Lecture 12: Dynamic Programming II

Michael Dinitz

October 7, 2021 601.433/633 Introduction to Algorithms

Introduction

Today: two more examples of dynamic programming

- Longest Common Subsequence (strings)
- Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Longest Common Subsequence

Definitions

String: Sequence of elements of some *alphabet* $(\{0,1\}, \text{ or } \{A-Z\} \cup \{a-z\}, \text{ etc.})$

Definition: A sequence $Z = (z_1, ..., z_k)$ is a *subsequence* of $X = (x_1, ..., x_m)$ if there exists a strictly increasing sequence $(i_1, i_2, ..., i_k)$ such that $x_{i_i} = z_j$ for all $j \in \{1, 2, ..., k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

Allowed to skip positions, unlike substring!

Definitions

String: Sequence of elements of some *alphabet* $(\{0,1\}, \text{ or } \{A-Z\} \cup \{a-z\}, \text{ etc.})$

Definition: A sequence $Z = (z_1, \ldots, z_k)$ is a *subsequence* of $X = (x_1, \ldots, x_m)$ if there exists a strictly increasing sequence (i_1, i_2, \ldots, i_k) such that $x_{i_i} = z_j$ for all $j \in \{1, 2, \ldots, k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

Allowed to skip positions, unlike substring!

Definition: In *Longest Common Subsequence* problem (LCS) we are given two strings $X = (x_1, ..., x_m)$ and $Y = (y_1, ..., y_n)$. Need to find the longest Z which is a subsequence of both X and Y.

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, ..., x_i)$ (so $X = X_m$)
- $Y_i = (y_1, y_2, ..., y_i)$ (so $Y = Y_n$)

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, ..., x_i)$ (so $X = X_m$)
- $Y_i = (y_1, y_2, ..., y_i)$ (so $Y = Y_n$)

Definition: Let OPT(i,j) be longest common subsequence of X_i and Y_j

So looking for optimal solution OPT = OPT(m, n)

Last time **OPT** denotes value of solution, here denotes solution. Be flexible in notation

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, ..., x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, ..., y_j)$ (so $Y = Y_n$)

Definition: Let OPT(i,j) be longest common subsequence of X_i and Y_j

So looking for optimal solution OPT = OPT(m, n)

Last time **OPT** denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Second step of dynamic programming: prove optimal substructure

 Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Second step of dynamic programming: prove optimal substructure

 Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let
$$\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_k)$$
 be an LCS of \mathbf{X}_i and \mathbf{Y}_j (so $\mathbf{Z} = \mathbf{OPT}(i, j)$).

1. If
$$x_i = y_i$$
:

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let
$$Z = (z_1, ..., z_k)$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$)

Let
$$\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_k)$$
 be an LCS of \mathbf{X}_i and \mathbf{Y}_j (so $\mathbf{Z} = \mathbf{OPT}(\mathbf{i}, \mathbf{j})$).
1. If $\mathbf{x}_i = \mathbf{y}_j$: then $\mathbf{z}_k = \mathbf{x}_i = \mathbf{y}_j$ and $\mathbf{Z}_{k-1} = \mathbf{OPT}(\mathbf{i} - \mathbf{1}, \mathbf{j} - \mathbf{j})$

Second step of dynamic programming: prove optimal substructure

 Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_k)$ be an LCS of \mathbf{X}_i and \mathbf{Y}_j (so $\mathbf{Z} = \mathbf{OPT}(i, j)$).

- 1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-i)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$:

Second step of dynamic programming: prove optimal substructure

 Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, ..., z_k)$ be an LCS of X_i and Y_j (so Z = OPT(i, j)).

- 1. If $x_i = y_i$: then $z_k = x_i = y_i$ and $Z_{k-1} = OPT(i-1, j-i)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$: then Z = OPT(i-1,j)

Second step of dynamic programming: prove optimal substructure

 Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_k)$ be an LCS of \mathbf{X}_i and \mathbf{Y}_j (so $\mathbf{Z} = \mathbf{OPT}(\mathbf{i}, \mathbf{j})$).

- 1. If $x_i = y_i$: then $z_k = x_i = y_i$ and $Z_{k-1} = OPT(i-1, j-i)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$: then Z = OPT(i-1,j)
- 3. If $x_i \neq y_i$ and $z_k \neq y_i$:

Second step of dynamic programming: prove optimal substructure

 Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, ..., z_k)$ be an LCS of X_i and Y_j (so Z = OPT(i, j)).

