Lecture 20: Linear Programming

Michael Dinitz

November 4, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 1/20

Introduction

Today: What, why, and juste a taste of how
» Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 2/20

Introduction

Today: What, why, and juste a taste of how
» Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

» Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

» Linear programming: important in its own right, but also even more general than
max-flow.

» Can model many, many problems!

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 2/20

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

» Studying (S)
» Partying (P)
» Everything else (E)

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 3/20

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E > 56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S > 60 (to pass your classes)

» 2S5+ E- 3P > 150 (too much partying
requires studying or sleep)

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 3/20

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E > 56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S > 60 (to pass your classes)

» 2S5+ E- 3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 3/20

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E > 56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S > 60 (to pass your classes)

» 2S5+ E- 3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
» Yes! S=80, P=20, E=68

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 3/20

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E > 56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S > 60 (to pass your classes)

» 2S5+ E- 3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
» Yes! S=80, P=20, E=68

Question: Suppose “happiness” is 2P + 3E. Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 3/20

Linear Programming

Input (a “linear program"):
> n variables xy,...,X, (take values in R)
> m non-strict linear inequalities in these variables (constraints)

» E.g.: 3x1+4x, <6, 0<x3<3 X —3x3+2x7 = 17
» Not allowed (examples): xpx3 > 5, Xg < 2, x5 +logxy > 4

» Possibly a linear objective function

» max 2x3 — 4xs, min %X4 + X2,

Goals:
» Feasibility: Find values for x's that satisfy all constraints
» Optimization: Find feasible solutiong maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!

Michael Dinitz Lecture 20: Linear Programming November 4, 2021

4/20

Planning your week as an LP
Variables: P,E,S

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 5/ 20

Planning your week as an LP
Variables: P,E,S

max 2P+E

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 5/ 20

Planning your week as an LP

Variables: P,E,S

Michael Dinitz

max 2P+E
subject to E > 56
S>60
2S+E-3P > 150
P+E>70

Lecture 20: Linear Programming

November 4, 2021

5/ 20

Planning your week as an LP
Variables: P,E,S

max 2P+E

subject to E > 56
S>60
2S+E-3P > 150
P+E>T70
P+S+E=168
P>0
S>0
E>O0

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 5/ 20

Planning your week as an LP
Variables: P,E,S

max 2P+E

subject to E > 56
S>60
2S+E-3P > 150
P+E>T70
P+S+E=168
P>0
S>0
E>O0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 5/ 20

Operations Research-style Example

Four different manufacturing plants for making

cars:
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 6 /20

Operations Research-style Example

Four different manufacturing plants for making

cars.

v

labor materials pollution Need to produce at least 400 cars at plant

Plant 1

Plant 2

Plant 3

Plant 4

3 (labor agreement) X, 2 (o0

2 3 15 » Have 3300 total hours of labor, 4000
units of material

3 4 10 » Environmental law: produce at most
12000 pollution

4 5 9 » Make as many cars as possible

5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 6 /20

OR example as an LP

Four different manufacturing plants for making

cars: Variables:
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 7/ 20

OR example as an LP

Four different manufacturing plants for making

Variables: x; = # cars produced at plant i, for

cars.
i€{1,2,3,4}
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7
Michael Dinitz Lecture 20: Linear Programming

November 4, 2021

7/20

OR example as an LP

Four different manufacturing plants for making
cars: Variables: x; = # cars produced at plant i, for

i€{1,2,3,4}
labor materials pollution Objective:
Plant 1 2 3 15
Plant2 | 3 4 10
Plant3 | 4 5 9
Plant4 | 5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 7/ 20

OR example as an LP

Four different manufacturing plants for making
cars: Variables: x; = # cars produced at plant i, for

i€{1,2,3,4}
labor materials pollution Objective: max xj +Xp + X3 + X4
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 7/ 20

