf{O}(\log n)$ recursive calls, but each one on an array of half the size

$$
\Longrightarrow T(n)=T(n / 2)+c n \Longrightarrow O(n) \text { time }
$$

Formalize this. Let $\mathbf{T}(\mathbf{n})$ be expected \# comparisons on array of size \mathbf{n}.

- Splitting around pivot: n-1 comparisons
- Recurse on either \mathbf{L} or $\mathbf{G} \Longrightarrow$ recursion costs at most $\max (\mathbf{T}(|\mathrm{L}|), \mathbf{T}(|\mathrm{G}|))=\mathbf{T}(\max (|\mathrm{L}|,|\mathrm{G}|))$.
- $|\mathrm{L}|,|\mathbf{G}|$ distributed uniformly among [0, $\mathbf{n}-\mathbf{1}]$.

$$
\begin{aligned}
T(n) & \leq(n-1)+\sum_{i=0}^{n-1} \frac{1}{n} T(\max (i, n-i-1)) \\
& \leq(n-1)+\sum_{i=0}^{n / 2-1} \frac{1}{n} T(n-i-1)+\sum_{i=n / 2}^{n-1} \frac{1}{n} T(i)=(n-1)+\frac{2}{n} \sum_{i=n / 2}^{n-1} T(i)
\end{aligned}
$$

Quickselect: Running Time II

Want to solve recurrence relation $\mathbf{T}(\mathbf{n}) \leq(\mathbf{n}-\mathbf{1})+\frac{2}{n} \sum_{i=n / 2}^{n-1} \mathbf{T}(\mathbf{i})$.
Guess and check: $\mathbf{T}(\mathbf{n}) \leq 4 \mathbf{n}$.

Quickselect: Running Time II

Want to solve recurrence relation $\mathbf{T}(\mathbf{n}) \leq(\mathbf{n}-\mathbf{1})+\frac{2}{n} \sum_{i=n / 2}^{\mathbf{n} \mathbf{1}} \mathbf{T}(\mathbf{i})$.
Guess and check: $\mathbf{T}(\mathbf{n}) \leq 4 \mathbf{n}$.

$$
\begin{aligned}
T(n) & \leq(n-1)+\frac{2}{n} \sum_{i=n / 2}^{n-1} 4 i=(n-1)+4 \cdot \frac{2}{n} \sum_{i=n / 2}^{n-1} i \\
& =(n-1)+4 \cdot \frac{2}{n}\left(\sum_{i=1}^{n-1} i-\sum_{i=1}^{n / 2-1} i\right) \\
& =(n-1)+4 \cdot \frac{2}{n}\left(\frac{n(n-1)}{2}-\frac{(n / 2)(n / 2-1)}{2}\right) \\
& \leq(n-1)+4 \cdot\left((n-1)-\frac{n / 2-1}{2}\right) \\
& \leq(n-1)+4\left(\frac{3 n}{4}\right) \leq 4 n .
\end{aligned}
$$

Deterministic Version

Intuition:

- Randomization worked because it got us a "reasonably good" pivot.
- Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- Deterministically find a pivot that's "close" to the middle?

Deterministic Version

Intuition:

- Randomization worked because it got us a "reasonably good" pivot.
- Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- Deterministically find a pivot that's "close" to the middle?

Median-of-medians:

- Split \mathbf{A} into $\mathbf{n} / \mathbf{5}$ groups of $\mathbf{5}$ elements each.

- Compute median of each group.
- Let \mathbf{p} be the median of the $\mathbf{n} / \mathbf{5}$ medians

Deterministic Version

Intuition:

- Randomization worked because it got us a "reasonably good" pivot.
- Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- Deterministically find a pivot that's "close" to the middle?

Median-of-medians:

- Split A into $\mathbf{n} / 5$ groups of 5 elements each.
- Compute median of each group.
- Let \mathbf{p} be the median of the $\mathbf{n} / \mathbf{5}$ medians

Want to claim: \mathbf{p} is a good pivot, and can find \mathbf{p} efficiently.