- 1. If $x_i = y_i$: then $z_k = x_i = y_i$ and $Z_{k-1} = OPT(i-1, j-i)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$: then Z = OPT(i-1,j)
- 3. If $x_i \neq y_i$ and $z_k \neq y_i$: then Z = OPT(i, j-1)

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-i)$

Proof Sketch.

Contradiction.

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-i)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$.

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-i)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have CS, longer than longest LCS. Contradiction

Case 1: If
$$x_i = y_i$$
, then $z_k = x_i = y_i$ and $Z_{k-1} = OPT(i-1, j-i)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have LCS, longer than longest LCS. Contradiction

Part 2: Suppose $Z_{k-1} \neq OPT(i-1,j-1)$.

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-i)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have LCS, longer than longest LCS. Contradiction

Part 2: Suppose $Z_{k-1} \neq OPT(i-1,j-1)$.

- \implies 3W LCS of X_{i-1}, Y_{i-1} of length $> k-1 \implies \ge k$
- \implies (W, a) common subsequence of X_i, Y_i of length > k
 - ► Contradiction to **Z** being LCS of **X**_i and **Y**_i

Case 2: If
$$x_i \neq y_j$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Case 2: If
$$x_i \neq y_i$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Proof.

Since $z_k \neq x_i$, **Z** a common subsequence of X_{i-1} , Y_j

Case 2: If
$$x_i \neq y_i$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Proof.

Since $z_k \neq x_i$, **Z** a common subsequence of X_{i-1} , Y_j

 $\mathsf{OPT}(i-1,j)$ a common subsequence of X_i,Y_j

$$\implies |OPT(i-1,j)| \le |OPT(i,j)| = |Z|$$
 (def of $OPT(i,j)$ and Z)

Case 2: If
$$x_i \neq y_i$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1}, Y_j

 $\mathsf{OPT}(i-1,j)$ a common subsequence of X_i,Y_j

$$\implies |OPT(i-1,j)| \le |OPT(i,j)| = |Z|$$
 (def of $OPT(i,j)$ and Z)

$$\implies$$
 Z = OPT(i - 1,j)

Case 3: If $x_i \neq y_j$ and $z_k \neq y_j$ then Z = OPT(i, j - 1)

Proof.

Symmetric to Case 2.

Structure Corollary

Corollary

$$OPT(i,j) = \begin{cases} \emptyset & \textit{if } i = 0 \textit{ or } j = 0, \\ OPT(i-1,j-1) \circ x_i & \textit{if } i,j > 0 \textit{ and } x_i = y_j \\ max(OPT(i,j-1), OPT(i-1,j)) & \textit{if } i,j > 0 \textit{ and } x_i \neq y_j \end{cases}$$

Structure Corollary

Corollary

$$OPT(i,j) = \begin{cases} \emptyset & \textit{if } i = 0 \textit{ or } j = 0, \\ OPT(i-1,j-1) \circ x_i & \textit{if } i,j > 0 \textit{ and } x_i = y_j \\ max(OPT(i,j-1), OPT(i-1,j)) & \textit{if } i,j > 0 \textit{ and } x_i \neq y_j \end{cases}$$

Gives obvious recursive algorithm

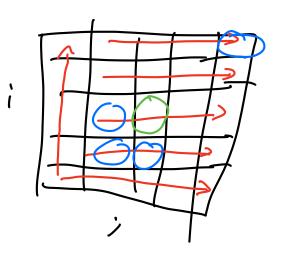
Can take exponential time (good exercise at home!)

Dynamic Programming!

- ▶ Top-Down: are problems getting "smaller"? What does "smaller" mean?
- ▶ Bottom-Up: two-dimensional table! What order to fill it in?

Dynamic Programming Algorithm

```
LCS(X,Y) {
    for(i = 0 to m) M[i, 0] = 0;
    for(j = 0 to n) M[0, j] = 0;
    for(\mathbf{i} = \mathbf{1} to \mathbf{m}) {
       for(\mathbf{j} = \mathbf{1} to \mathbf{n}) {
           if(x_i = y_i)
                M[i,j] = 1 + M[i-1,j-1];
            else
                M[i, j] = max(M[i, j-1], M[i-1, j]);
    return M[m, n];
```



