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Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)
» Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)
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Longest Common Subsequence
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Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a-2z}, etc.)

Definition: A sequence Z = (z1,...,2x) is a subsequence of X = (X1,...,Xm) if there
exists a strictly increasing sequence (i1, i2, ... ,ik) such that x; = z; for all je {1,2,...,k}.

Example: (B,C,D,B) is a subsequence of (A,B,C,B,D,A,B)

» Allowed to skip positions, unlike substring!
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Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a-2z}, etc.)

Definition: A sequence Z = (z1,...,2x) is a subsequence of X = (X1,...,Xm) if there
exists a strictly increasing sequence (i1, i2, ... ,ik) such that x; = z; for all je {1,2,...,k}.

Example: (B,C,D,B) is a subsequence of (A,B,C,B,D,A,B)

» Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X =(X1y.-+35Xm) and Y = (y1,...Y¥n). Need to find the longest Z which is a subsequence
of both X and Y.
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Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/23



Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
S Xi = (xl,X2,...,xi) (SO X=Xm)
> Yj = (Y1aY2,---an) (SO Y=Yn)
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Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
S Xi = (xl,X2,...,Xi) (SO X=Xm)
> Yj = (Y1aY2,---an) (SO Y=Yn)

Definition: Let OPT(i,j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT(m,n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation
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Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
S Xi = (xl,X2,...,Xi) (SO X=Xm)
> Yj = (Y1aY2,---an) (SO Y=Yn)

Definition: Let OPT(i,j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT(m,n)
» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).

1. Iin =Yj-
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxj =yj: then zi = x;

=Yj and Zk—l = OPT(I - 1,] - ].)
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. If x; #yj and zy # x;:
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. Ifx; #y; and z # x;: then Z=0OPT(i-1,j)
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. Ifx; #y; and z # x;: then Z=0OPT(i-1,j)
3. If xj #yj and zy #yj:
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Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. Ifx; #y; and z # x;: then Z=0OPT(i-1,j)
3. Ifx; #y; and z # y;: then Z=0PT(i,j-1)
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = yj = a, but z, # a.
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y;j = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y;j = a, but z, # a. Add a to end of Z, still have common subsequence,

longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
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Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y;j = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
= 3JW LCS of Xi_1,Yj-1 of length >k-1 = >k
= (W, a) common subsequence of X;, Y;j of length > k
» Contradiction to Z being LCS of X; and Y; O
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of X;_1, Y]
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of X;_1, Y]

OPT(i-1,j) a common subsequence of X;,Y;
= |OPT(i-1,j)| <|OPT(i,j)| =|Z| (def of OPT(i,j) and Z)
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Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of X;_1, Y]

OPT(i-1,j) a common subsequence of X;,Y;
= |OPT(i-1,j)| <|OPT(i,j)| =|Z| (def of OPT(i,j) and Z)

= Z=0PT(i-1,j) 0
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Optimal Substructure: Proof (1l1)

Case 3: If x; # yj and zy # yj then Z=0OPT(i,j-1)

Proof.
Symmetric to Case 2. DJ
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Structure Corollary

Corollary
2 ifi=0orj=0,
OPT(i,j) = {OPT(i-1,j-1) ox; ifi,j>0 and x; = y;
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; #yj
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Structure Corollary

Corollary
@ ifi=0orj=0,
OPT(i,j) = {OPT(i-1,j-1) ox; ifi,j>0 and x; = y;
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; #yj

Gives obvious recursive algorithm

» Can take exponential time (good exercise at home!)

Dynamic Programming!
» Top-Down: are problems getting “smaller”? What does “smaller” mean?

» Bottom-Up: two-dimensional table! What order to fill it in?
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Dynamic Programming Algorithm

LCS(X,Y) {
for(i=0 to m) M[i, 0] = 0;
for(j =0 to n) M[0,j] =0;
for(i=1 tom) {
for(j=1ton) {

if(Xi = yj)
M['a]] =1+ M[' - 1?.] - 1],
else

} M[ivj] = maX(M[i,j - 1]7 M[i - lvj]);
}
return M[m, n];

}
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Dynamic Programming Algorithm

LCS(X,Y) {
for(i=0 to m) M[i, 0] = 0;
for(j =0 to n) M[0,j] =0;
for(i=1 tom) {
for(j=1ton) {

if(Xi = yj) . . .
M[i,j] = 1+M[i-1,j-1]; Running Time: O(mn)
else

} M[ivj] = maX(M[i,j - 1]7 M[i - lvj]);
}
return M[m, n];

}
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Correctness

Theorem
M[i9j] = |OPT(i7j)| J
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Correctness

Theorem
M[iaj] = |OPT(iaj)|

Proof.

