Lecture 12: Dynamic Programming Il

Michael Dinitz

October 7, 2021
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

1/23

Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)
» Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 2/23

Longest Common Subsequence

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 3/23

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a-2z}, etc.)

Definition: A sequence Z = (z1,...,2x) is a subsequence of X = (X1,...,Xm) if there
exists a strictly increasing sequence (i1, i2, ... ,ik) such that x; = z; for all je {1,2,...,k}.

Example: (B,C,D,B) is a subsequence of (A,B,C,B,D,A,B)

» Allowed to skip positions, unlike substring!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 4 /23

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a-2z}, etc.)

Definition: A sequence Z = (z1,...,2x) is a subsequence of X = (X1,...,Xm) if there
exists a strictly increasing sequence (i1, i2, ... ,ik) such that x; = z; for all je {1,2,...,k}.

Example: (B,C,D,B) is a subsequence of (A,B,C,B,D,A,B)

» Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X =(X1y.-+35Xm) and Y = (y1,...Y¥n). Need to find the longest Z which is a subsequence
of both X and Y.

Michael Dinitz Lecture 12: Dynamic Programming |l October 7, 2021 4 /23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
S Xi = (xl,X2,...,xi) (SO X=Xm)
> Yj = (Y1aY2,---an) (SO Y=Yn)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
S Xi = (xl,X2,...,Xi) (SO X=Xm)
> Yj = (Y1aY2,---an) (SO Y=Yn)

Definition: Let OPT(i,j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT(m,n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/23

Subproblems

First and most important step of dynamic programming: define subproblems!

» Not obvious: X and Y might not even be same length!

Prefixes of strings
S Xi = (xl,X2,...,Xi) (SO X=Xm)
> Yj = (Y1aY2,---an) (SO Y=Yn)

Definition: Let OPT(i,j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT(m,n)
» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 5/23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).

1. Iin =Yj-

Michael Dinitz

Lecture 12: Dynamic Programming Il

October 7, 2021

6/23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxj =yj: then zi = x;

=Yj and Zk—l = OPT(I - 1,] -].)

Michael Dinitz

Lecture 12: Dynamic Programming |l

October 7, 2021

6/23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. If x; #yj and zy # x;:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. Ifx; #y; and z # x;: then Z=0OPT(i-1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. Ifx; #y; and z # x;: then Z=0OPT(i-1,j)
3. If xj #yj and zy #yj:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure

Second step of dynamic programming: prove optimal substructure
» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1,...,2k) be an LCS of X; and Yj (so Z = OPT(i,j)).
1. Ifxi =yj: then zy = x; =yj and Zy_1 = OPT(i-1,j-1)
2. Ifx; #y; and z # x;: then Z=0OPT(i-1,j)
3. Ifx; #y; and z # y;: then Z=0PT(i,j-1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 6 /23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = yj = a, but z, # a.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y;j = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y;j = a, but z, # a. Add a to end of Z, still have common subsequence,

longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

7/23

Optimal Substructure: Proof (1)

Case 1: If x; = yj, then zx = x; =yj and Z,_1 = OPT(i-1,j-i)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y;j = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 # OPT(i-1,j-1).
= 3JW LCS of Xi_1,Yj-1 of length >k-1 = >k
= (W, a) common subsequence of X;, Y;j of length > k
» Contradiction to Z being LCS of X; and Y; O

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 7/23

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8 /23

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of X;_1, Y]

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8 /23

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of X;_1, Y]

OPT(i-1,j) a common subsequence of X;,Y;
= |OPT(i-1,j)| <|OPT(i,j)| =|Z| (def of OPT(i,j) and Z)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8 /23

Optimal Substructure: Proof (I1)

Case 2: If x; # yj and z¢ # x; then Z = OPT(i - 1,j)

Proof.

