Lecture 12: Dynamic Programming I

Michael Dinitz

October 7, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 1/23

Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)
» Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 2 /23

Longest Common Subsequence

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 3/23

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z} u{a-z}, etc.)

Definition: A sequence Z = (zy,.. zk) is a subsequence of X = (x1,.. xm) if there
exists a strictly increasing seque i such that x;, = z; for all j € {1 2,...,k}.

Example: (ﬁlfsasubsequence of (A,

» Allowed to skip positi

C,BDA

s, unlike substring!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 4 /23

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z} u{a-z}, etc.)

Definition: A sequence Z = (z3,...,2¢) is a subsequence of X = (X1,...,Xm) if there
exists a strictly increasing sequence (i1, i2,. .. ,ik) such that x; = z; for all je {1,2,...,k}.

Example: (B,C,D,B) is a subsequence of (A,B,C,B,D,A,B)

» Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X=(X1y.+.3Xm) and Y = (y1,.--Yn). Need to find the longest Z which is a subsequence
of both X and Y.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 4 /23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/ 23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> Xj=(X15%X25.++,5%j) (s0 X =Xp)
> Yj = (YIaYZa'“ayj) (SO Y =Yn)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/ 23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> Xj=(X15%X25.++,5%j) (s0 X =Xp)
> Yj=(y1,¥25---,Yj) (so Y =Y,)

Definition: Let OPT(i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT(m,n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/ 23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
> Xj=(X15%X25.++,5%j) (s0 X =Xp)
> Yj = (y1aYZ7'°'7yj) (SO Y =Yn)

Definition: Let OPT(i, j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT(m,n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/ 23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

X I Zr7
| S—

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem
Let Z = (z1,...,2k) be an LCS of X; and Y;j (so Z = OPT (i,])).
1. /in =Yj-

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem
Let Z = (z1,...,2k) be an LCS of X; and Y;j (so Z = OPT (i,])).
1. Ifx;=yj: then zx =x; =y; and Zx_1 = OPT(i-1,j-

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y;j (so Z = OPT (i,])).
L. Ifxj=yj: thenzxy =xj =yj and Zxy_1 = OPT(i-1,j i
2. If x; £yj and zi # x;:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y;j (so Z = OPT (i,])).
1. Ifx;=yj: then zx =xj =y; and Zy_1 = OPT(i-1,j-i)
2. If x; #yj and zy # x;: then Z = OPT (i - 1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y;j (so Z = OPT (i,])).
1. Ifx;=yj: then zx =xj =y; and Zy_1 = OPT(i-1,j-i)
2. If x; #yj and zy # x;: then Z = OPT (i - 1,j)
3. If xj £yj and zi # yj:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Y;j (so Z = OPT (i,])).
1. Ifx;=yj: then zx =xj =y; and Zy_1 = OPT(i-1,j-i)
2. If x; #yj and zy # x;: then Z = OPT (i - 1,j)
3. Ifxi #yj and zi # yj: then Z = OPT(i,j-1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure: Proof (I)

Case 1: If x; = yj, then z, = x; =yj and Zy_; = OPT(i-1,j-i)

Proof Sketch.
Contradiction.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/ 23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; =yj and Zy_; = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/ 23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; =yj and Zy_; = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z # a. Add a to end of Z, still haveﬁCS, longer than longest
LCS. Contradiction

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/ 23

Michael Dinitz

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; =yj and Zy_; = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z # a. Add a to end of Z, still have LCS, longer than longest
LCS. Contradiction

Part 2: Suppose Z,_; + OPT(i-1,j-1).