OR example as an LP

Four different manufacturing plants for making
cars: Variables: x; = # cars produced at plant i, for

ie{l1,2,3,4}
labor materials pollution Objective: max xj +Xp + X3 + Xg
Plant 1 5 3 15 Constraints:
Plant2 | 3 4 10
Plant 3| 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 7/ 20

OR example as an LP

Four different manufacturing plants for making

cars: Variables: x; = # cars produced at plant i, for
i€{1,2,3,4}
labor materials pollution Objective: max xj +Xa + X3 + X

Plant 1 9 3 15 Constraints:

Plant2 | 3 4 10 x3 2 400

Plant 3 4 5 9

Plant 4 5 6 7

Michael Dinitz Lecture 20: Linear Programming November 4, 2021

7/20

OR example as an LP

Four different manufacturing plants for making

cars: Variables: x; = # cars produced at plant i, for
i€{1,2,3,4}
labor materials pollution Objective: max xj + X + X3 + X4
Plant 1 9 3 15 Constraints:
Plant2 | 3 4 10 x3 2 400
2x1 + 3x2 + 4x3 + 5x4 < 3300
Plant 3 4 5 9
Plant 4 5 6 7
Michael Dinitz Lecture 20: Linear Programming November 4, 2021

7/20

OR example as an LP

Four different manufacturing plants for making

cars:
labor materials pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 7
Michael Dinitz Lecture 20:

Variables: x; = # cars produced at plant i, for

ie{1,2,3,4}
Objective: max xj + X2 + X3 + X3
Constraints:

x3 > 400

2x1 + 3x2 + 4x3 + 5x4 < 3300
15x7 + 10x5 + 9x3 + 7x4 < 12000

Linear Programming November 4, 2021

7/20

OR example as an LP

Four different manufacturing plants for making
cars: Variables: x; = # cars produced at plant i, for

i€{1,2,3,4}
labor materials pollution Objective: max xj + X + X3 + X4
Plant 1 9 3 15 Constraints:
Plant2 | 3 4 10 x3 2 400
2x1 + 3x2 + 4x3 + 5x4 < 3300
Plant 3 4 5 9 15x7 + 10x5 + 9x3 + 7x4 < 12000
x; >0 Vie {1,2,3,4}

Plant 4 5 6 7 Ty

25 ‘Lt 57y F (fy € G000

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 7/ 20

Max Flow as LP

Michael Dinitz

Lecture 20: Linear Programming

November 4, 2021

8/ 20

Max Flow as LP

Michael Dinitz

Variables:

Lecture 20: Linear Programming

November 4, 2021

8/ 20

Max Flow as LP

Variables: f(e) for all e € E

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Max Flow as LP

Variables: f(e) for all e € E

2’*—9 ¢ Objective:
L0 (s
lo v @')
(0
Lo 0 20
(o ~d

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Max Flow as LP

a § (&
O/\—a 0
L0 (s
lo g @')
({)]
Lo 20
O/—’_q
(o d
Michael Dinitz

Variables: f(e) for all e € E

Objective: max Zv(f(s, v) -, f(v, s))

Lecture 20: Linear Programming

November 4, 2021

8/ 20

Max Flow as LP

Variables: f(e) for all e € E

a s .¢ Objective: max Z‘[f(s, v) -, f(v, sy
L9 T s Constraints:
lo g @')
(0
0 (o d

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Max Flow as LP

Variables: f(e) for all e € E

a s .¢ Objective: max Y, f(s,v) - Y, f(v,s)
L9 T 5 Constraints:
lo v @')
o Y f(v,u) - > f(u,v) =0 VueV~ {s,t}
k‘ A, v v
0 o d

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Max Flow as LP

Variables: f(e) for all e € E

a 5 ¢ Objective: max Y, f(s,v) - Y, f(v,s)
o— 39
20 5 Constraints:
lo u @')
\ (o/ Y f(v,u) - > f(u,v) =0 YueV {s,t}
o v v
O’_’_wqoé e f(e) <c(e) VeeE

