Lecture 15: All-Pairs Shortest Paths

Michael Dinitz

October 19, 2021
601.433/633 Introduction to Algorithms
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Announcements

» HW5 due now
» HW6 due next Thursday

» Mid-Semester feedback on Campuswire!

Michael Dinitz Lecture 15: APSP October 19, 2021 2 /13



Introduction
Setup:
» Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (s y)ep £(X,Y)
g d(X7 Y) = minx—»y paths PE(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!
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> Directed graph G = (V,E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (s y)ep £(X,Y)
g d(X7 Y) = minx—»y paths PE(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v e V
» No negative weights: n runs of Dijkstra, time O(n(m + nlogn))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)
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Introduction

Setup:
» Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (s y)ep £(X,Y)
g d(X7 Y) = minx—»y paths PE(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v e V
» No negative weights: n runs of Dijkstra, time O(n(m + nlogn))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)

Can we do better? Particularly for negative edge weights?
» Main goal today: Negative weights as fast as possible.
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Floyd-Warshall Algorithm
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V= {1,2,...,n} and £(i,j) = o if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V= {1,2,...,n} and £(i,j) = o if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

» Intuition: “shortest path from u to v either goes through node n, or it doesn't"
» If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.

» If it does: consists of a path Py from u to n and a path P, from n to v, neither of which
uses n (internally).
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V= {1,2,...,n} and £(i,j) = o if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

» Intuition: “shortest path from u to v either goes through node n, or it doesn't"
» If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.

» If it does: consists of a path Py from u to n and a path P, from n to v, neither of which
uses n (internally).

» Subproblems: shortest path from u to v that only uses nodes in {1,2,...k} for all u,v,k.
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Formalizing Subproblems P S,
b\'/‘v L

u - v path P: “intermediate nodes” are all nodes in P other than u,v.

d:}: distance from i to j using only i - j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute d:} for all i,j, k € [n].

» Return dirjf for all i,jeV.
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Formalizing Subproblems

u - v path P: “intermediate nodes” are all nodes in P other than u,v.

d:}: distance from i to j using only i - j paths with intermediate vertices in {1,2,...,k}.

» Goal: compute d:} for all i,j, k € [n]. —_—
> Return d for all i,j e V. ‘ s
gk - J€Cisd) if k =0
. if k>1
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Formalizing Subproblems

u - v path P: “intermediate nodes” are all nodes in P other than u,v.

d:}: distance from i to j using only i - j paths with intermediate vertices in {1,2,...,k}.

» Goal: compute d:} for all i,j, k € [n].

» Return dirjf for all i,jeV.

» {e(i,j) ifk=0

i | min(dit i+ diSl) if k> 1

Michael Dinitz Lecture 15: APSP October 19, 2021

6/13



Optimal Substructure

Theorem

For all i,j,k € [n]:

. {e(i,j) ifk=0
U | min(dit dE +digh) k2 1
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Optimal Substructure

Theorem

For all i,j,k € [n]:

. {e(i,j) ifk=0
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Optimal Substructure
Theorem
For all i,j,k € [n]:

R LAY ifk=0
U | min(di Tt At +diSY)  ifk21

If k=0: v

If k>1: prove < and >
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Optimal Substructure

Theorem
For all i,j,k € [n]:
4 {f(i,j) ifk=0
U | min(dit di +dicT) ifk2 1
fk=0: v VARG
If k >1: prove < and > f /\_/;/'\/9,
<: Two feasible solutions ) /( e (. 7
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Optimal Substructure

Theorem
For all i,j,k € [n]:
o {E(i,j) ifk=0
U | min(di Tt At +diSY)  ifk21
Ifk=0: v /\p/\)
If k> 1: prove < and > ; .):

<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]

» |f k not an intermediate node of P:
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Optimal Substructure

