Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 12, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 1/27

Introduction

Next 3-4 weeks: graphs!
» Super important abstractions, used all over the place in CS

» Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)

» Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, one or two new

» Going to move pretty quickly, since much review: see CLRS for details!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021

2/27

Basic Definitions
Definition

A graph G = (V,E) is a pair where V is a set and E ¢ (\2l) (unordered pairs) or ECV xV
(ordered pairs).

Notation:

v

Elements of V are called vertices or nodes

Elements of E are called edges or arcs.

If Ec (\21) then graph is undirected, if E €V x V graph is directed
V| =n and |E| = m (usually)

So “size of input” =n+m

S i

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 3/27

v

v

v

v

Representations
Adjacency List: Adjacency Matrix:
> Array A of length n » Ae{0,1}™"
» A[v] is linked list of vertices adjacenttov A; - {1 if (i,j) €E

(edge from u to v) 0 otherwise

1 23 45
1 1o 100 1
(D) (2) 2 [H4]/] 201 0 1 1 1
3 3/0 1010
® 4 410 1 1 0 1
(5) (4) 5 501101 0
1 23456
1 2] H4]/] 1fo1 0100
2 5]/] 200000 10
© (2) (3 3|6 P51/ 310 000 1 1
4| —+{2]/] 410 1.0 0 0 0
5| la]/] 50000100
O» 6| +6]/] 6/0 0 0 0 0 1
Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021

4 /27

Representations (cont'd)

Adjacency List: Adjacency Matrix:
» Pros: » Pros:
> O(n+m) space » Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes ©®(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is the » lterating through edges incident on v
degree of v: # edges with v as endpoint) takes time @(n), even if d(v) small.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 5/ 27

Representations (cont'd)

Adjacency List: Adjacency Matrix:
» Pros: » Pros:
> O(n+m) space » Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes ©®(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is the » lterating through edges incident on v
degree of v: # edges with v as endpoint) takes time @(n), even if d(v) small.

This class: adjacency list unless otherwise specified.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 5/ 27

Representations (cont'd)

Adjacency List: Adjacency Matrix:
» Pros: » Pros:
> O(n+m) space » Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes ©®(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is the » lterating through edges incident on v
degree of v: # edges with v as endpoint) takes time @(n), even if d(v) small.

This class: adjacency list unless otherwise specified.

Any way to improve these?

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 5/ 27

Representations (cont'd)

Adjacency List: Adjacency Matrix:
» Pros: » Pros:
> O(n+m) space » Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes ©®(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is the » lterating through edges incident on v
degree of v: # edges with v as endpoint) takes time @(n), even if d(v) small.

This class: adjacency list unless otherwise specified.

Any way to improve these?
» Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

» Not traditional, doesn’t gain us much, and more complicated. But better!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 5/ 27

Breadth-First Search (BFS)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 6 /27

BFS Definition

|dea: explore graph in levels or layers from source s

=

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

s \
[a J
_ /
7~ N 7~ ™
i b | I J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

Idea: explore graph in levels or layers from source s

Michael Dinitz October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

d) e) (1) (g
(h)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

£ e \
\ ? a'l

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 7/ 27

BFS Pseudocode
|dea: explore with a queue (LIFO)

BFS(G = (V,E),s) {
Set mark(s) = True;
Set mark(v) = False for all ve V ~\ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 8 /27

BFS Pseudocode
|dea: explore with a queue (LIFO)

BFS(G = (V,E),s) {
Set mark(s) = True;
Set mark(v) = False for all ve V ~\ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

}

Running Time:

}
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 8 /27

BFS Pseudocode
|dea: explore with a queue (LIFO)

BFS(G = (V,E),s) {
Set mark(s) = True;
Set mark(v) = False for all ve V ~\ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

}

Running Time: O(n + m)

}
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 8 /27

BFS Pseudocode
|dea: explore with a queue (LIFO)

BFS(G = (V,E),s) {
Set mark(s) = True;
Set mark(v) = False for all ve V ~\ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}
}

()

o M)

Michael Dinitz

Lecture 13: Basic Graph Algorithms

Running Time: O(n + m)
» O(n) for initialization
» O(m) for main while loop
» Examine every edge twice:
when each endpoint dequeued
» Or (equivalent): Adjacency list
scanned only when vertex
dequeued