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Max Flow as LP

Variables: f(e) for all e € E

a 5 ¢ Objective: max Y, f(s,v) - Y, f(v,s)
o— 39
20 5 Constraints:
lo v @')
\ (o/ Y f(v,u) - > f(u,v) =0 YueV {s,t}
o v v
O’_’_wqoé e f(e) <c(e) VeeE
f(e) >0 VeeE

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Max Flow as LP

Variables: f(e) for all e € E

2’*—9 ¢ Objective: max Y, f(s,v) - Y, f(v,s)
L9 5 Constraints:
lo v @')
\ (o/ Y f(v,u) - > f(u,v) =0 VueV~ {s,t}
¢ O’_’_wqoé e f(e) <c(e) VeeE
f(e) >0 VeeE

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 8/ 20

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’'t mix,
but use up same capacity

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’'t mix,
but use up same capacity

Setup:
» Directed graph G = (V, E)
» Capacities c: E - Ry
> k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming

November 4, 2021

9/20

Multicommodity Flow

Generalization of max-flow with Variables:
multiple commodities that can’'t mix,
but use up same capacity

Setup:
» Directed graph G = (V, E)
» Capacities c: E - Ry
> k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming

November 4, 2021

9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e ¢ E and for all i € [k]. Flow
multiple commodities that can't miX, of commodity i on edge e

but use up same capacity

Setup:
» Directed graph G = (V, E)
» Capacities c: E - Ry
» k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e ¢ E and for all i € [k]. Flow
multiple commodities that can't miX, of commodity i on edge e

but use up same capacity

Objective:
Setup:

» Directed graph G = (V, E)
» Capacities c: E - Ry
» k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e ¢ E and for all i € [k]. Flow
multiple commodities that can't miX, of commodity i on edge e

but use up same capacity

Objective: max Z:‘=1 (X (si,v) - 2, Filv, Si)))
Setup:

» Directed graph G = (V, E)
» Capacities c: E - Ry
» k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e ¢ E and for all i € [k]. Flow
multiple commodities that can't miX, of commodity i on edge e

but use up same capacity

Objective: max Z:‘=1 (X, fi(si,v) =X, fi(v,s;))
Setup:

» Directed graph G = (V, E) Constraints:
» Capacities c: E - Ry
» k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e ¢ E and for all i € [k]. Flow
multiple commodities that can't miX, of commodity i on edge e

but use up same capacity
Objective: max Z:‘=1 (X, fi(si,v) =X, fi(v,s;))

Setup:
» Directed graph G = (V, E) Constraints:
» Capacities ¢: E > Ry Y hi(v,u) - T h(u,v) =0 Vie[k], YueV {s;t;)
> k source-sink pairs {(si, ti) }ie] v v

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’'t mix,
but use up same capacity

Setup:
» Directed graph G = (V, E)
» Capacities c: E - Ry
» k source-sink pairs {(si, ti) }ie[k]

Goal: send flow of commodity i from

s; to t;, max total flow sent across all

commodities

Michael Dinitz

Lecture 20: Linear Programming

Variables: fi(e) for all e € E and for all i € [k]. Flow
of commodity i on edge e

Objective: max Z:‘=1 (X fi(si,v) - X, fi(v,si))

Constraints:
Y fi(v,u) - > fi(u,v) =0 Vie [k], YueV~{s;,t;}

Zk:fi(e) < c(e) VeeE
i=1

November 4, 2021 9/20

Multicommodity Flow ¢Le.. I}
L

Generalization of max-flow with Variables: f;(e) for all e ¢ E and for all i € [k]. Flow
multiple commodities that can't miX, of commodity i on edge e

but use up same capacity
Objective: max Z:‘=1 (X, fi(si,v) =X, fi(v,s;))

Setup:
» Directed graph G= (V, E) Constraints:
» Capacities ¢: E > Ry Y hi(v,u) - T h(u,v) =0 Vie[k], YueV {s;t;)
> k source-sink pairs {(si, ti) }ie] v v
k
Goal: send flow of commodity i from _Z;fi(e) <c(e) vecE
1=

s; to t;, max total flow sent across all

commodities fi(e)>0 VeeE, Vie[k]

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 9/20

Concurrent Flow

Multicommodity flow, but:

» Also given demands
d: [k] = RZQ

» Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
s; to t; for all i € [k]?

