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Introduction

Last time: Definition of P, NP, reductions, NP-completeness. Proof that Circuit-SAT is
NP-complete.

Today: more NP-complete problems.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V (I, X) (called the verifier) such that

1. If I'is a YES-instance of Q, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |l| so that V (I, X) = YES.
2. If Iis a NO-instance of Q, then V(I,X) = NO for all X.
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Reductions

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.

2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

Definition

Problem Q is NP-hard if Q" <, Q for all problems Q" in NP. Problem Q is NP-complete if it
is NP-hard and in NP.
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Circuit-SAT

Definition

Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and
no loops (some inputs might be hardwired), is there a way of setting the inputs so that the
output of the circuit is 17

Theorem
Circuit-SAT is NP-complete.
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3-SAT

Boolean formula:
» Boolean variables x1,...,X; /L
» Literal: variable x; or negation X;
» AND: A OR:v )/'/
» X1 V(X5Ax7)A(X2V (X6 AX3)) ...
Conjunctive normal form (CNF): AND of ORs (clauses) >
— — — '—__/.
» (x1vXavxXg) A(xaVx3)A(X1VXqVXg)...
Definition
3-SAT: Instance is 3CNF formula ¢ (every clause has < 3 literals). YES if there is assignment
where ¢ evaluates to True (satisfying assignment), NO otherwise.
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.
3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

» Don’t need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
> AND/OR/NOT universal, but so is just NAND!

- ——{:,’>v/ So given circuit C, first transform it into
/-D" ‘—> NAND-only circuit.
Input:

/—I >/ //D ‘:—-D’_CD’/ » n “input wires” X1,X2,...,Xn

» m NAND gates: g1,...,8m
> gl = NAND(XI,X3)1
- D Foo e NAND s

» WLOG, gn, is the “output gate”
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Reduction to 3-SAT

So given as input a circuit C:

> n

» m NAND gates: g1,...

“input wires” X1,X2,...

axn

,8m. Output gate g,

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where it
outputs 1.

Variables: yj,yo,...

s YnsYn+1s Yn+2s « - - s Yn+m (One for each wire)

Clauses: For every NAND gate y; = NAND(yj, yk). create clauses:

Y

yl:

A

» YivyjVyk (ifyj=0and ye =0 then y; = 1)
» yivyjvyk (ifyj=1and ye =0 then y; = 1)
> YiVYjV ¥k (n‘yJ—Oand yk = 1 then y; = 1)
> ¥i VYV ik (|fyj—1 and yx =1 then y; = 0)

Also add clause (Ym+n) (want output gate to be 1)
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: v
Suppose C YES of Circuit-SAT Suppose f(C) YES of 3-SAT
== 3 setting x of input wires so gm =1 == 3 assignment y to variables so that all
== 3 assignment of y1,...Ym+n SO that all clauses satisfied
clauses are satisfied: = 3 setting x of input wires so g, = 1:
»yi=xifi<n > Xi =Y
> ¥i=gin ifi>n » Output of gate g; = yisn (by
— f(C) YES of 3-SAT construction)

> S0 gm =1 (since (Ym+n) is a clause)
== C a YES instance of Circuit-SAT
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

» Can verify witness for YES
» Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

» Given instance | of A, turn into f(I) of Q (in time polynomial in |l|)
» | YES of A if and only if f(I) YES of Q

Notes:
» Careful about direction of reduction!!!!
» Need to handle arbitrary instances of A, but can turn into very structured instances of Q
» Often easiest to prove NO direction via contrapositive, to turn into statement about YES:

» Il YESof A = f(I) YES of Q
» f(1) YESof Q = | YES of A
» So proving “both directions”, but reduction only in one direction.
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E for
allu,veS

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least k,
NO otherwise.

Theorem
CLIQUE is NP-complete.

In NP:
» Witness: ScV
» Verifier: Checks if S is a clique and |S| > k

» If (G,k) a YES instance: there is a clique S of size > k on which verifier returns YES
» If (G,k) a NO instance: S cannot be clique of size > k, so verifier always returns NO
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
» For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):

» For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments

Example: F = (x; vxaVvXs)A(X3Vxg)A(X2VX3)

() Colo) CoLl) CLae) CLel) Clbwe) 4Ny

(¢,°)
(01[)
) ¢4 0)

Michael Dinitz Lecture 22: NP-Completeness Il November 11, 2021

12 /17



3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:

» There is some satisfying assignment x

» For every clause, choose vertex corresponding to x. Let S be chosen vertices

» |S| =m =k, and clique since all consistent (since all from x)
= (G, k) YES of CLIQUE

If (G,k) YES of CLIQUE:
» There is some clique S of size k=m
» Must contain exactly one vertex from each clause (since clique of size m)

» Since clique, all assignments consistent == there is an assignment that satisfies all
clauses

= F YES of 3-SAT
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INDEPENDENT SET

Definition: S ¢V is an independent set in G = (V,E) if {u,v} ¢ E for all u,veS

Definition (INDEPENDENT SET)
Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete.

In NP:
» Witness is S € V. Verifier checks that |S| > k and no edges in S
» If (G, k) a YES instance then such an S exists == verifier returns YES on it.

» If (G,k) a NO then verifier will return NO on every S.

Michael Dinitz Lecture 22: NP-Completeness |l November 11, 2021 14 /17



INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

» Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} e E(H) if and only if {u,v} ¢ E(G)
» Instance (H, k) of INDEPENDENT SET

If (G,k) YES of CLIQUE:
= Clique ScV of G with |S| >k
== S an independent set in H

If (H,k) YES of INDEPENDENT SET:
= Independent set S <V in H with |S| > k

== S acliquein G
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VERTEX COVER

Definition: S ¢V is a vertex cover of G=(V,E) if Sne+ @ for alle€e E

Definition (VERTEX COVER)
Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO otherwise.

Theorem
VERTEX COVER. is NP-complete

In NP:

» Witness is S € V. Verifier checks that |S| < k and every edge has at least one endpoint in
S

» If (G, k) a YES instance then such an S exists == verifier returns YES on it.

» If (G,k) a NO then verifier will return NO on every S.
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

» Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n -k) of
VERTEX COVER (where n =|V|)

If (G,k) a YES instance of INDEPENDENT SET:
== G has an independent set S with |S| > k
== VS a vertex cover of G of size <n-k

= (G,n-k) a YES instance of VERTEX COVER

If (G,n-k) a YES instance of VERTEX COVER:
== G has a vertex cover S of size at most n-k
== VS an independent set of G of size at least k
== (G, k) a YES instance of INDEPENDENT SET

Michael Dinitz Lecture 22: NP-Completeness |l November 11, 2021 17 / 17