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/ 23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then z, = x; =yj and Zy_; = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but zx # a. Add a to end of Z, still have LCS, longer than longest
LCS. Contradiction

Part 2: Suppose Zy_1 + OPT(i-1,j-1).
= 3JW LCS of Xj_1,Yj-1 of length >k-1 = >k
= (W, a) common subsequence of X;, Y; of length > k
» Contradiction to Z being LCS of X; and Y; [

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/ 23

Optimal Substructure: Proof (Il)

Case 2: If x; # yj and zi # x; then Z = OPT (i - 1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8/ 23

Optimal Substructure: Proof (II)

Case 2: If x; # yj and zi # x; then Z = OPT (i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of Xj_1, Y

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8/ 23

Optimal Substructure: Proof (Il)

Case 2: If x; # yj and zi # x; then Z = OPT (i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of Xj_1, Y

OPT(i-1,j) a common subsequence of X, Y;
—> |OPT(i-1,j)|<|OPT(i,j)| =|Z| (def of OPT(i,j) and Z)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8/ 23

Optimal Substructure: Proof (Il)

Case 2: If x; # yj and zi # x; then Z = OPT (i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of Xj_1, Y

OPT(i-1,j) a common subsequence of X, Y;
—> |OPT(i-1,j)|<|OPT(i,j)| =|Z| (def of OPT(i,j) and Z)

— Z=0PT(i-1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il

October 7, 2021

8/ 23

Optimal Substructure: Proof (IlI)

Case 3: If x; # yj and zx # y; then Z=0PT(i,j-1)

Symmetric to Case 2.

Proof.
|

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 9/23

Structure Corollary

Corollary
7] ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1) ox; ifi,j>0 and x; = y;
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; #y;

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 10 / 23

Structure Corollary

Corollary
7] ifi=0orj=0,
OPT(i,j) ={OPT(i-1,j-1) ox; ifi,j>0 and x; =y;j
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; #y;

Gives obvious recursive algorithm

» Can take exponential time (good exercise at home!)

Dynamic Programming!
» Top-Down: are problems getting “smaller” ? What does “smaller” mean?

» Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

10 / 23

Dynamic Programming Algorithm

LCS(X)Y) { N
for(i = 0 to m) M([i, 0] = 0; o ’[E'D
forEj =0 to n))l\fl[O,j] =0; ‘ ’L 12
for(i=1 to m (

for(j(= 1to)n) { @"""’ I 2
if Xi =Y;i >

M) =1+ MEi-1,j-1]; ==

else
} M[iaj] =max(M[i9j_1]9M[i_19j]); /

}

return M[m,n];
}

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 11 /23

Dynamic Programming Algorithm

LCS(X)Y) {
for(i=0 to m) M[i, 0] = O; O~/
for(j =0 ton) M[0,j]=0; ()
for(i=1 to m) {
for(j =1 to n) {

if(xi = yj)
M[i,j]=1+M[i-1,j-1];
else

M[iaj] = maX(M[i’j - 1]7 M[i - laj]);

}
}
return M[m, n];

}

Michael Dinitz Lecture 12: Dynamic Programming Il

Running Time: O(mn)

nn

October 7, 2021

11/ 23

Correctness

Theorem
M[iaj] = |OPT(iaj)| J

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Correctness

Theorem
M[iaj] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Correctness

Theorem
M[iaj] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Base Case: i+j=0 = i=j=0 = M]|i,j] =0=|0OPT(i,j)|

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Correctness

Theorem
M[i9j] = |OPT(iaj)|

Proof.
Induction on i+ j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M][i,j] =0=|OPT(i,])|
Inductive Step: Divide into three cases

1. Ifi=0orj=0, then M[i,j] =0=|OPT(i,j)|

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Correctness

Theorem
M[i9j] = |OPT(iaj)|

Proof.
Induction on i+ j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M][i,j] =0=|OPT(i,])|
Inductive Step: Divide into three cases

1. Ifi=0orj=0, then M[i,j] =0=|OPT(i,j)|

2. If xj =yj, then M[i,j]=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|

2 2 0
als fadechor sfrctert corelley

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

12 /23

Correctness

Theorem
M[i9j] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Base Case: i+j=0 = i=j=0 = M][i,j] =0=|OPT(i,])|

Inductive Step: Divide into three cases
1. Ifi=0orj=0, then M[i,j] =0=|OPT(i,j)|
2. If xj =yj, then M[i,j]=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|
3. If xj #yj, then

M[i, j] = max(M[i,j- 1], M[i-1,j]) (def of algorithm)
= max(|OPT(i,j-1)|,|OPT(i-1,j)|) (induction)
=|OPT(i,j)| (structure thm/corollary)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 13 /23