October 12, 2021 8 /27

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 9 /27

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:

Assume false for contradiction, let u be closest node to s where BFS(s) doesn't give shortest
path

BF> pth d(s,w’) < d(s,w)

—= w' dequeued before w (since w’
3 has correct distance by def of u)
\ — u will be enqueued from w’, not
w. Contradiction.
5‘1‘/&'«) é— fe ‘f'b\

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 9 /27

Depth-First Search (DFS)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 10 / 27

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

J
Init: for each v € V, mark(v) = False; '
DFS(v) {
mark(v) = True; \
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u);
t < C
}
Voo
Yl YD

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 11 /27

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u); Running time:
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 11 /27

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
: if mark(u) == False then DFS(u); Running time: O(m +n)

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 11 /27

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a

node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u);
t

}

Running time: O(m +n)
» O(n) initialization
» Every edge considered at most
twice

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 11 /27

DFS: Correctness

Definition: u is reachable from v if there is a path v = vg,vi,...,Vv, = u such that
(vi,vis1) € E for allie {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

o

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 12 / 27

DFS: Correctness

Definition: u is reachable from v if there is a path v = vg,vi,...,Vv, = u such that
(vi,vis1) € E for allie {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X 4

(2

,t‘lrfs-[— .MM,[Q_J A—L e f"”\

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021

12 /27

DFS: Correctness

Definition: u is reachable from v if there is a path v = vg,vi,...,Vv, = u such that
(vi,vis1) € E for allie {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X 4

(2

[(‘lfrs-{' L.'U\l/lfgé '\‘L e f“’L]

x is marked so DFS(x) must have been called

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021

12 /27

DFS: Correctness

Definition: u is reachable from v if there is a path v = vg,vi,...,Vv, = u such that
(vi,vis1) € E for allie {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X v
D0 —Dr—Ha—D0—er—20—0

(2

[(‘lfrs-{' L.'U\l/lfgé h'J.g e f“’h

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021

12 / 27

DFS: Correctness

Definition: u is reachable from v if there is a path v = vg,vi,...,Vv, = u such that
(vi,vis1) € E for allie {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X v
D0 —Dr—Ha—D0—er—20—0

(2

[(‘lfrs-{' L.'U\l/lfgé h'J.g e f“’h

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.
Contradiction.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021

12 / 27

Graph variant

After DFS(v), node marked if and only if reachable from v.

Might want to continue until all nodes marked.

DFS(G) {
for all v € V, set mark(v) = False;
while there exists an unmarked node v {

DFS(v);
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 13 / 27

Timestamps

Explicitly keep track of “start” and “finishing” times

» Replaces mark

DFS(G) {
t=0;
for allveV {
start(v) = 0;
finish(v) = 0;

}

while 3v € V with start(v) =0 {

DFS(v) {
t=t+1;
start(v) = t;
for each edge (v,u) € A[v] {
if start(u) == 0 then DFS(u);
}

t=t+1;
DFS(v); .
! finish(v) = t;
Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 14 /27

Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

y F es: (v,u) such that u descendent of v
v 4 (includes tree edg

\\ Tee edge

\\ Back edge
\\ Forward edgs
\\ Cross edge

Back Edges: (v,u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27

Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

Forward Edges: (v,u) such that u descendent of v
(includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge
U \\ Back edge
\\ Forward edgs
\\ Cross edge

Back Edges: (v,u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27

Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

Forward Edges: (v,u) such that u descendent of v
(includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

\\ Back edge

\\ Forward edg{ Back Edges: (v,u) such that u an ancestor of v
V | | \ Cross edge start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27

Edge Types

DFS naturally gives a spanning forest: edge (v,u) if DFS(v) calls DFS(u)

\\ Tee edge
\\ Back edge
\\ Forward edgs

\\ Cross edge

Forward Edges: (v,u) such that u descendent of v
(includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v,u) such that u an ancestor of v
start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 15 / 27

Topological Sort

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 16 / 27

Definitions
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.
C/FX/ /’]>

Definition J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 17 / 27

Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition
A topological sort vi,v2,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (vj,vj) with i <j.

v

O— Oo)/%)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 17 / 27

Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition
A topological sort vi,v2,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (vj,vj) with i <j.