Since zy # xj, Z a common subsequence of X;_1, Y]

OPT(i-1,j) a common subsequence of X;,Y;
= |OPT(i-1,j)| <|OPT(i,j)| =|Z| (def of OPT(i,j) and Z)

= Z=0PT(i-1,j) 0

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 8 /23

Optimal Substructure: Proof (1l1)

Case 3: If x; # yj and zy # yj then Z=0OPT(i,j-1)

Proof.
Symmetric to Case 2. DJ

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 9 /23

Structure Corollary

Corollary
2 ifi=0orj=0,
OPT(i,j) = {OPT(i-1,j-1) ox; ifi,j>0 and x; = y;
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; #yj

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 10 / 23

Structure Corollary

Corollary
@ ifi=0orj=0,
OPT(i,j) = {OPT(i-1,j-1) ox; ifi,j>0 and x; = y;
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; #yj

Gives obvious recursive algorithm

» Can take exponential time (good exercise at home!)

Dynamic Programming!
» Top-Down: are problems getting “smaller”? What does “smaller” mean?

» Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

10 / 23

Dynamic Programming Algorithm

LCS(X,Y) {
for(i=0 to m) M[i, 0] = 0;
for(j =0 to n) M[0,j] =0;
for(i=1 tom) {
for(j=1ton) {

if(Xi = yj)
M['a]] =1+ M[' - 1?.] - 1],
else

} M[ivj] = maX(M[i,j - 1]7 M[i - lvj]);
}
return M[m, n];

}

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 11 /23

Dynamic Programming Algorithm

LCS(X,Y) {
for(i=0 to m) M[i, 0] = 0;
for(j =0 to n) M[0,j] =0;
for(i=1 tom) {
for(j=1ton) {

if(Xi = yj) . . .
M[i,j] = 1+M[i-1,j-1]; Running Time: O(mn)
else

} M[ivj] = maX(M[i,j - 1]7 M[i - lvj]);
}
return M[m, n];

}

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 11 /23

Correctness

Theorem
M[i9j] = |OPT(i7j)| J

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Correctness

Theorem
M[iaj] = |OPT(iaj)|

Proof.

Induction on i+j (or could do on iterations in the algorithm)

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

12 /23

Correctness

Theorem
M[iaj] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Base Case: i+j=0 = i=j=0 = M][i,j] =0=|0OPT(i,j)|

Michael Dinitz

Lecture 12: Dynamic Programming Il October 7, 2021 12 /23

Correctness

Theorem
M[i7j] = |0PT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M]|i,j] =0=|0OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0orj=0, then M[i,j] = 0= |OPT(i,j)]

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

12 /23

Correctness

Theorem
M[i7j] = |0PT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M]|i,j] =0=|0OPT(i,j)|
Inductive Step: Divide into three cases
1. Ifi=0orj=0, then M[i,jl =0=|OPT(i,j)|
2. If xj =y;, then M[i,j]=1+M[i-1,j-1] =1+|OPT(i-1,j-1)| = |OPT(i,j)|

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

12 /23

Correctness

Theorem
M[i7j] = |OPT(iaj)|

Proof.

Induction on i+ j (or could do on iterations in the algorithm)

Base Case: i+j=0

= i=j=0 = M][i,j]=0=|0OPT(i,j)|

Inductive Step: Divide into three cases

1. Ifi=00rj=0,
2. |in=
3. If x; #yj, then

Michael Dinitz

then M[i,j] = 0 = |OPT(i,)|

M['?J] = max(M[i,j - 1]7 M[' - 17.]])
= max(|OPT(i,j - l)la |0PT(i - laJ)l)
= |0PT(iaj)|

Lecture 12: Dynamic Programming |l

yj, then M[i,j]=1+M[i-1,j-1] =1+|OPT(i-1,j-1)| = |OPT(i,j)|

(def of algorithm)
(induction)
(structure thm/corollary)

October 7, 2021

12 /23

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 13 /23

Optimal Binary Search Trees

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 14 / 23

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < ky <--- <kj,
» For each i € [n], probability p; that we search for k; (so ¥, pi = 1)

What's the best binary search tree for these keys and frequencies?