Dynamic Programming Algorithm

```
LCS(X,Y) {
   for(i = 0 to m) M[i, 0] = 0; O(m)
for(j = 0 to n) M[0, j] = 0; O(m)
    for(\mathbf{i} = \mathbf{1} to \mathbf{m}) {
        for(\mathbf{j} = \mathbf{1} to \mathbf{n}) {
             if(x_i = y_i)
                 M[i,j] = 1 + M[i-1,j-1];
             else
                 M[i,j] = max(M[i,j-1],M[i-1,j]);
    return M[m, n];
```

Running Time: O(mn)

Theorem

$$M[i,j] = |OPT(i,j)|$$

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case: $i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)|$

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case: $i + j = 0 \implies i = j = 0 \implies M[i, j] = 0 = |OPT(i, j)|$

Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i, j] = 0 = |OPT(i, j)|

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case:
$$i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)|$$

Inductive Step: Divide into three cases

- 1. If i = 0 or j = 0, then M[i, j] = 0 = |OPT(i, j)|
- 2. If $x_i = y_j$, then M[i,j] = 1 + M[i-1,j-1] = 1 + |OPT(i-1,j-1)| = |OPT(i,j)|Also indeed to the second state of the s

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case: $i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)|$

Inductive Step: Divide into three cases

- 1. If i = 0 or j = 0, then M[i,j] = 0 = |OPT(i,j)|
- 2. If $x_i = y_j$, then M[i,j] = 1 + M[i-1,j-1] = 1 + |OPT(i-1,j-1)| = |OPT(i,j)|
- 3. If $x_i \neq y_i$, then

$$\begin{aligned} M[i,j] &= max(M[i,j-1],M[i-1,j]) & \text{(def of algorithm)} \\ &= max(|OPT(i,j-1)|,|OPT(i-1,j)|) & \text{(induction)} \\ &= |OPT(i,j)| & \text{(structure thm/corollary)} \end{aligned}$$

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4

Optimal Binary Search Trees

Problem Definition

Input: probability distribution / search frequency of keys

- ▶ **n** distinct keys $k_1 < k_2 < \cdots < k_n$
- ▶ For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^n p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Problem Definition

Input: probability distribution / search frequency of keys

- ▶ **n** distinct keys $k_1 < k_2 < \cdots < k_n$
- ▶ For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^n p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $depth_T(k_i) + 1$ (say depth of root = 0)

$$\implies$$
 E[cost of search in T] = $\sum_{i=1}^{n} p_i(depth_T(k_i) + 1)$

Problem Definition

Input: probability distribution / search frequency of keys

- ▶ **n** distinct keys $k_1 < k_2 < \cdots < k_n$
- ▶ For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^n p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree **T** is $depth_T(k_i) + 1$ (say depth of root = 0)

$$\implies$$
 E[cost of search in T] = $\sum_{i=1}^{n} p_i(depth_T(k_i) + 1)$

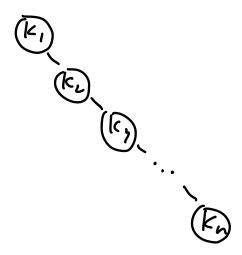
Definition:
$$c(T) = \sum_{i=1}^{n} p_i(depth_T(k_i) + 1)$$

Problem: Find search tree **T** minimizing cost.

Natural approach: greedy (make highest probability key the root). Does this work?

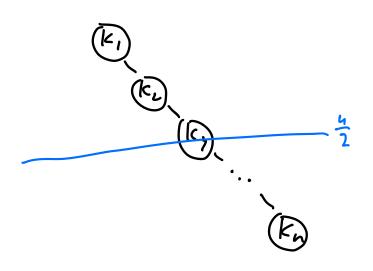
Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)



Natural approach: greedy (make highest probability key the root). Does this work?

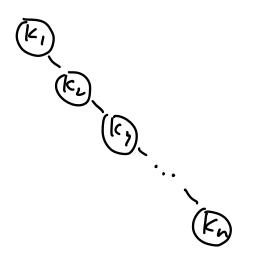
Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)



E[cost of search in **T**] \approx

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

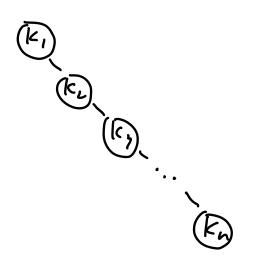


252 (7(4)

E[cost of search in T]

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)



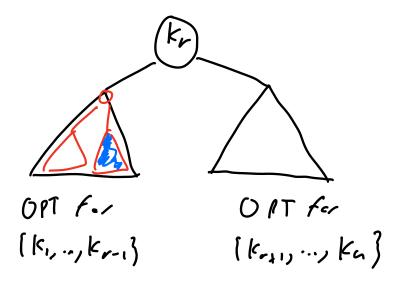
 $E[\text{cost of search in }T] \approx 4/2$

Balanced search tree: $E[\cos t] \le O(\log n)$

Intuition $(c \neq -) + (c + -)$ Suppose root is k_r . What does optimal tree look like?