Theorem
For all i,j,k € [n]:

gk £(i,)) ifk=0
i min(d:}"l, dikk‘1 + dtj‘l) ifk>1

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i - j path with all intermediate nodes in [k]
» If k not an intermediate node of P: P has all intermediate nodes in [k -1] =

o (k-1 k-1 k-1 k-1 _ gk
min(d;"", di +d 5 <dg™ < £(P) = d;
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Optimal Substructure

Theorem
For all i,j,k € [n]:
gk £(i,)) ifk=0
ij - mm(dk 1 d 1, d::j‘l) ifk>1
Ifk=0: v f

If k>1: prove < and > i W

. . { {e 2 -
<: Two feasible solutions
>: Let P be shortest i - j path with all intermediate nodes in [k]

» If k not an intermediate node of P: P has all intermediate nodes in [k -1] =
min(di!, di! + dict) < diT < £(P) = df
» If k is an |ntermed|ate node of P: divide P into Py (subpath from i to k) and P;
(subpath from k to j)

min(di !, dict + diST) <dit + diT < £(Py) + £(P2) = £(P) = d
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

MIi, j, 0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i=1 to n)
for(j=1 to n)
M[i, j, k] = min(M[i, j,k - 1], M[i, k,k - 1] + M[k, j, k - 1])
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

MIi, j, 0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i=1 to n)
for(j=1 to n)
M[i, j, k] = min(M[i, j,k - 1], M[i, k,k - 1] + M[k, j, k - 1])

Correctness: obvious for k =0. For k> 1:

MIi, j, k] = min(M[i, j,k - 1], M[i, k, k - 1] + M[k, j, k - 1]) (def of algorithm)
= min(di'}"l, d:‘k"l + d::j"l) (induction)
= d:} (optimal substructure)
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

MIi, j, 0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i=1 to n)
for(j=1 to n)
M[i, j, k] = min(M[i, j,k - 1], M[i, k,k - 1] + M[k, j, k - 1])

Correctness: obvious for k =0. For k> 1:

MIi, j, k] = min(M[i, j,k - 1], M[i, k, k - 1] + M[k, j, k - 1]) (def of algorithm)
= min(di'}"l, d:‘k"l + d::j"l) (induction)
= d:} (optimal substructure)

Running Time: O(n3)
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Johnson’s Algorithm
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlogn)) = O(mn +n®logn), better than Floyd-Warshall
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlogn)) = O(mn +n®logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add a to every edge.

» Does this work?
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlogn)) = O(mn +n®logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add a to every edge.

» Does this work? No!

> New length of path P is £(P) + «|P|, so original shortest % ;ifa
path might no longer be shortest path if it has many o Mm;
edges. N\ 7-——7_,-7:—

[
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlogn)) = O(mn +n®logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add a to every edge.
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlogn)) = O(mn +n®logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add a to every edge.

» Does this work? No!

> New length of path P is £(P) + «|P|, so original shortest % ;ija
path might no longer be shortest path if it has many v L et LB
- Y 4L el 5 ¢
edges. P G =

1

[

Some other kind of reweighting? Need new lengths £ such that:
» Path P a shortest path under lengths £ if and only P a shortest path under lengths ¢
» £(u,v) >0 for all (u,v) €E
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Vertex Reweighting

Neat observation: put weights at vertices!

» Let h:V = R be node weights. 0¢.) hCu/
» Let £y (u,v) =£(u,v) +h(u) —h(v) W) iy
M-\
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V — R be node weights.
» Let £y (u,v) =£(u,v) +h(u) —h(v)

Let P = (vg,Vv1,...,Vk) be arbitrary (not necessarily shortest) path.
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Vertex Reweighting

Neat observation: put weights at vertices! / U}
7 \ A

» Let h: V — R be node weights.

