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Introduction

Last time: Definition of P, NP, reductions, NP-completeness. Proof that Circuit-SAT is
NP-complete.

Today: more NP-complete problems.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V(I,X) (called the verifier) such that
1. If l'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |l| so that V(I,X) = YES.
2. If I'is a NO-instance of Q, then V(I,X) = NO for all X.
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Reductions

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.

2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

Definition

Problem Q is NP-hard if Q" <p Q for all problems Q" in NP. Problem Q is NP-complete if it
is NP-hard and in NP.
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Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and
no loops (some inputs might be hardwired), is there a way of setting the inputs so that the
output of the circuit is 17

Theorem
Circuit-SAT is NP-complete.
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3-SAT

Boolean formula:
» Boolean variables x1,...,X,
» Literal: variable x; or negation X;
» AND: A OR: v
» X3V (Xs AX7)A(X2V (X6 AX3)) ...
Conjunctive normal form (CNF): AND of ORs (clauses)

» (xpvXavXg) A(x2VvXx3)A(X1VXqVXp)--..
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3-SAT

Boolean formula:

» Boolean variables x1,...,X, /L

» Literal: variable x; or negation X;
> AND: A OR: v g_D/
» X3V (Xs AX7)A(X2V (X6 AX3)) ...
Conjunctive normal form (CNF): AND of ORs (clauses) >
—

» (x1vXovXg) A(x2Vx3)A(X1VX4VXp)--..
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3-SAT

Boolean formula:
» Boolean variables x1,...,X,

» Literal: variable x; or negation X;

L
» AND: A OR: v ;ﬁ/
=D

» X3V (Xs AX7)A(X2V (X6 AX3)) ...
Conjunctive normal form (CNF): AND of ORs (clauses)

» (x1vXovXg) A(x2Vx3)A(X1VX4VXp)--..

Definition
3-SAT: Instance is 3CNF formula ¢ (every clause has < 3 literals). YES if there is assignment
where ¢ evaluates to True (satisfying assignment), NO otherwise.
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3-SAT

3-SAT is NP-complete. l




3-SAT

Theorem

3-SAT is NP-complete.

3-SAT in NP:
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.
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3-SAT

Theorem
3-SAT is NP-complete. }

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard:
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3-SAT

Theorem
3-SAT is NP-complete. }

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

> Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

> Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
> AND/OR/NOT universal, but so is just NAND!
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
> AND/OR/NOT universal, but so is just NAND!

> _:’>/ So given circuit C, first transform it into
/_D’” "> NAND-only circuit.
Input:

./—! ), _//b W » n “input wires” X1,X2,...4Xpn

» m NAND gates: g15++.+48m

» g1 = NAND(x3,x3),
™ = NAND(g1,x4), - ..
N D B c ’

» WLOG, g, is the “output gate”
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn
» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1. vos P """lt/,j

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)

\/\/\/
ve$ 1('/ e )«}Q
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

I/

y{c
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

% > YiVyjVyk (if yj=0and y =0 then y; = 1)

y{c
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

% > YiVyjVyk (if yj=0and y =0 then y; = 1)
y > YiVYiVyk

y{c
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

% > YiVyjVyk (if yj=0and y =0 then y; = 1)
} > YiV¥jVvyk (if yj=1and y =0 then y; = 1)

y{c
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

% > YiVyjVyk (if yj=0and y =0 then y; = 1)
} > YiV¥jVvyk (if yj=1and y =0 then y; = 1)
> YiVYjV ¥k

y{c
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

V. > YiVyjVyk (if yj=0and y =0 then y; = 1)
} > Yi VYV Yk (ifyj=1andyk=0theny;=1)
> YiVyj VK (ifyj=0and y =1 then y; = 1)

y{c
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

V. > YiVyjVyk (if yj=0and y =0 then y; = 1)
} > Yi VYV Yk (ifyj=1andyk=0theny;=1)
> YiVyj VK (ifyj=0and y =1 then y; = 1)

yk —_ —_ —_
> YiVYjVYk
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Reduction to 3-SAT
So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

