Lecture 15: All-Pairs Shortest Paths

Michael Dinitz

October 19, 2021
601.433/633 Introduction to Algorithms
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Announcements

» HW5 due now
» HW6 due next Thursday

» Mid-Semester feedback on Campuswire!
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Introduction
Setup:
» Directed graph G = (V,E)
» Length £(x,y) on each edge (x,y) € E
» Length of path P is £(P) = ¥ (4 yyep £(x,Y)
> d(X, Y) = minx—»y paths PE(P)

Last time: All distances from source node v € V.

Today: Distances between all pairs of nodes!
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» Length £(x,y) on each edge (x,y) € E
» Length of path P is £(P) = ¥ (4 yyep £(x,Y)
> d(an) = minx—»y paths PE(P)

Last time: All distances from source node v € V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v e V
» No negative weights: n runs of Dijkstra, time O(n(m +nlogn))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)
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Introduction

Setup:
» Directed graph G = (V,E)
» Length £(x,y) on each edge (x,y) € E
» Length of path P is £(P) = ¥ (4 yyep £(x,Y)
> d(an) = minx—»y paths PE(P)

Last time: All distances from source node v € V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v e V
» No negative weights: n runs of Dijkstra, time O(n(m +nlogn))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)

Can we do better? Particularly for negative edge weights?
» Main goal today: Negative weights as fast as possible.
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Floyd-Warshall Algorithm
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V = {1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V = {1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
New subproblems:

» Intuition: “shortest path from u to v either goes through node n, or it doesn't”
» If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.

» If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V = {1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
New subproblems:

» Intuition: “shortest path from u to v either goes through node n, or it doesn't”
» If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.

» If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).

» Subproblems: shortest path from u to v that only uses nodes in {1,2,...k} for all u,v, k.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u,v.

d:}: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute d:} for all i,j,k € [n].

» Return di'JT for all i,je V.
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u — v path P: “intermediate nodes” are all nodes in P other than u,v.

d:}: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.

» Goal: compute d:} for all i,j,k € [n].

» Return di'JT for all i,je V.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u,v.

d:}: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.

» Goal: compute d:} for all i,j,k € [n].

» Return di'JT for all i,je V.

) ifk=0
U min(di Tt di e digt) k21
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Optimal Substructure

Theorem
For all'i,j,k € [n]:
i {K(i,j) ifk=0
U min(di Tt di e digt) ifk21
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Optimal Substructure

Theorem

For all'i,j,k € [n]:

i {E(i,j) ifk=0
I | min(dit di T+ diet) ifk21

fk=0: v
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Optimal Substructure
Theorem
For all'i,j,k € [n]:

o {e(i,j) ifk=0

i | min(d-t il diY) k21

lfk=0: v

If k> 1: prove < and >
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Optimal Substructure

Theorem
For all'i,j,k € [n]:

min(di™, dit +dist)  ifk>1

lfk=0: v

If k> 1: prove < and >

<
2

: Two feasible solutions

. Let P be shortest i — j path with all intermediate nodes in [k]

» If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(dst, dit + dist) <di! < £(P) = df
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Optimal Substructure

Theorem

For all'i,j,k € [n]:

o {E(i,j) ifk=0
I | min(dit di T+ diet) ifk21

lfk=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]

» If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(dst, dit + dist) <di! < £(P) = df
» If k is an intermediate node of P: divide P into Py (subpath from i to k) and P;
(subpath from k to j)
min(di™, dit + dis) <di + diST < £(P1) + £(P3) = £(P) = df

Michael Dinitz Lecture 15: APSP October 19, 2021

7/13



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i, j, 0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i=1 to n)
for(j=1 to n)
M[i, j, k] = min(M[i, j, k - 1], M[i, k,k - 1] + M[k, j, k - 1])
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M[i, j, 0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i=1 to n)
for(j=1 to n)
M[i, j, k] = min(M[i, j, k - 1], M[i, k,k - 1] + M[k, j, k - 1])

Correctness: obvious for k =0. For k > 1:

MTi, j, k] = min(M[i, j, k - 1], M[i, k, k - 1] + M[k, j, k - 1]) (def of algorithm)
= min(d:}_l,d:‘k_1 + dtj_l) (induction)
= d:} (optimal substructure)
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i, j, 0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i=1 to n)
for(j=1 to n)
M[i, j, k] = min(M[i, j, k - 1], M[i, k,k - 1] + M[k, j, k - 1])

Correctness: obvious for k =0. For k > 1:

MTi, j, k] = min(M[i, j, k - 1], M[i, k, k - 1] + M[k, j, k - 1]) (def of algorithm)
= min(d:}_l,d:‘k_1 + dtj_l) (induction)
= d:} (optimal substructure)

Running Time: O(n?)
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Johnson's Algorithm

Michael Dinitz Lecture 15: APSP October 19, 2021 9/13



Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?logn), better than Floyd-Warshall
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work?
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» Does this work? No!
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.
» Does this work? No!