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

15 / 23

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < ky <--- <kj,

» For each i € [n], probability p; that we search for k; (so ¥, pi = 1)
What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is depthy(k;) + 1 (say depth of root = 0)
= E[cost of search in T] = ¥, pi(deptht(k;) + 1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

15 / 23

Problem Definition

Input: probability distribution / search frequency of keys
» n distinct keys ky < ky <--- <kj,
» For each i € [n], probability p; that we search for k; (so ¥, pi = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is depthy(k;) + 1 (say depth of root = 0)
= E[cost of search in T] = ¥, pi(deptht(k;) + 1)

Definition: c(T) = X', pi(deptht(k;) + 1)

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

15 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... Pn, but with p; - pis1 extremely small (say 1/2")

Michael Dinitz

AN

®

Lecture 12: Dynamic Programming |l

October 7, 2021

16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... Pn, but with p; - pis1 extremely small (say 1/2")

Michael Dinitz

AN

®

E[cost of search in T] > Q(n)

Lecture 12: Dynamic Programming |l

October 7, 2021

16 / 23

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ... Pn, but with p; - pis1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)
C
@\ Balanced search tree: E[cost] < O(logn)

AN

®

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 16 / 23

Intuition

Suppose root is k.. What does optimal tree look like?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 17 / 23

Intuition

Suppose root is k,. What does optimal tree look like?

®

ort £.r OIT Fer
(k'/) kl—ls (l(r“) °) ’(G\}

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

17 / 23

Subproblems

Definition
Let OPT(i,j) with i < j be optimal tree for keys {ki, kis1,...,kj}: tree T minimizing
o(T) = T, pa(depthr(ka) + 1)

By convention, if i > j then OPT(i,j) empty
So overall goal is to find OPT(1,n).

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 18 / 23

Subproblems

Definition
Let OPT(i,j) with i < j be optimal tree for keys {ki, kis1,...,kj}: tree T minimizing
o(T) = T, pa(depthr(ka) + 1)

By convention, if i > j then OPT(i,j) empty
So overall goal is to find OPT(1,n).
Theorem (Optimal Substructure)

Let k, be the root of OPT (i,j). Then the left subtree of OPT (i, j) is OPT(i,r - 1), and the
right subtree of OPT(i,j) is OPT(r+1,j).

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 18 / 23

Proof Sketch of Optimal Substructure

Definitions:

» Let T =OPT(i,j), Ty its left subtree, TR its right subtree.

» Suppose for contradiction T # OPT(i,r-1), let T"=OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 19 / 23

Proof Sketch of Optimal Substructure

Definitions:

» Let T=0PT(i,j), Tp its left subtree, Tg its right subtree.

» Suppose for contradiction T # OPT(i,r-1), let T"=OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Whole bunch of math (see lecture notes): get that c(T) < ¢(T)
Contradicts T = OPT(i, j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 19 / 23

Proof Sketch of Optimal Substructure

Definitions:

» Let T=0PT(i,j), Tp its left subtree, Tg its right subtree.

» Suppose for contradiction T # OPT(i,r-1), let T"=OPT(i,r-1)
= ¢(T') <c(TL) (def of OPT(i,r-1))

» Let T be tree get by replacing Ty with T’

Whole bunch of math (see lecture notes): get that c(T) < ¢(T)
Contradicts T = OPT(i, j)

Symmetric argument works for Tg = OPT(r + 1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021

19 / 23

Cost Corollary

Corollary

c(OPT(i,j)) = £)_. pa + Minice<j(c(OPT(i,r - 1)) + c(OPT(r + 1,j)))

Let k, be root of OPT(i,})

M_.

C(OPT(iaj)) (depthOPT(lj)(k) + 1)

"m
o

(Pa(depthopT(. r-1)(ka) +2)) +pr +

Q
n,

i
Y. pa(depthopr(ri1,j)(ka) +2)

a=r+l
r-1

at Z(pa(dEPthOPT G,r-1)(ka) +1)) + Z Pa(depthopr(ri1,j)(ka) +1)

a=i a=r+1

+c(OPT(i,r-1)) +c(OPT(r+1,j)).