Y > ¥i V¥V ¥k (if yj = 0 and y = 0 then y; = 1)
- )O Vi > YiVYjVyk (.fyj_landyk—Otheny.—l)
Ve > ¥ivYjv ¥ (if yj=0and y =1 then y; = 1)

3 ( )

> Yivyjvyk (ifyj=1and y, =1 then y; =
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Reduction to 3-SAT

So given as input a circuit C:
> N input wires” X1,X24y...4Xn

» m NAND gates: g1,...,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: y1,¥2,. .., ¥YnsYn+ls Yni2s - - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(yj, yk), create clauses:

V. > YiVyjVyk (if yj=0and y =0 then y; = 1)
} > YiV¥jVvyk (if yj=1and y =0 then y; = 1)

v, > YiVyj VK (ifyj=0and y =1 then y; = 1)
‘ ( 0)

> Yivyjvyk (ifyj=1and y, =1 then y; =
Also add clause (Ym+n) (want output gate to be 1)
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J

Polytime: v
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. }

Polytime: v
Suppose C YES of Circuit-SAT

— 3 setting x of input wires so g, =1

== 3 assignment of y1,...Y¥Ym+n SO that all
clauses are satisfied:

»yi=xifi<n
> ¥Yi=Gin ifi>n

— f(C) YES of 3-SAT
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: v
Suppose C YES of Circuit-SAT Suppose f(C) YES of 3-SAT
== 3 setting x of input wires so g, =1 —= 3 assignment y to variables so that all
— 3 assignment of y1,...Ymsn SO that all clauses satisfied
clauses are satisfied: — 3 setting x of input wires so gm, = 1:

'yi=XiifiSH > Xi =Y
> Yi=gin ifi>n » Output of gate g; = yisn (by

— f(C) YES of 3-SAT construction)

> SO gm =1 (since (Ym+n) is a clause)
== C a YES instance of Circuit-SAT
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

» Can verify witness for YES
» Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

» Given instance | of A, turn into f(l) of Q (in time polynomial in |l|)
» 1 YES of A if and only if f(I) YES of Q
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

» Can verify witness for YES
» Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

» Given instance | of A, turn into f(l) of Q (in time polynomial in |l|)
» 1 YES of A if and only if f(I) YES of Q

Notes:
» Careful about direction of reduction!!!!

» Need to handle arbitrary instances of A, but can turn into very structured instances of Q

» Often easiest to prove NO direction via contrapositive, to turn into statement about YES:

» I YES of A = f(l) YES of Q
» f(1) YESof Q = I YES of A
» So proving “both directions”, but reduction only in one direction.
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CLIQUE
Definition: A clique in an undirected graph G = (V,E) is a set S €V such that {u,v} € E for

allu,veS
Definition (CLIQUE)

Instance is a graph G = (V,E) and an integer k. YES if G contains a clique of size at least k,
NO otherwise.
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CLIQUE
Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E for

allu,veS
Definition (CLIQUE)

Instance is a graph G = (V,E) and an integer k. YES if G contains a clique of size at least k,
NO otherwise.

Theorem
CLIQUE is NP-complete.
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CLIQUE
Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E for

allu,veS
Definition (CLIQUE)

Instance is a graph G = (V,E) and an integer k. YES if G contains a clique of size at least k,
NO otherwise.

Theorem
CLIQUE is NP-complete.

In NP:
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CLIQUE
Definition: A clique in an undirected graph G = (V,E) is a set S €V such that {u,v} € E for

allu,veS
Definition (CLIQUE)

Instance is a graph G = (V,E) and an integer k. YES if G contains a clique of size at least k,
NO otherwise.

Theorem
CLIQUE is NP-complete.