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.
Let \mathbf{B} be a group (of $\mathbf{5}$ elements), \mathbf{m} median of \mathbf{B} :

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.
Let \mathbf{B} be a group (of $\mathbf{5}$ elements), \boldsymbol{m} median of \mathbf{B} :

- If $\mathbf{m}<\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two smaller) are in \mathbf{L}

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.
Let \mathbf{B} be a group (of $\mathbf{5}$ elements), \mathbf{m} median of \mathbf{B} :

- If $\mathbf{m}<\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two smaller) are in \mathbf{L}
- If $\mathbf{m}>\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two larger) are in \mathbf{G}

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.
Let \mathbf{B} be a group (of $\mathbf{5}$ elements), \mathbf{m} median of \mathbf{B} :

- If $\mathbf{m}<\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two smaller) are in \mathbf{L}
- If $\mathbf{m}>\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two larger) are in \mathbf{G}

By definition of $\mathbf{p}, \mathbf{n} / \mathbf{1 0}$ groups have $\mathbf{m}<\mathbf{p}$ and $\mathbf{n} / \mathbf{1 0}$ have $\mathbf{m}>\mathbf{p}$

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.
Let \mathbf{B} be a group (of $\mathbf{5}$ elements), \mathbf{m} median of \mathbf{B} :

- If $\mathbf{m}<\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two smaller) are in \mathbf{L}
- If $\mathbf{m}>\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two larger) are in \mathbf{G}

By definition of $\mathbf{p}, \mathbf{n} / \mathbf{1 0}$ groups have $\mathbf{m}<\mathbf{p}$ and $\mathbf{n} / \mathbf{1 0}$ have $\mathbf{m}>\mathbf{p}$

$$
|L| \geq \frac{n}{10} \cdot 3=\frac{3 n}{10} \Longrightarrow|G| \leq \frac{7 n}{10}
$$

$$
\text { gross with } m<\rho
$$

Median-of-Medians is good pivot

Theorem

$|\mathrm{L}|$ and $|\mathbf{G}|$ are both at most $\mathbf{7 n} / \mathbf{1 0}$ when \mathbf{p} is median of medians.
Let \mathbf{B} be a group (of $\mathbf{5}$ elements), \mathbf{m} median of \mathbf{B} :

- If $\mathbf{m}<\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two smaller) are in \mathbf{L}
- If $\mathbf{m}>\mathbf{p}$: at least three elements of \mathbf{B} (\mathbf{m} and two larger) are in \mathbf{G}

By definition of $\mathbf{p}, \mathbf{n} / \mathbf{1 0}$ groups have $\mathbf{m}\} \mathbf{p}$ and $\mathbf{n} / \mathbf{1 0}$ have $\mathbf{m}>\mathbf{p}$

$$
\begin{aligned}
& |L| \geq \frac{n}{10} \cdot 3=\frac{3 n}{10} \Longleftrightarrow|G| \leq \frac{7 n}{10} \\
& |G| \geq \frac{n}{10} \cdot 3=\frac{3 n}{10} \Longrightarrow|L| \leq \frac{7 n}{10}
\end{aligned}
$$

Finding Median of Medians

Have $\mathbf{n} / 5$ elements (median of each group). Want to find median.
What problem is this?

Finding Median of Medians

Have $\mathbf{n} / 5$ elements (median of each group). Want to find median.
What problem is this? Median / Selection!

Finding Median of Medians

Have $\mathbf{n} / 5$ elements (median of each group). Want to find median.
What problem is this? Median / Selection!
Recursion! Use same algorithm on array of medians.

BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.
$\operatorname{BPFRT}(\mathbf{A}, \mathbf{k})$

BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.
$\operatorname{BPFRT}(\mathbf{A}, \mathbf{k})$

1. Group \mathbf{A} into $\mathbf{n} / \mathbf{5}$ groups of $\mathbf{5}$, and let \mathbf{A}^{\prime} be an array of size $\mathbf{n} / \mathbf{5}$ containing the median of each group.
2. Let $\mathbf{p}=\operatorname{BPFRT}\left(\mathbf{A}^{\prime}, \mathbf{n} / \mathbf{1 0}\right)$, i.e., recursively find the median \mathbf{p} of \mathbf{A}^{\prime} (the median-of-the-medians).