Optimal Binary Search Trees

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 14 / 23

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys k; < kp < --- <k,
» For each i € [n], probability p; that we search for k; (so Y1 ; pi = 1)

What's the best binary search tree for these keys and frequencies?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 15 / 23

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys k; < kp < --- <k,
» For each i € [n], probability p; that we search for k; (so Y1 ; pi = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is depthy(k;) + 1 (say depth of root = 0)
== E[cost of search in T] =¥, pi(deptht(k;) + 1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 15 / 23

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys k; < kp < --- <k,
» For each i € [n], probability p; that we search for k; (so Y1 ; pi = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is depthy(k;) + 1 (say depth of root = 0)
== E[cost of searché'n T] =X, pi(depthy(ki) +1)

Definition: c(T) = X', pi(depthy(k;) + 1)?

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 15 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; - pis1 extremely small (say 1/2")

®

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; - pis1 extremely small (say 1/2")

L
®\ E[cost of search in T] =

9
)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; - pis1 extremely small (say 1/2")

N 2.2 ()
&), ”

E[cost of search in T] §#/%

®

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; - pis1 extremely small (say 1/2")

AN
@ Y ACY,
L
N\ E[cost of search in T] ~ #2
C
@\ Balanced search tree: E[cost] < O(logn)
N\

®

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

IntU|t|0n (@f ,,}- S.(,}-"c"\/

Suppose root is k.. What does optimal tree look like?

k.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 17 / 23

Intuition

Suppose root is k.. What does optimal tree look like?

®
/A

OFT F.-r OIT Fe
“(u) kr-cs “('-l') "/ ’(0‘3

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 17 / 23

Subproblems

Definition k.,
Let OPT(i,j) with i < j be optimal tree for keys {k;,l@, ..., kj}: tree T minimizing
c(T) = Zi,:i Pa(deptht(ka) +1)

By convention, if i > j then OPT(i,j) empty
So overall goal is to find OPT(1,n).

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 18 / 23

Subproblems

Definition
Let OPT(i,j) with i <j be optimal tree for keys {ki, kz,...,kj}: tree T minimizing
c(T) = Zi,:i Pa(deptht(ka) +1)

By convention, if i > j then OPT(i,j) empty
So overall goal is to find OPT(1,n).
Theorem (Optimal Substructure)

Let k, be the root of OPT(i,j). Then the left subtree of OPT (i,j) is OPT(i,r - 1), and the
right subtree of OPT(i,j) is OPT(r+1,j).

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 18 / 23

Proof Sketch of Optimal Substructure

Definitions:

» Let T=0OPT(i,j), Ty its left subtree, TR its right subtree.

» Suppose for contradiction Ty # OPT(i,r-1), let T'=0OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 19 / 23

Proof Sketch of Optimal Substructure

Definitions:

» Let T=0OPT(i,j), Ty its left subtree, TR its right subtree.

» Suppose for contradiction Ty # OPT(i,r-1), let T'=0OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Whole bunch of math (see lecture notes): get that ¢(T) < c(T)
Contradicts T = OPT(i,})

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 19 / 23

Proof Sketch of Optimal Substructure

Definitions:
» Let T=0OPT(i,j), Ty its left subtree, TR its right subtree.
» Suppose for contradiction Ty # OPT(i,r-1), let T'=0OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))
» Let T be tree get by replacing Ty with T’

Whole bunch of math (see lecture notes): get that ¢(T) < c(T)
Contradicts T = OPT(i,})

Symmetric argument works for Tg = OPT(r + 1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 19 / 23

Cost Corollary

Corollary

c(OPT(i,j)) = £} _; pa + minigj(c(OPT(i,r - 1)) + c(OPT(r + 1,j)))

Let k, be root of OPT (i, j)

(OPT(i)) = 5" pa(depthopr iy (ka) + 1)

j
(Pa(depthop(i-1)(ka) +2)) +pr + Y. pa(depthopr(r.1,j)(ka) +2)
/;3 a=i a=r+1

J r— J
A= Zpa Z Pa(depthopr(iy-1)(ka) +1)) +) pa(depthopr(ri1,j)(ka) +1)

a=r+1

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 20 / 23

Cost Corollary
Corollary
c(OPT(i,j)) = X _; pa+ minigj(c(OPT (i,r - 1)) + c(OPT(r + 1,j)))