Intuition

Suppose root is k_r . What does optimal tree look like?



Subproblems

Definition

Let OPT(i,j) with $i \le j$ be optimal tree for keys $\{k_i, k_j^2, \ldots, k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a(depth_T(k_a) + 1)$

By convention, if i > j then OPT(i,j) empty So overall goal is to find OPT(1,n).

Subproblems

Definition

Let OPT(i,j) with $i \le j$ be optimal tree for keys $\{k_i,k_2,\ldots,k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a(depth_T(k_a) + 1)$

By convention, if i > j then OPT(i,j) empty So overall goal is to find OPT(1,n).

Theorem (Optimal Substructure)

Let k_r be the root of OPT(i,j). Then the left subtree of OPT(i,j) is OPT(i,r-1), and the right subtree of OPT(i,j) is OPT(r+1,j).

Proof Sketch of Optimal Substructure

Definitions:

- Let T = OPT(i, j), T_L its left subtree, T_R its right subtree.
- ▶ Suppose for contradiction $T_L \neq OPT(i, r-1)$, let T' = OPT(i, r-1)
 - \implies c(T') < c(T_L) (def of OPT(i, r 1))
- Let \hat{T} be tree get by replacing T_L with T'

Proof Sketch of Optimal Substructure

Definitions:

- Let T = OPT(i,j), T_L its left subtree, T_R its right subtree.
- ▶ Suppose for contradiction $T_L \neq OPT(i, r-1)$, let T' = OPT(i, r-1)
 - \implies c(T') < c(T_L) (def of OPT(i, r 1))
- Let \hat{T} be tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$

Contradicts T = OPT(i, j)

Proof Sketch of Optimal Substructure

Definitions:

- Let T = OPT(i, j), T_L its left subtree, T_R its right subtree.
- ▶ Suppose for contradiction $T_L \neq OPT(i, r-1)$, let T' = OPT(i, r-1)
 - \implies c(T') < c(T_L) (def of OPT(i, r 1))
- Let \hat{T} be tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$

Contradicts T = OPT(i, j)

Symmetric argument works for $T_R = OPT(r + 1, j)$

Cost Corollary

Corollary

$$c(\mathsf{OPT}(\mathsf{i},\mathsf{j})) = \sum_{\mathsf{a}=\mathsf{i}}^{\mathsf{j}} \mathsf{p}_{\mathsf{a}} + \mathsf{min}_{\mathsf{i} \leq \mathsf{r} \leq \mathsf{j}} (c(\mathsf{OPT}(\mathsf{i},\mathsf{r}-1)) + c(\mathsf{OPT}(\mathsf{r}+1,\mathsf{j})))$$

Let k_r be root of OPT(i, j)

$$\begin{split} c(OPT(i,j)) &= \sum_{a=i}^{j} p_a (depth_{OPT(i,j)}(k_a) + 1) \\ &= \sum_{a=i}^{j} (p_a (depth_{OPT(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a (depth_{OPT(r+1,j)}(k_a) + 2) \\ &= \sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a (depth_{OPT(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a (depth_{OPT(r+1,j)}(k_a) + 1) \\ &= \sum_{a=i}^{j} p_a + c(OPT(i,r-1)) + c(OPT(r+1,j)). \end{split}$$

Cost Corollary

Corollary

$$c(\mathsf{OPT}(\mathsf{i},\mathsf{j})) = \sum_{\mathsf{a}=\mathsf{i}}^{\mathsf{j}} \mathsf{p}_{\mathsf{a}} + \mathsf{min}_{\mathsf{i} \leq \mathsf{r} \leq \mathsf{j}} (c(\mathsf{OPT}(\mathsf{i},\mathsf{r}-1)) + c(\mathsf{OPT}(\mathsf{r}+1,\mathsf{j})))$$