BPFRT

Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.
$\operatorname{BPFRT}(\mathbf{A}, \mathbf{k})$
Let $T(n)=r-44 i=g$ time on array of size

1. Group \mathbf{A} into $\mathbf{n} / \mathbf{5}$ groups of $\mathbf{5}$, and let \mathbf{A}^{\prime} be an array of size $\mathbf{n} / \mathbf{5}$ containing the median of each group.
$O(n)$
$O(n)$
2. Let $\mathbf{p}=\operatorname{BPFRT}\left(\mathbf{A}^{\prime}, \mathbf{n} / \mathbf{1 0}\right)$, ie., recursively find the median \mathbf{p} of \mathbf{A}^{\prime} (the $T\left({ }^{n} / \mathrm{s}\right)$ median-of-the-medians).
3. Split \mathbf{A} using \mathbf{p} as a pivot into \mathbf{L} and \mathbf{G}.

$$
O(n)
$$

4. Recurs on the appropriate piece:
4.1 if $|\mathbf{L}|=\mathbf{k}-\mathbf{1}$ then return \mathbf{p}.
4.2 if $|\mathbf{L}|>\mathbf{k}-\mathbf{1}$ then return $\operatorname{BPFRT}(\mathbf{L}, \mathbf{k})$.
4.3 if $|\mathbf{L}|<\mathbf{k}-\mathbf{1}$ then return $\operatorname{BPFRT}(\mathbf{G}, \mathbf{k}-|\mathbf{L}|-\mathbf{1}) . \leq T\left(\frac{\mathbf{2 n}}{10}\right) \quad T\left(\frac{2 \mathfrak{n}}{3}\right)$

BPFRT Analysis

Let $\mathbf{T}(\mathbf{n})$ be (worst-case) running time on \mathbf{A} of size \mathbf{n}.

- Step 1: O(n) time
- Step 2: T(n/5) time
- Step 3: O(n) time
- Step 4: T(7n/10) time

BPFRT Analysis

Let $\mathbf{T}(\mathbf{n})$ be (worst-case) running time on \mathbf{A} of size \mathbf{n}.

- Step 1: On) time
- Step 2: T(n/5) time
- Step 3: On) time
- Step 4: T(7n/10) time

$$
\begin{aligned}
T(n) \leq & T(7 n / 10)+T(n / 5)+c n \\
T\left(\frac{2 n}{3}\right) & +T\left(\frac{4}{3}\right)+C 4 \\
& =G C u(\cos 4)
\end{aligned}
$$

BPFRT Analysis

Let $\mathbf{T}(\mathbf{n})$ be (worst-case) running time on \mathbf{A} of size \mathbf{n}.

- Step 1: O(n) time
- Step 2: T(n/5) time
- Step 3: O(n) time
- Step 4: T(7n/10) time

$$
T(n) \leq T(7 n / 10)+T(n / 5)+c n
$$

Guess $\mathbf{T}(\mathrm{n}) \leq 10 \mathrm{cn}$:

$$
T(n) \leq 10 c(7 n / 10)+10 c(n / 5)+c n=9 c n+c n=10 c n
$$

Deterministic $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ Quicksort

Can use this to get deterministic $\mathbf{O}(\mathbf{n} \log \mathbf{n})$-time Quicksort!

Deterministic $\mathbf{O}(\mathbf{n} \log \mathbf{n})$ Quicksort

Can use this to get deterministic $\mathbf{O}(\mathbf{n} \log \mathbf{n})$-time Quicksort! Use $\operatorname{BPFRT}(\mathbf{A}, \mathbf{n} / 2)$ to choose median as pivot.

Deterministic $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ Quicksort

Can use this to get deterministic $\mathbf{O}(\mathbf{n} \log \mathbf{n})$-time Quicksort! Use $\operatorname{BPFRT}(\mathbf{A}, \mathbf{n} / 2)$ to choose median as pivot.

Let $\mathbf{T}(\mathbf{n})$ be time on input of size \mathbf{n}.

- BPFRT to find pivot takes $\mathbf{O}(\mathbf{n})$ time
- Splitting around pivot takes $\mathbf{O}(\mathbf{n})$ time
- Each recursive call takes $\mathbf{T}(\mathbf{n} / 2)$ time

Deterministic $\mathbf{O}(\mathrm{n} \log \mathrm{n})$ Quicksort

Can use this to get deterministic $\mathbf{O}(\mathbf{n} \log \mathbf{n})$-time Quicksort! Use $\operatorname{BPFRT}(\mathbf{A}, \mathbf{n} / 2)$ to choose median as pivot.

Let $\mathbf{T}(\mathbf{n})$ be time on input of size \mathbf{n}.

- BPFRT to find pivot takes $\mathbf{O}(\mathbf{n})$ time
- Splitting around pivot takes $\mathbf{O}(\mathbf{n})$ time
- Each recursive call takes $\mathbf{T}(\mathbf{n} / 2)$ time

$$
T(n)=2 T(n / 2)+c n \Longrightarrow T(n)=\Theta(n \log n)
$$