Michael Dinitz

Lecture 20: Linear Programming

November 4, 2021

10 / 20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].
Multicommodity flow, but:

» Also given demands
d: [k] = RZQ

» Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
s; to t; for all i € [k]?

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 10 / 20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but:]
Constraints:

» Also given demands
d: [k] = RZQ

» Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
s; to t; for all i € [k]?

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 10 / 20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but:]
_ Constraints:
» Also given demands

d: [k] = Rso Y fi(v,u) =) fi(u,v) =0 Vie [k], YueV~{s,t;}
» Question: Is there a v v

multicommodity flow k
that sends at least d(i) ;ﬁ(e) <c(e) VeeE

commodity-i flow from .
fi(e) >0 VeeE, Vielk
si to t; for all i e [k]? (e) > Vie (k]

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 10 / 20

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but:

Constraints:
» Also given demands onstraints
d: [k] = Rso Y fi(v,u) =) fi(u,v) =0 Vie [k], YueV~{s,t;}
» Question: Is there a v v
multicommodity flow k
that sends at least d(i) ;ﬁ(e) <c(e) vecE
commodity-i flow from fi(e) >0 Ve ¢ E, Vi e [K]

s; to t; for all i € [k]?

MFi(si,v) -Zfi(v,si/)?z d(i) Vi € [K]

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 10 / 20

Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Michael Dinitz

Lecture 20: Linear Programming

November 4, 2021

11 /20

Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Michael Dinitz

Variables:

» fi(e) for all e € E and for all i € [k].

> A
Objective: max A

Constraints:

Zfi(vau) - Zfi(uav) =0

k
; fi(e) <c(e)

fi(e) 2> 0
Zf;(si,v) - Zfi(v, Si) 2>)\d(l)

Lecture 20: Linear Programming

Vie [k], YueV~{s,t;}

VeceE

Ve € E, Vie [k]
Vi e [k]

November 4, 2021 11 / 20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max dt
subject to dg=0
dy, <d, +£(u,v) V(u,v) €eE
A
)/\/\7 v
Michael Dinitz Lecture 20: Linear Programming November 4, 2021

12 / 20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max dt
subject to dg=0
dy, <d, +£(u,v) V(u,v) €eE

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 12 / 20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max dt
subject to dg=0
dy, <d, +£(u,v) V(u,v) €eE

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d; >d; =d(s,t).

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 12 / 20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max dt
subject to dg=0
dy, <d, +£(u,v) V(u,v) €eE

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d; >d; =d(s,t).

<: Let P=(s=vqg,vy,...,vx =t) be shortest s > t path.
Prove by induction: dy. < d(s,v;) for all i

Michael Dinitz Lecture 20: Linear Programming November 4, 2021

12 / 20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max dt
subject to dg=0
dy, <d, +£(u,v) V(u,v) €eE

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d; >d; =d(s,t).

<: Let P=(s=vqg,vy,...,vx =t) be shortest s > t path.
Prove by induction: dy. < d(s,v;) for all i
Base case: i=0 v

Michael Dinitz Lecture 20: Linear Programming November 4, 2021

12 / 20

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max dt
subject to dg=0
dy, <d, +£(u,v) V(u,v) €eE

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all ve V. Feasible = d; >d; =d(s,t).

<: Let P=(s=vqg,vy,...,vx =t) be shortest s > t path.

