
Lecture 24: Online Algorithms

Michael Dinitz

November 18, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 1 / 14

Introduction

Class until now: difficulty was computational power

Today: difficulty is lack of information

Online:

▸ Input / data arrives over time

▸ Need to make decisions without knowing future

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 2 / 14

Ski Rental Problem

Want to go skiing, but don’t know how many
times you’ll be able to go this year.

Should you rent or buy?

▸ Renting skis: $50

▸ Buying skis: $500

▸ Every day you ski and haven’t yet bought,
need to decide: rent or buy?

Buy right away:

▸ If you only ski once, should have rented
($50), instead bought ($500)

Never buy:

▸ What if you ski M ≈ ∞ times?

▸ Should have bought ($500), instead
rented (M ⋅ $50)

What’s the right strategy (for these costs)?

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 3 / 14

Better Late Than Never

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10’th.

If ski ≤ 9 times: optimal

If ski ≥ 10 times:

▸ ALG = 450 + 500 = 950

▸ OPT = 500

Never more than twice (actually 19
10

times) what we should have done!

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 4 / 14

Competitive Ratio

Definition

The competitive ratio of algorithm ALG is the maximum over all inputs/futures σ of

ALG(σ)

OPT(σ)
,

where ALG(σ) is the cost of ALG on σ and OPT(σ) is the optimal cost for σ (knowing the
future).

So on ski rental problem with previous values, competitive ratio is 19
10

.

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 5 / 14

Ski Rental: Generalized
$r to rent, $p to buy. Assume r divides p for simplicity.

BLTN: Rent p
r
− 1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 − r
p
.

Case 1: Ski z ≤ p
r
− 1 times

▸ ALG = z ⋅ r

▸ OPT =min(z ⋅ r,p) = z ⋅ r

Ô⇒
ALG
OPT

= 1

Case 2: Ski z ≥ p
r

times

▸ ALG = r ⋅ (p
r
− 1) + p = p − r + p = 2p − r

▸ OPT =min(r ⋅ z,p) = p

Ô⇒
ALG
OPT

=
2p−r
p

= 2 − r
p

So for all inputs / futures, ALG
OPT

≤ 2 − r
p

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 6 / 14

Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x + 1 times.

Case 1: x ≥ p/r

▸ OPT =min(p, (x + 1)r) = p

▸ ALG = xr + p ≥ 2p

Ô⇒
ALG
OPT

≥ 2 > 2 − r
p

Case 2: x ≤ p
r
− 1

▸ OPT =min(p, (x + 1)r) = (x + 1)r

▸ ALG = xr + p

ALG

OPT
=

xr + p

(x + 1)r
=
xr + p

xr + r
= 1 +

p − r

xr + r

≥ 1 +
p − r

(
p
r
− 1)r + r

= 1 +
p − r

p
= 2 −

r

p

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 7 / 14

Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.

▸ How long should we wait for the elevator?

▸ Example: E = 15,S = 45.

BLTN: Wait S − E seconds, then give up and take stairs

If elevator arrives at x ≤ S − E:

▸ OPT =min(S,x + E) = x + E

▸ ALG = x + E

Ô⇒
ALG
OPT

= 1

If elevator arrives at x > S − E:

▸ OPT =min(S,x + E) = S

▸ ALG = (S − E) + S = 2S − E

Ô⇒
ALG
OPT

=
2S−E
S

= 2 − E
S

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 8 / 14

Paging

Classical problem in computer systems/theory

▸ Disk (slow) with N pages

▸ Memory (fast) with room for k < N pages
▸ If OS/application requests a page not in memory: “page fault”

▸ Need to bring requested page into memory, evict a page from memory (if currently full)

▸ Question: What to evict?

Example: k = 3. Requests: 1,2,3,2,4,3,4,1,2,3,4

(Convention: initial page faults to fill table don’t count: only pay when we evict a page)

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 9 / 14

LRU
Standard algorithm: “Least Recently Used” (LRU)

▸ Evict page from memory that hasn’t been used in the longest time
▸ Intuition:

▸ Want to evict page that’s next used furthest in the future. But don’t know future!
▸ Hope that since it hasn’t been used for a long time, won’t be requested again for a long time.

Is this a good algorithm? What’s the competitive ratio? Cost = # evictions.

▸ k = 3, N = 4

▸ Requests: 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4, . . .

So LRU has competitive ratio ≈ k

▸ LRU evicts every time, OPT evicts 1 out of every k times.

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 10 / 14

Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k.

Let ALG be some deterministic algorithm. Set N = k + 1
Request sequence: Whatever is not in memory for ALG!

Ô⇒ ALG has an eviction every time (after initialization)

OPT: evict page whose next request is furthest in the future

▸ Every page in memory needs to be requested before next eviction. So next eviction is in
at least k steps.

Ô⇒
ALG

OPT
≥ k

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 11 / 14

Marking Algorithm

Get around lower bound by using randomization

▸ Lower bound argument doesn’t apply because can’t set request sequence to ask for
whatever’s not in memory, since that involved randomness! (Oblivious adversary)

Assume memory initially 1,2, . . . ,k.
Set all pages in memory to be “unmarked”

When page requested:

▸ If already in memory, “mark” it
▸ If not in memory:

▸ If all pages in memory “marked”, unmark all
▸ Choose an unmarked page uniformly at random to evict
▸ Bring in new page, mark it

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 12 / 14

Marking Analysis

Theorem

Expected competitive ratio at most O(log k):

E[ALG(σ)]
OPT(σ) ≤ O(log k) for all request sequences σ.

Proof sketch for N = k + 1: full generality more complicated

Phase: time between “unmark all” events.

In each phase:

▸ OPT ≥ 1, since all N pages requested

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 13 / 14

ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:

▸ If marked: in memory, no eviction
▸ If unmarked: if currently i unmarked pages, then
Pr[eviction] = Pr[requested page not in memory] = 1/i

▸ Becomes marked

At beginning of phase i = N, at end of phase i = 1. Goes down by one every time page gets
marked.

Ô⇒ expected cost in phase at most 1
N
+

1
N−1 +

1
N−2 + ⋅ ⋅ ⋅ +

1
2
+ 1 = O(logN) = O(log k)

Michael Dinitz Lecture 24: Online Algorithms November 18, 2021 14 / 14