In NP:

» Witness: Sc V
» Verifier: Checks if S is a clique and |S| > k

» If (G,k) a YES instance: there is a clique S of size > k on which verifier returns YES
» If (G,k) a NO instance: S cannot be clique of size > k, so verifier always returns NO
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE
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CLIQUE is NP-hard
Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE
Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
» For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments
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CLIQUE is NP-hard
Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE
Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
» For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments

Example: F = (x3vxyVvXg)A(X3Vxg)A(X2VX3)

—

(Gn0) Cobo) Coll) CLaer Lo l) ¢ he) L)

¥~ T
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*, =T
% (0,) (0:0)
-
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3-SAT to CLIQUE reduction analysis
Polytime: v/
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3-SAT to CLIQUE reduction analysis
Polytime: v/
If F YES of 3-SAT:
» There is some satisfying assignment x
» For every clause, choose vertex corresponding to x. Let S be chosen vertices

» |S| = m =k, and clique since all consistent (since all from x)
—> (G, k) YES of CLIQUE
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3-SAT to CLIQUE reduction analysis
Polytime: v/
If F YES of 3-SAT:

» There is some satisfying assignment x

» For every clause, choose vertex corresponding to x. Let S be chosen vertices

» |S| = m =k, and clique since all consistent (since all from x)
—> (G, k) YES of CLIQUE

If (G,k) YES of CLIQUE:
» There is some clique S of size k =m
> Must contain exactly one vertex from each clause (since clique of size m)

» Since clique, all assignments consistent == there is an assignment that satisfies all
clauses

== F YES of 3-SAT
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INDEPENDENT SET

Definition: S €V is an independent set in G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.
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INDEPENDENT SET

Definition: S €V is an independent set in G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete. J

Michael Dinitz Lecture 22: NP-Completeness Il November 11, 2021 14 / 17



INDEPENDENT SET

Definition: S €V is an independent set in G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete. J

In NP:
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INDEPENDENT SET

Definition: S ¢V is an independent set in G = (V,E) if {u,v} ¢ E for all u,v e S

Definition (INDEPENDENT SET)

Instance is graph G = (V,E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete.

In NP:
» Witness is S € V. Verifier checks that |S| > k and no edges in S
» If (G,k) a YES instance then such an S exists == verifier returns YES on it.

» If (G,k) a NO then verifier will return NO on every S.
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INDEPENDENT SET is NP-hard

Reduce from:
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET

If (G,k) YES of CLIQUE:
== Clique S ¢V of G with |S]| >k

== S an independent set in H
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET

If (G,k) YES of CLIQUE:
== Clique S ¢V of G with |S]| >k

== S an independent set in H

If (H,k) YES of INDEPENDENT SET:
—= Independent set S €V in H with |S| > k

— S acliquein G
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VERTEX COVER

Definition: S cV is a vertex cover of G=(V,E) if Sne+ @ forallecE

Definition (VERTEX COVER)
Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO otherwise.J
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VERTEX COVER
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VERTEX COVER

Definition: S ¢ V is a vertex cover of G=(V,E) if Sne + @& for all e E

Definition (VERTEX COVER)
Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO otherwise.

Theorem
VERTEX COVER is NP-complete

In NP:
» Witness is S € V. Verifier checks that |S| < k and every edge has at least one endpoint in
S
» If (G,k) a YES instance then such an S exists == verifier returns YES on it.

» If (G,k) a NO then verifier will return NO on every S.
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

> Given instance (G = (V,E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n = |V|)
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

> Given instance (G = (V,E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n = |V|)

If (G,k) a YES instance of INDEPENDENT SET:
== G has an independent set S with |S| > k
== V\S a vertex cover of G of size <n-k

—> (G,n-k) a YES instance of VERTEX COVER

If (G,n-k) a YES instance of VERTEX COVER:
== G has a vertex cover S of size at most n - k
== V'S an independent set of G of size at least k

== (G, k) a YES instance of INDEPENDENT SET
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