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Introduction

What should we do if a problem is NP-hard?

▸ Give up on efficiency?

▸ Give up on correctness?

▸ Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)

▸ Give up on correctness, but in a provable, bounded way.

▸ Applies to optimization problems only (not pure decision problems)

▸ Has to run in polynomial time, but can return answer that is approximately correct.
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Main Definition

Definition

Let A be some (minimization) problem, and let I be an instance of that problem. Let OPT(I)
be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm
for A, and let ALG(I) denote the cost of the solution returned by ALG on instance I. Then
we say that ALG is an α-approximation if

ALG(I)

OPT(I)
≤ α

for all instances I of A.

▸ Approximation always at least 1

▸ For maximization, can either require
ALG(I)
OPT(I)

≥ α (where α < 1) or
OPT(I)
ALG(I)

≤ α (where

α > 1)

▸ Also gives “fine-grained” complexity: not all NP-hard problems are equally hard!
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Vertex Cover

Definition: S ⊆ V is a vertex cover of G = (V,E) if S ∩ e ≠ ∅ for all e ∈ E

Definition (Vertex Cover)

Instance is graph G = (V,E). Find vertex cover S, minimize ∣S∣.

Last time: Vertex Cover NP-hard (reduction from Independent Set)

So cannot expect to compute a minimum vertex cover efficiently. What about an
approximately minimum vertex cover?

▸ Not an approximate vertex cover: still needs to be an actual vertex cover!
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Obvious Algorithm 1

S = ∅

while there is at least one uncovered edge {
Pick arbitrary vertex v incident on at least one uncovered edge
Add v to S

}

Not a good approximation: star graph.

▸ OPT = 1

▸ ALG = n − 1
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Obvious Algorithm 2

S = ∅

while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.

▸ ∣U∣ = t

▸ For all i ∈ {2,3, . . . , t}, divide U into
⌊t/i⌋ disjoint sets of size i:
Gi

1
,Gi

2
, . . . ,Gi

⌊t/i⌋

▸ Add vertex for each set, edge to all
elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑
t
i=2 ⌊ t

i
⌋ ≥ ∑

t
i=2 (1

2
⋅

t
i
) =

t
2 ∑

t
i=2

1
i
=

Ω(t log t)
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Better Algorithm

S = ∅

while there is at least one uncovered edge {
Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so ∣L∣ = k.
Ô⇒ ∣S∣ = 2k

L has structure: it is a matching!
Ô⇒ OPT ≥ k

Ô⇒ ALG/OPT ≤ 2.
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More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min ∑
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E

0 ≤ xu ≤ 1 ∀u ∈ V

Question: Is this enough?

▸ Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

More complicated alg LPrelaxation

Write LP for Vertex Cover

min xu

s t Xu t Xu 21 V ur c V

O Exa El Yue U

Qi Is this enough Is OPTUP OPT
A A

Lp opt c it the art cost

4L ORTIZ
ORTCLP 42

422042

But OPIUM E OPT

PI Let M oat solution
ALL

Let x
1 it em opt

0 otherwise OpTCLP

x feasible for LP
often Effa feint IMI ORT

▸ OPT = 2

▸ OPT(LP) = 3/2
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LP Structure

min ∑
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E

0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so ∣S∣ = OPT).

Let xv =

⎧⎪⎪
⎨
⎪⎪⎩

1 if v ∈ S

0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S
0 ≤ xv ≤ 1 for all v ∈ V by definition

Ô⇒ x feasible
Ô⇒ OPT(LP) ≤ ∑v∈V xv = ∣S∣ = OPT

More complicated alg LPrelaxation

Write LP for Vertex Cover

min xu

s t Xu t Xu 21 V ur c V

O Exa El Yue U

Qi Is this enough Is OPTUP OPT
A A

Lp opt c it the art cost

4L ORTIZ
ORTCLP 42

422042

But OPIUM E OPT

PI Let M oat solution
ALL

Let x
1 it em opt

0 otherwise OpTCLP

x feasible for LP
often Effa feint IMI ORT
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LP Rounding Algorithm

▸ Solve LP to get x∗ (so ∑v∈V x∗v = OPT(LP))

▸ Return S = {v ∈ V ∶ x∗v ≥ 1/2}
Polytime: ✓

Lemma

S is a vertex cover.

Proof.

Let {u,v} ∈ E.
By LP constraint, x∗u + x∗v ≥ 1
Ô⇒ max(x∗u,x

∗

v) ≥ 1/2
Ô⇒ At least one of u,v in S

Lemma

∣S∣ ≤ 2 ⋅OPT.

Proof.

∣S∣ = ∑
v∈S

1 ≤ ∑
v∈S

2x∗v ≤ 2∑
v∈V

x∗v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT
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Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)

min ∑
v∈V

w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E

0 ≤ xu ≤ 1 ∀u ∈ V

▸ Solve LP to get x∗

▸ Return S = {v ∈ V ∶ x∗v ≥ 1/2}

Still:

▸ Polytime

▸ S a vertex cover

▸ OPT(LP) ≤ OPT

∑
v∈S

w(v) ≤ ∑
v∈S

2x∗v w(v) ≤ 2∑
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT. Often main difficulty!
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Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

▸ Polytime algorithm for Vertex Cover Ô⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover Ô⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ε > 0 there is no polytime n1−ε-approximation for
Independent Set.

So these two problems are actually very different!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.
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Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

▸ E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

▸ Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

▸ For each variable xi, set xi = T with probability 1/2 and F with probability 1/2
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Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i: probability satisfied = 7/8

Random variables:

▸ For i ∈ {1,2, . . . ,m}, let Xi =

⎧⎪⎪
⎨
⎪⎪⎩

1 if clause i satisfied

0 otherwise
▸ E[Xi] = 7/8

▸ Let X = # clauses satisfied = ∑
m
i=1 Xi

E[X] = E [
m

∑
i=1

Xi] =
m

∑
i=1

E[Xi] =
m

∑
i=1

7

8
=

7

8
m ≥

7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ε > 0 there is no polytime (7
8
+ ε)-approximation for

Max-E3SAT.
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