Il
M._.

o
1,

I
M._.

oQ
n,

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 20 / 23

Cost Corollary
Corollary

c(OPT(i,j)) = £)_. pa + Minice<j(c(OPT(i,r - 1)) + c(OPT(r + 1,j)))

Let k, be root of OPT(i,})

M_.

C(OPT(iaj)) (depthOPT(lj)(k) + 1)

" Q
I

H

i
(Pa(depthopT(. r-1)(Ka) +2)) +pr+ > pa(depthopr(r1,j)(ka) +2)

a=i a=r+l
] r-1

= Z + Z(pa(dEPthOPT G,r-1)(ka) +1)) + Z Pa(depthopr(ri1,j)(ka) +1)
a=i a=i a=r+1

= ZJ: +c(OPT(i,r-1)) +c(OPT(r +1,j)).

Same logic holds for any possible root == take min
Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 20 / 23

Algorithm
Fill in table M:

MIi.j] = 0 if i>]
b= minisrsj(22=ipa+M[i,r—1]+M[r+1,j]) ifi<]j

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 /23

Algorithm
Fill in table M:

MIi.j] = 0 if i>]
b= minisrsj(22=ipa+M[i,r—1]+M[r+1,j]) ifi<]j

Top-Down (memoization): are problems getting smaller?

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 /23

Algorithm
Fill in table M:

yr— 0 ifi>j
[i,j] = minig<j (X} pa+M[i,r-1]+M[r+1,j]) ifi<]
J a=i

Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every recursive
call.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 /23

Algorithm
Fill in table M:
MiNigj (Z:Ja=i pa+M[i,r-1]+ M[r+ 1,]]) if i <j
Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every recursive
call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j-i.

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 /23

Algorithm
Fill in table M:
MiNigj (Z:Ja=i pa+M[i,r-1]+ M[r+ 1,]]) if i <j
Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every recursive

call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j-i.
» Base case: if j—i< 0 then M[i,j] =OPT(i,j) =0

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 /23

Algorithm
Fill in table M:
M[i,j]:{ . . ' . |f|>J
MiNigj (Zi‘:i pa+M[i,r-1]+ M[r+ 1,]]) if i <j
Top-Down (memoization): are problems getting smaller? Yes! j-i decreases in every recursive
call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j-i.
» Base case: if j—i< 0 then M[i,j] =OPT(i,j) =0
» Inductive step:

MIi,j] = min (ipa #Mliyr—1]+ M[r + l,j]) (alg def)
1<r<) \ a5i
= min (i pa+c(OPT(i,r-1)) +c(OPT(r+ l,j))) (induction)
1<r) \a5i
=c(OPT(i,j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 21 /23

Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i=1to n-1) for(j=i+1 to n) Doesn't work!

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 22 /23

Algorithm: Bottom-up
What order to fill the table in?
» Obvious approach: for(i=1to n-1) for(j=i+1 to n) Doesn't work!

» Take hint from induction: j—i

OBST {
Set M[i, j] = 0 for all j > i;
Set M[i,i] = p; for all i
forfl=1ton-1) {
forfi=1ton-4£){
j=i+l
M[i,j] = minigrg; (£} pa + M[i,r - 1]+ M[r + 1,j]);
}
}
return M[1,n];
}

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

22 /23

Analysis

Correctness: same as top-down

Running Time:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries:

Michael Dinitz

Lecture 12: Dynamic Programming |l

October 7, 2021

23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)

Michael Dinitz

Lecture 12: Dynamic Programming |l

October 7, 2021

23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)
» Time to compute table entry M[i,j]:

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:
» # table entries: O(n?)
» Time to compute table entry M[i,j]: O(j-i) = O(n)

Michael Dinitz Lecture 12: Dynamic Programming Il October 7, 2021 23 /23

Analysis

Correctness: same as top-down

Running Time:

» # table entries: O(n?)

» Time to compute table entry M[i,j]: O(j-i) = O(n)
Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming |l

October 7, 2021

23 /23