O— Oo)/%)

Can use DFS to characterize DAGs and compute topological sort!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 17 / 27

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 18 / 27

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if: contrapositive. If G has a back edge:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 18 / 27

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Y
J,
>

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 18 / 27

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If: contrapositive. If G has a directed cycle C:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 18 / 27

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if: contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If: contrapositive. If G has a directed cycle C:

» Let u € C with minimum start value, v predecessor in cycle
» All nodes in C reachable from u == all nodes in C descendants of u
> (v,u) a back edge

o

[

Michael Dinitz Lecture 13: Basic Graph Algorithms

October 12, 2021

o

18 / 27

Topological Sort

> Run DFS(G)
> When DFS(v) returns, put v at beginning of list

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 19 / 27

Topological Sort

> Run DFS(G)
> When DFS(v) returns, put v at beginning of list

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
== finish(u) < finish(v)

== u already in list

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 19 / 27

Topological Sort

> Run DFS(G)
> When DFS(v) returns, put v at beginning of list

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
== finish(u) < finish(v)

== u already in list

Running Time: O(m +n)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 19 / 27

Strongly Connected Components (SCC): Sketch

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 20 / 27

Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 21 /27

Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa.

Michael Dinitz

Lecture 13: Basic Graph Algorithms October 12, 2021 21 /27

Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa.

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence relation

Michael Dinitz

Lecture 13: Basic Graph Algorithms October 12, 2021 21 /27

SCC Problem

Problem: Given G compute SCCs (partition V into the SCCs)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 22 /27

SCC Problem

Problem: Given G compute SCCs (partition V into the SCCs)

Trivial Algorithm:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 22 /27

SCC Problem

Problem: Given G compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 22 /27

SCC Problem

Problem: Given G compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where
> Running time: O(n(m +n))

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 22 /27

SCC Problem

Problem: Given G compute SCCs (partition V into the SCCs)

Trivial Algorithm

» Running time

Can we do better?

Michael Dinitz

: DFS/BFS from every node, keep track of what's reachable from where

- O(n(m +n))

O(m+n)?

Lecture 13: Basic Graph Algorithms

October 12, 2021

22 /27

Graph of SCCs
Definition: Let G be graph of SCCs:
» Vertex v(C) for each SCC C
» Edge (v(C),v(C’)) if 3ue C,veC’ such that (u,v) € E

}
(4

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 23 /27

Graph of SCCs
Definition: Let G be graph of SCCs:
» Vertex v(C) for each SCC C
» Edge (v(C),v(C’)) if 3ue C,veC’ such that (u,v) € E

Theorem
G is a DAG. J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 23 /27

Graph of SCCs
Definition: Let G be graph of SCCs:
» Vertex v(C) for each SCC C
» Edge (v(C),v(C’)) if 3ue C,veC’ such that (u,v) € E

Theorem
G is a DAG. J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 23 /27

Sink SCC

Since G a DAG, has a topological sort

> ¢

T
04@0’%)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 24 /27

Sink SCC

Since G a DAG, has a topological sort

> ¢

T
04@0’%)

Definition: SCC C is a sink SCC if no outgoing edges
» At least one sink SCC exists

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 24 /27

Sink SCC

Since G a DAG, has a topological sort

> ¢

T
04@0’%)

Definition: SCC C is a sink SCC if no outgoing edges
» At least one sink SCC exists

What happens if we run DFS(v) where v in a sink SCC?

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 24 /27

Sink SCC

Since G a DAG, has a topological sort

> ¢

T
04@0’%)

Definition: SCC C is a sink SCC if no outgoing edges
» At least one sink SCC exists

What happens if we run DFS(v) where v in a sink SCC?

» See exactly nodes in C!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 24 /27

Sink SCC

Since G a DAG, has a topological sort

> ¢

T
04@0’%)

Definition: SCC C is a sink SCC if no outgoing edges
» At least one sink SCC exists

What happens if we run DFS(v) where v in a sink SCC?