Induction on i+j (or could do on iterations in the algorithm)

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

12 /23



Correctness

Theorem
M[iaj] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Base Case: i+j=0 = i=j=0 = M][i,j] =0=|0OPT(i,j)|
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Correctness

Theorem
M[i7j] = |0PT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M]|i,j] =0=|0OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0orj=0, then M[i,j] = 0= |OPT(i,j)]
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Correctness

Theorem
M[i7j] = |0PT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M]|i,j] =0=|0OPT(i,j)|
Inductive Step: Divide into three cases
1. Ifi=0orj=0, then M[i,jl =0=|OPT(i,j)|
2. If xj =y;, then M[i,j]=1+M[i-1,j-1] =1+|OPT(i-1,j-1)| = |OPT(i,j)|
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Correctness

Theorem
M[i7j] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Base Case: i+j=0

= i=j=0 = M][i,j]=0=|0OPT(i,j)|

Inductive Step: Divide into three cases

1. Ifi=00rj=0,
2. |in=
3. If x; #yj, then

Michael Dinitz

then M[i,j] = 0 = |OPT(i, )|

M['?J] = max(M[i,j - 1]7 M[' - 17.]])
= max(|OPT(i,j - l)la |0PT(i - laJ)l)
= |0PT(iaj)|

Lecture 12: Dynamic Programming |l

yj, then M[i,j]=1+M[i-1,j-1] =1+|OPT(i-1,j-1)| = |OPT(i,j)|

(def of algorithm)
(induction)
(structure thm/corollary)
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Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4
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Optimal Binary Search Trees
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Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < ky <--- <kj,
» For each i € [n], probability p; that we search for k; (so ¥, pi = 1)

What's the best binary search tree for these keys and frequencies?
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Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < ky <--- <kj,

» For each i € [n], probability p; that we search for k; (so ¥, pi = 1)
What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is depthy(k;) + 1 (say depth of root = 0)
= E[cost of search in T] = ¥, pi(deptht(k;) + 1)
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Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < ky <--- <kj,
» For each i € [n], probability p; that we search for k; (so ¥, pi = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is depthy(k;) + 1 (say depth of root = 0)
= E[cost of search in T] = ¥, pi(deptht(k;) + 1)

Definition: c(T) = X', pi(deptht(k;) + 1)

Problem: Find search tree T minimizing cost.
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23



Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... Pn, but with p; - pis1 extremely small (say 1/2")
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... Pn, but with p; - pis1 extremely small (say 1/2")

Michael Dinitz
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E[cost of search in T] > Q(n)
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Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... Pn, but with p; - pis1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)
C
@\ Balanced search tree: E[cost] < O(logn)

AN

®
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Intuition

Suppose root is k.. What does optimal tree look like?
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Intuition

Suppose root is k,. What does optimal tree look like?

®

ort £.r OIT Fer
(k'/ ) kl—ls ( l(r“) °) ’(G\}
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Subproblems

Definition
Let OPT(i,j) with i < j be optimal tree for keys {ki, kis1,...,kj}: tree T minimizing
o(T) = T, pa(depthr(ka) + 1)

By convention, if i > j then OPT(i,j) empty
So overall goal is to find OPT(1,n).
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Subproblems

Definition
Let OPT(i,j) with i < j be optimal tree for keys {ki, kis1,...,kj}: tree T minimizing
o(T) = T, pa(depthr(ka) + 1)

By convention, if i > j then OPT(i,j) empty
So overall goal is to find OPT(1,n).
Theorem (Optimal Substructure)

Let k, be the root of OPT (i,j). Then the left subtree of OPT (i, j) is OPT(i,r - 1), and the
right subtree of OPT(i,j) is OPT(r+1,j).
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Proof Sketch of Optimal Substructure

Definitions:

» Let T =OPT(i,j), Ty its left subtree, TR its right subtree.

» Suppose for contradiction T # OPT(i,r-1), let T"=OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’
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Proof Sketch of Optimal Substructure

Definitions:

» Let T=0PT(i,j), Tp its left subtree, Tg its right subtree.

» Suppose for contradiction T # OPT(i,r-1), let T"=OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Whole bunch of math (see lecture notes): get that c(T) < ¢(T)
Contradicts T = OPT(i, j)
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Proof Sketch of Optimal Substructure

Definitions:

» Let T=0PT(i,j), Tp its left subtree, Tg its right subtree.