Prove by induction: dy. < d(s,v;) for all i

Base case: i=0 v

Inductive step: d*i/S) dy. | +2(vi-1,v;) < d(s,vi-1) +£(vi_1, Vi) ; d(s,v;)
/

7
(P c~yéanF indeqdnn Sher bt g}l

Michael Dinitz Lecture 20: Linear Programming November 4, 2021

12 / 20

Algorithms for LPs

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 13 / 20

Geometry

To get intuition: think of LPs geometrically
» Space: R" (one dimension per variable
» Linear constraint: halfspace (one side of a hyperplane)

» Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 14 / 20

Geometry

To get intuition: think of LPs geometrically

» Space: R" (one dimension per variable

» Linear constraint: halfspace (one side of a hyperplane)

» Feasible region: intersection of halfspaces. Convex Polytope (usually just called a

polytope)

Example: planning your week

» 3 variables S, P, E so R3

» ButS+P+E=168 —
S=168-P-E

» Make this substitution, get
RZ

Michael Dinitz

fr€2 70 _Ex

372

25-1p €2 150
22(k5~F-€) i3 €2 5o
Z RN
.
/ ?’2
/ ’

-

Lecture 20: Linear Programming

186

November 4, 2021 14 / 20

Geometry (cont'd)

8

o
S S =
ST &
SR ,/
g
m-/

o0
o0
~

O
v
~

§ 26097 E £ 10%

; A \
\
‘t
//W.%
)
~

\

W//

.
R

R,

o\
w
&=

,/

Oy

A\

)
W

AN

~
on

186

108

56 70

VS
9
(@)}
i
ol
—~ 0
O 0
2(
O W
v oy
.Y
o o~
X X
Cc ®
E €
A A

Objective: feasible solution “furthest” along specified direction

15 / 20

November 4, 2021

Lecture 20: Linear Programming

Michael Dinitz

Geometry (cont'd)

25-1py € 2 IS0
%/; 22(l&§~f-€) ~3f4£2 [50

o

W

S E 4156

\

Pr€2 720 _EX

37.2

\

L

\
.

4,/ _
Z _ 2
8 186

Objective: feasible solution “furthest” along specified direction
» maxP: (56,26)
» max2P + E: (88.5,19.5)
Main theorem: optimal solution is always at a “corner” (also called a “vertex”)

Michael Dinitz Lecture 20: Linear Programming November 4, 2021

15 / 20

Simplex Algorithm [Dantzig 1940’s]

Initialize X to an arbitrary corner

while(a neighboring corner X’ of X has better objective value) {
> =2/
X « X

return X

Optimal
solution

Starting

vertex _4

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 16 / 20

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 17 / 20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
» Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 17 / 20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
» Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 17 / 20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
» Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

» Slow in theory

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 17 / 20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
» Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

» Slow in theory
» Fast in practice!

» Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 17 / 20

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear == optimal solution at a corner
» Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

» Slow in theory
» Fast in practice!

» Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

» Some theory to explain discrepancy (“smoothed analysis™)

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 17 / 20

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimization

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 18 / 20

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also sol #rization
[

—

» Start with ellipsoid E containing feasible
region P (if it exists)

» Let x be center of E
> While(x not feasible)

» Find a hyperplane H through x such
that all of P on one side <

» Let E’ be the half-ellipsoid of E defihed
» Find a new ellipsoid E containing E’ %o
that vol(E) < (1 - 1) vol(E) _//

» Let E = E and let x be center of E

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 18 / 20

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1 -1/n) of the volume of the original

o . : : : n
» Using inequality from last time: after n iterations, volume drops by (1 - %) < 1/e factor
» Crucial fact: if volume “too small”, P must be empty

—= Polynomial time!

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 19 / 20

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1 -1/n) of the volume of the original

o . : : : n
» Using inequality from last time: after n iterations, volume drops by (1 - %) < 1/e factor
» Crucial fact: if volume “too small”, P must be empty

—= Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 19 / 20

Interior Point Methods (Karkmarkar's Algorithm)

Fast in both theory and practice!

A

Simplex Algorithm

Karmarkar’s Algorithm
Ogtimal solution point

Feasible Region

v

Michael Dinitz Lecture 20: Linear Programming November 4, 2021 20 / 20