» See exactly nodes in C!
Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 13: Basic Graph Algorithms

October 12, 2021

24 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>). J

Let x € C{ u Cy be first node encountered by DFS

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>). J

Let x € C{ u Cy be first node encountered by DFS
» If x € C1:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>).

Let x € C{ u Cy be first node encountered by DFS

» If x € Cy: all of C;, reachable from x, so DFS(x)
does not complete until all of C5 finished

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>).

Let x € C{ u Cy be first node encountered by DFS

» If x € Cy: all of C;, reachable from x, so DFS(x)
does not complete until all of C5 finished

» If x e Cy:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>).

Let x € C{ u Cy be first node encountered by DFS

» If x € Cy: all of C;, reachable from x, so DFS(x)
does not complete until all of C5 finished

» If x € Cy: all of Cy reachable from x but nothing
from Cq, so x finishes before any node in C; starts

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>).

Let x € C{ u Cy be first node encountered by DFS

» If x € Cy: all of C;, reachable from x, so DFS(x)
does not complete until all of C5 finished

» If x € Cy: all of Cy reachable from x but nothing

Cu from Cq, so x finishes before any node in C; starts

Co

So node with max finish time in a source SCC. Want sink.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

SCCs and DFS

Run DFS(G), and let finish(C) = maxy.c finish(v)

Lemma
Let Cy,Cy distinct SCCs s.t. (v(C1),v(C2)) € E(G). Then finish(Cy) > finish(C>).

Let x € C{ u Cy be first node encountered by DFS

» If x € Cy: all of C;, reachable from x, so DFS(x)
does not complete until all of C5 finished

» If x € Cy: all of Cy reachable from x but nothing

Cu from Cq, so x finishes before any node in C; starts

Co

So node with max finish time in a source SCC. Want sink. Reverse all edges!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 25 / 27

Kosaraju's Algorithm

Definition: G' is G with all edges reversed.

DFS(GT) to get finishing times

while(G non-empty) {
Let v be vertex in G with largest finishing time (from original DFS of GT)
Run DFS(v), let C be all nodes found
Delete C from G

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 26 / 27

Kosaraju's Algorithm

Definition: G' is G with all edges reversed.

DFS(GT) to get finishing times

while(G non-empty) {
Let v be vertex in G with largest finishing time (from original DFS of GT)
Run DFS(v), let C be all nodes found
Delete C from G

}

Some implementation details missing (repeatedly finding max finishing time without using
heap): see book

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 26 / 27

Kosaraju's Algorithm

Definition: G' is G with all edges reversed.

DFS(GT) to get finishing times

while(G non-empty) {
Let v be vertex in G with largest finishing time (from original DFS of GT)
Run DFS(v), let C be all nodes found
Delete C from G

}

Some implementation details missing (repeatedly finding max finishing time without using
heap): see book

Running Time: O(m +n)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 26 / 27

Correctness Sketch
Let C1,Cy,...,Ck be set identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (Uj-j Cj)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 27 / 27

Correctness Sketch
Let C1,Cy,...,Ck be set identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (Uj-j Cj)

Induction on i.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 27 / 27

Correctness Sketch

Let C1,Cy,...,Ck be set identified by algorithm (in order)

Theorem
C; is a sink SCC of G ~ (Uj-;} Cj) J

Induction on i.

Base case: i = 1. By previous argument, largest finishing time in GT == in sink SCC of G
== C; is sink SCC of G

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 27 / 27

Correctness Sketch
Let C1,Cy,...,Ck be set identified by algorithm (in order)

Theorem

C; is a sink SCC of G ~ (Uj-j Cj)

Induction on i.

Base case: i = 1. By previous argument, largest finishing time in GT == in sink SCC of G
= C; is sink SCC of G
Inductive case: Let v node remaining with largest finishing time.

» By induction, current graph is G minus i-1 SCCs of G

» Implies v must be in sink SCC of remaining graph, so get an SCC of remaining graph
when run DFS

» By induction, also an SCC of original graph

Michael Dinitz Lecture 13: Basic Graph Algorithms October 12, 2021 27 / 27