» Suppose for contradiction T # OPT(i,r-1), let T"=OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Whole bunch of math (see lecture notes): get that c(T) < ¢(T)
Contradicts T = OPT(i, j)

Symmetric argument works for Tg = OPT(r + 1,j)
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Cost Corollary

Corollary

c(OPT(i,j)) = £)_. pa + Minice<j(c(OPT(i,r - 1)) + c(OPT(r + 1,j)))

Let k, be root of OPT(i,})

M_.

C(OPT(iaj)) (depthOPT(lj)(k ) + 1)

"m
o

(Pa(depthopT(. r-1)(ka) +2)) +pr +

Q
n,

i
Y. pa(depthopr(ri1,j)(ka) +2)

a=r+l
r-1

at Z(pa(dEPthOPT G,r-1)(ka) +1)) + Z Pa(depthopr(ri1,j)(ka) +1)

a=i a=r+1

+c(OPT(i,r-1)) +c(OPT(r+1,j)).

Il
M._.

o
1,

I
M._.

oQ
n,
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Cost Corollary
Corollary

c(OPT(i,j)) = £)_. pa + Minice<j(c(OPT(i,r - 1)) + c(OPT(r + 1,j)))

Let k, be root of OPT(i,})

M_.

C(OPT(iaj)) (depthOPT(lj)(k ) + 1)

" Q
I

H

i
(Pa(depthopT(. r-1)(Ka) +2)) +pr+ > pa(depthopr(r1,j)(ka) +2)

a=i a=r+l
] r-1

= Z + Z(pa(dEPthOPT G,r-1)(ka) +1)) + Z Pa(depthopr(ri1,j)(ka) +1)
a=i a=i a=r+1

= ZJ: +c(OPT(i,r-1)) +c(OPT(r +1,j)).

Same logic holds for any possible root == take min
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Algorithm
Fill in table M:

MIi.j] = 0 if i>]
b= minisrsj(22=ipa+M[i,r—1]+M[r+1,j]) ifi<]j
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Algorithm
Fill in table M:

MIi.j] = 0 if i>]
b= minisrsj(22=ipa+M[i,r—1]+M[r+1,j]) ifi<]j

Top-Down (memoization): are problems getting smaller?
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Algorithm
Fill in table M:

yr— 0 ifi>j
[i,j] = minig<j (X} pa+M[i,r-1]+M[r+1,j]) ifi<]
J a=i

Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every recursive
call.
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Algorithm
Fill in table M:
MiNigj (Z:Ja=i pa+M[i,r-1]+ M[r+ 1,]]) if i <j
Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every recursive
call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j-i.
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Algorithm
Fill in table M:
MiNigj (Z:Ja=i pa+M[i,r-1]+ M[r+ 1,]]) if i <j
Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every recursive

call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j-i.
» Base case: if j—i< 0 then M[i,j] =OPT(i,j) =0
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Algorithm
Fill in table M:
M[i,j]:{ . . ' . |f|>J
MiNigj (Zi‘:i pa+M[i,r-1]+ M[r+ 1,]]) if i <j
Top-Down (memoization): are problems getting smaller? Yes! j-i decreases in every recursive
call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j-i.
» Base case: if j—i< 0 then M[i,j] =OPT(i,j) =0
» Inductive step:

MIi,j] = min (ipa #Mliyr—1]+ M[r + l,j]) (alg def)
1<r<) \ a5i
= min (i pa+c(OPT(i,r-1)) +c(OPT(r+ l,j))) (induction)
1<r) \a5i
=c(OPT(i,j)) (cost corollary)
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Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i=1to n-1) for(j=i+1 to n) Doesn't work!
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Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i=1to n-1) for(j=i+1 to n) Doesn't work!

» Take hint from induction: j—i

OBST {
Set M[i, j] = 0 for all j > i;
Set M[i,i] = p; for all i
forfl=1ton-1) {
forfi=1ton-4£){
j=i+l
M[i,j] = minigrg; (£} pa + M[i,r - 1]+ M[r + 1,j]);
}
}
return M[1,n];
}
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Analysis

Correctness: same as top-down

Running Time:
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Analysis

Correctness: same as top-down

Running Time:
» # table entries:
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Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)
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Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)
» Time to compute table entry M[i,j]:
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Analysis

Correctness: same as top-down

Running Time:

» # table entries: O(n?)

» Time to compute table entry M[i,j]: O(j-i) = O(n)
Total running time: O(n3)
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