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Introduction

Algorithmic game theory: (some) intersections of algorithms and game theory (or economics
more broadly)

Three subareas:

� Computation of equilibria

� Ine�ciency of equilibria

� Algorithmic mechanism design

Today: very fast examples of first two

� See 601.436/636 for a whole class on this!
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Two-Player Zero-Sum Games: Penalty Kicks

Penalty kicks in soccer:

� Two players: goalie and kicker

� Too fast to react: both players have to guess.

Model as matrix game: matrix M, each entry of form (a,b)
� Kicker picks row and goalie picks column (simultaneously)

� (a,b): kicker (row player) gets “utility” a, goalie (column
player) gets “utility” b

� “Zero-sum”: a + b = 0 (so usually just write first value: row
player’s utility)

Left Right

Left (0,0) (1,-1)

Right (1, -1) (0,0)

What should each player do?
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Minimax
Two-player zero-sum matrix game: M ∈ Rn×m, row player tries to maximize, column player
tries to minimize.

Natural approach: assume other player knows you well, do as best as possible.
� Row player: choose distribution over rows, so that no matter what column player does
(even if they know distribution), still get utility� Penalty kicks:

� Probability 1�2 for each direction. Even if goalie knows, still get utility 1 with probability 1�2!
� If we bias at all, then goalie who knows this is more likely to block us: get utility less than
1�2 in expectation

� Choose minimax strategy: probability distribution p over [n] to maximize

Vp = min
j∈[m] �

i∈[n]
piMij

V = max
probability distributions p

over [n]
Vp = max

probability distributions p

over [n]
min
j∈[m] �

i∈[n]
piMij
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Computing Minimax

How to compute minimax strategy?

max V

subject to
n�
i=1

pi = 1
n�
i=1

piMij ≥ V ∀j ∈ [m]
0 ≤ pi ≤ 1 ∀i ∈ [n]
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More Penalty Kicks

Left Right

Left (0,0) (1,-1)

Right (1, -1) (0,0)

Kicker (row) minimax:

� 1�2 on each direction

� Guarantees at least 1�2 utility in
expectation

Goalie (column) minimax:

� 1�2 on each direction

� Guarantees at least −1�2 utility in
expectation (at most 1�2 loss)

Left Right

Left (1
2
,−1

2
) (1,-1)

Right (1, -1) (0,0)

Kicker (row) minimax:

� (2�3,1�3)
� Guarantees at least 2�3 utility in
expectation

Goalie (column) minimax:

� (2�3,1�3)
� Guarantees at least −2�3 utility in
expectation (at most 2�3 loss)
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Minimax Theorem

Theorem (Minimax Theorem (von Neumann))

Every 2-player zero-sum game has a unique value V such that the minimax strategy for the
row player guarantees expected gain of at least V, and the minimax strategy for the column
player also guarantees expected loss of at most V.

Proof outside the scope of the course, but not hard.

� Easiest proof: LP duality
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General Games and Nash Equilibria

General (one-shot) games: allow more than 2 players, utilities don’t have to add to 0.

� No longer a unique value!

Replace minimax strategies with Nash equilibria

� (Randomized) strategy for every player so that no one has incentive to deviate (knowing
all other strategies)
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Example

Example: two people walking down the sidewalk

Left Right

Left (1,1) (-1,-1)

Right (-1, -1) (1,1)

Nash equilibria:

� Both left

� Both right
� Both (1�2,1�2)

� Row player: expected utility is 0
� Suppose deviated to (pL,pR) (column player stays at(1�2,1�2)):

1

2
(1 ⋅ pL − 1 ⋅ pR) + 1

2
(−1 ⋅ pL + 1 ⋅ pR) = 0
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Nash Equilibria

Theorem (Nash)

Every game has at least one Nash equilibrium.

The most important concept in game theory!

� Other definitions of equilibria either for special cases (minimax), or generalize Nash

Nash’s proof: through Brouwer’s fixed-point theorem

� “Every continuous function from a convex compact subset K of a Euclidean space to K

itself has a fixed point.”

� Famous and fundamental result in topology

� Non-constructive!

Question: Can we compute Nash equilibria?
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Computing Nash Equilibria
Somewhat tricky to formalize

Attempt 1: Is it NP-hard to compute a Nash equilibrium?

� Decision problem: YES if game has a Nash, NO otherwise. Always YES!

� Need some other complexity class that can deal with answer always being YES.

New complexity class: PPAD (Polynomial Parity Argument (Directed))

� Answer always YES, but (we think) it is hard to find solution.

Theorem (Daskalakis, Goldberg, Papadimitriou)

Computing a Nash equilibrium is PPAD-complete.

Issue for game theory in economics! If hard to compute Nash, why do we expect markets /
games to end up at Nash?

� Other equilibria (e.g., coarse correlated equilibria) can be computed e�ciently: online
learning!
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Braess’s Paradox

Nash equilibria can behave strangely. Example: Braess’s Paradox in routing games.

� Huge number of players (1�✏) trying to get from s

to t, each controls ✏ tra�c

� Actions: path from s to t

� Cost of edge: c(x) where x is fraction of flow
through edge

� Cost of a path (action): sum of costs of edges
Nash equilibria: 1�2 use top path, 1�2 use bottom

� Each player pays 3�2. If any player deviates, pays more than 3�2
Nash equilibria: Everyone uses diagonal path, pays 2

� So improved edges leads to worse performance!
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Price of Anarchy
Braess’s paradox �⇒ sometime Nash are not “optimal”

� Approximation and online algorithms: compare algorithmic solutions to OPT

� Natural from a TCS point of view: compare Nash to OPT!

Let OPT denote “cost” of best solution, for each Nash s let W(s) denote “cost” of s, let S
denote all Nash.

Definition

The price of anarchy of a minimization game is maxs∈SW(s)�OPT.

Routing game example: OPT = 3�2, only one Nash, has cost 2.

�⇒ Price of Anarchy = 2�(3�2) = 4�3
Theorem (Roughgarden)

The price of anarchy in any routing game with linear edge costs is at most 4�3
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� Natural from a TCS point of view: compare Nash to OPT!
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Conclusion

Algorithmic Game Theory:

� Can we compute equilibria?

� How good are equilibria compare to optimal?

� (Mechanism Design) Can we design games with nice properties?

Hope you enjoyed the class, and good luck on the final!
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