> Let £ (u,v) = £(u,v) +h(u) -h(v) Yo / \ e U

Vo , le
Let P = (vg,Vv1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1

£y(P) = Z Lh(ViyVis1) = Z (£(vj, viz1) + h(v;) —h(viy1))
i=0 i=0
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V — R be node weights.
» Let €h(u,v) = £(u,v) + h(u) —h(v)
Let P = (vg,Vv1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1

h(P) = ._Zoeh(viaviﬂ) = § (£(vi, vis1) + h(v;) = h(vis1))
k-1
= h(vp) - h(vk) + '—Zo £(Vi, Vis1) (telescoping)
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V — R be node weights.
» Let £y (u,v) =£(u,v) +h(u) —h(v)

Let P = (vg,Vv1,...,Vk) be arbitrary (not necessarily shortest) path.
k-1 k-1
£y (P) = Z Lh(Vis Vis1) = Z (£(vj, viz1) + h(v;) —h(viy1))
i=0 i=0

k-1
= h(vp) - h(vk) + 'Zo £(Vi, Vis1) (telescoping)

= £(P) + h(vo) - h(w)
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V — R be node weights.
» Let €h(u,v) = £(u,v) + h(u) —h(v)
Let P = (vg,Vv1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1

h(P) = ._Zoeh(viaviﬂ) = § (£(vi, vis1) + h(v;) = h(vis1))
k-1
= h(vp) - h(vk) + '—Zo £(Vi, Vis1) (telescoping)

- £(P) +h(vg) - h(w)
h(vg) - h(vk) added to every vg — vi path, so shortest path from vg to vy still shortest path!
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v eV of length 0
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v eV of length 0
» Run Bellman-Ford from s, then for all u eV set h(u) to be d(s,u)
> Note h(u) <0 forallueV
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v eV of length 0

» Run Bellman-Ford from s, then for all u eV set h(u) to be d(s,u)
> Note h(u) <0 forallueV w

-\,

Want to show that £ (u,v) >0 for all edges (u,v). 5 Y

» Triangle inequality: h(v) =d(s,v) <d(s,u) + £(u,v) = h(u) + £(u,v)
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v eV of length 0

» Run Bellman-Ford from s, then for all u eV set h(u) to be d(s,u)
> Note h(u) <0 forallueV

Want to show that £ (u,v) >0 for all edges (u,v).
» Triangle inequality: h(v) =d(s,v) <d(s,u) + £(u,v) = h(u) + £(u,v)

£h(u,v) =£L(u,v) +h(u) -h(v) > £(u,v) + h(u) - (h(u) +£(u,v)) =0
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Johnson’s Algorithm

v

Add vertex s to graph, edge (s,u) for all u eV with £(s,u) =0
Run Bellman-Ford from s, set h(u) = d(s,u)

v

v

Remove s, run Dijkstra from every node u € V to get dy,(u,v) for all u,veV
If want distances, set d(u,v) =d,(u,v) —h(u) + h(v) for all u,v e V

v

Correctness: From previous discussion.
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Johnson’s Algorithm

0(«) le
L/"l/l'l .‘“.s

v

Add vertex s to graph, edge (s,u) for all u eV with £(s,u) =0 O Cn)
Run Bellman-Ford from s, set h(u) = d(s, u) O(~n)
Remove s, run Dijkstra from every node u € V to get d,(u,v) for all u,veV A
If want distances, set d(u,v) =d,(u,v) —h(u) + h(v) for all u,v e V

v

v

v

[
Correctness: From previous discussion.

. ne OCont k(«;a)
Running Time: w ) -
g 0 ( ~00nmt ey

Michael Dinitz Lecture 15: APSP October 19, 2021 13 /13



Johnson’s Algorithm

v

Add vertex s to graph, edge (s,u) for all u eV with £(s,u) =0
Run Bellman-Ford from s, set h(u) = d(s,u)

v

v

Remove s, run Dijkstra from every node u € V to get dy,(u,v) for all u,veV
If want distances, set d(u,v) =d,(u,v) —h(u) + h(v) for all u,v e V

v

Correctness: From previous discussion.

Running Time: O(n) + O(mn) + O(n(m +nlogn)) = O(mn +n?logn)
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