Let k, be root of OPT (i, j)

I
rvjhu

C(OPT(ivj)) (depthOPT(lj)(k))
a=i
r-1 zJ:
= a i,r— r a r+1,j)\Ka) +
(Pa(depthopr(ir-1)(ka) +2)) + pr + Pa(depthopr(ri1,j) (ka) +2)
a=i a=r+l
r- J
= Z Pa(depthopr(iy-1)(ka) +1)) +) pa(depthopr(ri1,j)(ka) +1)
a=i a=r+l

.M*- I M‘-

a+Cc(OPT(i,r-1)) +c(OPT(r+1,))).

Y]
[}

Same logic holds for any possible root == take min
Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 20 / 23

Algorithm
Fill in table M:

0 ifi>]

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 / 23

Algorithm
Fill in table M:

0 ifi>]
minigrgj (X pa+ M[i,r =11+ M[r+1,j]) ifi<]

Top-Down (memoization): are problems getting smaller?

M[ivj] = {

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 / 23

Algorithm
Fill in table M:

0 ifi>]
minigrgj (X pa+ M[i,r =11+ M[r+1,j]) ifi<]

Top-Down (memoization): are problems getting smaller? Yes! j-i decreases in every recursive
call.

M[ivj] = {

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 / 23

Algorithm
Fill in table M:
i, 0 ifi>]
MEBIT= i j - IR
minige<j (Z1_;pa + M[i,r- 1]+ M[r + 1,j]) ifi<]
Top-Down (memoization): are problems getting smaller? Yes! j-i decreases in every recursive
call.

Correctness. Claim MJi,j] = c(OPT(i,j)). Induction on j-i.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 / 23

Algorithm
Fill in table M:
i, 0 ifi>]
MEBIT= i j - IR
minige<j (Z1_;pa + M[i,r- 1]+ M[r + 1,j]) ifi<]
Top-Down (memoization): are problems getting smaller? Yes! j-i decreases in every recursive
call.

Correctness. Claim MJi,j] = c(OPT(i,j)). Induction on j-i.
» Base case: if j—i< 0 then M[i,j] = OPT(i,j) =0

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 / 23

Algorithm
Fill in table M:
i 0 ifi>]
MEBIT= i j - IR
minige<j (Z1_;pa + M[i,r- 1]+ M[r + 1,j]) ifi<]
Top-Down (memoization): are problems getting smaller? Yes! j-i decreases in every recursive

call.

Correctness. Claim MJi,j] = c(OPT(i,j)). Induction on j-i.
» Base case: if j—i< 0 then M[i,j] = OPT(i,j) =0
» Inductive step:

(]
MTi, j] —In<1r|<rjl \Zpa+M[i,r—1]+M[r+1,j]) (alg def)
= min rZ pa +c(OPT(i,r-1)) +c(OPT(r + 1,j))) (induction)

i<r<j a :
=c(OPT(i,j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 / 23

Algorithm: Bottom-up

What order to fill the table in?
» Obvious approach: for(i=1ton-1) for(j=i+1 to n) Doesn't work!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 22 /23

Algorithm: Bottom-up
What order to fill the table in?

» Obvious approach: for(i=1ton-1) for(j=i+1 to n) Doesn't work!

» Take hint from induction: j—i

OBST {

}
1

}

Set M[i,j] =0 for all j > i;

Set MJi,i] = p; for all i ‘

for(l=1ton-1) { I
fori=1ton-2) {

j=i+/
MIi, j] = miniSrsj (Zje‘:i Pa+Ml[i,r-1]+ M[r + laj]);

return M[1,n];

Michael Dinitz Lecture 12: Dynamic Programming Il

October 7, 2021

22 /23

Analysis

Correctness: same as top-down

Running Time:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:
» 7 table entries:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)
» Time to compute table entry MJi,j]:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)
» Time to compute table entry MJi,j]: O(j-i) = O(n)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:

» # table entries: O(n?)

» Time to compute table entry M[i,j]: O(j-i) = O(n)
Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