» New length of path P is £(P) + «|P|, so original shortest = oo
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path might no longer be shortest path if it has many / w\;
edges. N ﬁl?”%

1

pN

Some other kind of reweighting? Need new lengths £ such that:
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?logn), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.
» Does this work? No!

» New length of path P is £(P) + «|P|, so original shortest = oo
path might no longer be shortest path if it has many

S = .
edges. - \7 @ (amb

1

pN

Some other kind of reweighting? Need new lengths £ such that:

» Path P a shortest path under lengths £ if and only P a shortest path under lengths £
» £(u,v) >0 for all (u,v) €E
Michael Dinitz
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h:V — R be node weights.
» Let £p(u,v) = £(u,v) + h(u) - h(v)
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Neat observation: put weights at vertices!
» Let h:V — R be node weights.
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Let P = (vg,v1,...,Vvk) be arbitrary (not necessarily shortest) path.
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h:V — R be node weights.
» Let £p(u,v) = £(u,v) + h(u) - h(v)

Let P = (vg,v1,...,Vvk) be arbitrary (not necessarily shortest) path.

k-1 k-1
4 (P) = '—Zo €n(viyvis1) = '—Zo (£(vis vir1) + h(vi) - h(vis1))
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4 (P) = '—Zo €n(viyvis1) = '—Zo (£(vis vir1) + h(vi) - h(vis1))
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=h(vo) —h(vi) + ) £(vi; Vis1) (telescoping)
i=0
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h:V — R be node weights.
» Let £p(u,v) = £(u,v) + h(u) - h(v)

Let P = (vg,v1,...,Vvk) be arbitrary (not necessarily shortest) path.

k-1 k-1
4 (P) = '—Zo €n(viyvis1) = § (£(vis vir1) + h(vi) - h(vis1))
k-1
=h(vo) —h(vi) + ) £(vi; Vis1) (telescoping)
i=0

= £(P) +h(vg) - h(w)
h(vg) — h(vk) added to every vg — vy path, so shortest path from vg to v still shortest path!
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v e V of length 0
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v e V of length 0
» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s,u)
» Note h(u) <0 for all ueV
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So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v e V of length 0

» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s,u)
» Note h(u) <0 for all ueV

Want to show that £, (u,v) >0 for all edges (u,v).
» Triangle inequality: h(v) =d(s,v) <d(s,u) + £(u,v) = h(u) + £(u,v)
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v e V of length 0

» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s,u)
» Note h(u) <0 for all ueV

Want to show that £, (u,v) >0 for all edges (u,v).
» Triangle inequality: h(v) =d(s,v) <d(s,u) + £(u,v) = h(u) + £(u,v)

Lh(u,v) =£(u,v) + h(u) -h(v) > £(u,v) + h(u) - (h(u) + £(u,v)) =0
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Johnson's Algorithm

» Add vertex s to graph, edge (s,u) for all u eV with £(s,u) =0

» Run Bellman-Ford from s, set h(u) = d(s,u)

» Remove s, run Dijkstra from every node u e V to get dy(u,v) for all u,v eV
» If want distances, set d(u,v) =dp(u,v) - h(u) +h(v) for all u,v eV

Correctness: From previous discussion.
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Johnson's Algorithm

» Add vertex s to graph, edge (s,u) for all u eV with £(s,u) =0

» Run Bellman-Ford from s, set h(u) = d(s,u)

» Remove s, run Dijkstra from every node u e V to get dy(u,v) for all u,v eV
» If want distances, set d(u,v) =dp(u,v) - h(u) +h(v) for all u,v eV

Correctness: From previous discussion.

Running Time: O(n) + O(mn) + O(n(m +nlogn)) = O(mn + n?logn)
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