Let k_r be root of OPT(i, j)

$$\begin{split} c(\mathsf{OPT}(i,j)) &= \sum_{a=i}^{j} p_a (\mathsf{depth}_{\mathsf{OPT}(i,j)}(k_a) + 1) \\ &= \sum_{a=i}^{r-1} (p_a (\mathsf{depth}_{\mathsf{OPT}(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a (\mathsf{depth}_{\mathsf{OPT}(r+1,j)}(k_a) + 2) \\ &= \sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a (\mathsf{depth}_{\mathsf{OPT}(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a (\mathsf{depth}_{\mathsf{OPT}(r+1,j)}(k_a) + 1) \\ &= \sum_{a=i}^{j} p_a + c(\mathsf{OPT}(i,r-1)) + c(\mathsf{OPT}(r+1,j)). \end{split}$$

Same logic holds for any possible root ⇒ take min

Fill in table M:

$$\label{eq:minimum} M\big[i,j\big] = \begin{cases} 0 & \text{if } i>j\\ \min_{i\leq r\leq j} \left(\sum_{a=i}^{j} p_a + M\big[i,r-1\big] + M\big[r+1,j\big]\right) & \text{if } i\leq j \end{cases}$$

Fill in table **M**:

$$\label{eq:minimum} M\big[i,j\big] = \begin{cases} 0 & \text{if } i>j\\ \min_{i\leq r\leq j} \left(\sum_{a=i}^{j} p_a + M\big[i,r-1\big] + M\big[r+1,j\big]\right) & \text{if } i\leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller?

Fill in table **M**:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Fill in table **M**:

$$\label{eq:minimum} M\big[i,j\big] = \begin{cases} 0 & \text{if } i>j\\ \min_{i\leq r\leq j} \left(\sum_{a=i}^{j} p_a + M\big[i,r-1\big] + M\big[r+1,j\big]\right) & \text{if } i\leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j - i.

Fill in table **M**:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j - i.

▶ Base case: if $\mathbf{i} - \mathbf{i} < \mathbf{0}$ then $\mathbf{M}[\mathbf{i}, \mathbf{j}] = \mathbf{OPT}(\mathbf{i}, \mathbf{j}) = \mathbf{0}$

Fill in table **M**:

$$\label{eq:minimum} M\big[i,j\big] = \begin{cases} 0 & \text{if } i>j\\ \min_{i\leq r\leq j} \left(\sum_{a=i}^{j} p_a + M\big[i,r-1\big] + M\big[r+1,j\big]\right) & \text{if } i\leq j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j - i.

- ▶ Base case: if $\mathbf{i} \mathbf{i} < \mathbf{0}$ then $\mathbf{M}[\mathbf{i}, \mathbf{j}] = \mathbf{OPT}(\mathbf{i}, \mathbf{j}) = \mathbf{0}$
- Inductive step:

$$\begin{split} M[i,j] &= \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) \\ &= \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + c(OPT(i,r-1)) + c(OPT(r+1,j)) \right) \\ &= c(OPT(i,j)) \end{split} \tag{induction}$$

Michael Dinitz

Lecture 12: Dynamic Programming II

October 7, 2021

Algorithm: Bottom-up

What order to fill the table in?

▶ Obvious approach: for(i = 1 to n - 1) for(j = i + 1 to n) Doesn't work!

Algorithm: Bottom-up

What order to fill the table in?

- ▶ Obvious approach: for(i = 1 to n 1) for(j = i + 1 to n) Doesn't work!
- ► Take hint from induction: j i

```
OBST {
     Set M[i,j] = 0 for all j > i;
     Set M[i, i] = p_i for all i
     for(\ell = 1 to n - 1) {
          for(\mathbf{i} = \mathbf{1} to \mathbf{n} - \ell) {
               i = i + \ell
               \label{eq:main_i} \begin{split} M[i,j] &= min_{i \leq r \leq j} \left( \sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right); \end{split}
     return M[1, n];
```

Correctness: same as top-down

Running Time:

Correctness: same as top-down

Running Time:

table entries:

Correctness: same as top-down

Running Time:

• # table entries: $O(n^2)$

Correctness: same as top-down

Running Time:

- # table entries: $O(n^2)$
- ► Time to compute table entry **M**[i,j]:

Correctness: same as top-down

Running Time:

- # table entries: $O(n^2)$
- ▶ Time to compute table entry M[i,j]: O(j-i) = O(n)

Correctness: same as top-down

Running Time:

- # table entries: $O(n^2)$
- ► Time to compute table entry M[i,j]: O(j-i) = O(n)

Total running time: $O(n^3)$