Partially Optimal Edge Fault-Tolerant Spanners

Greg Bodwin¹ Michael Dinitz² Caleb Robelle³

¹University of Michigan

²Johns Hopkins University

³MIT

SODA '22

Graph Spanners: Basics

Definition

Given graph G = (V, E), subgraph H of G is a t-spanner of G if

```
d_H(u, v) \leq t \cdot d_G(u, v) for all u, v \in V
```

- **t** is the *stretch* of the spanner.
- ▶ In this paper: G undirected, connected
- \blacktriangleright Sufficient for stretch condition to hold for all edges $\{u,v\}\in E$

Graph Spanners: Basics

Definition

Given graph G = (V, E), subgraph H of G is a t-spanner of G if

```
d_H(u, v) \le t \cdot d_G(u, v) for all u, v \in V
```

- **t** is the *stretch* of the spanner.
- ▶ In this paper: G undirected, connected
- \blacktriangleright Sufficient for stretch condition to hold for all edges $\{u,v\}\in E$

Main Theorem

Theorem (Althöfer et al '93)

- For any positive integer k, all graphs have a (2k 1)-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all (2k 1)-spanners have Ω(n^{1+1/k}) edges (assuming Erdős Girth Conjecture).

Main Theorem

Theorem (Althöfer et al '93)

- For any positive integer k, all graphs have a (2k 1)-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all (2k 1)-spanners have Ω(n^{1+1/k}) edges (assuming Erdős Girth Conjecture).

Upper bound statement existential, but actually algorithmic: greedy algorithm

```
\label{eq:horizontal} \begin{array}{l} \mathsf{H} \leftarrow (\mathsf{V}, \varnothing) \\ \text{for all } \{\mathbf{u}, \mathbf{v}\} \in \mathsf{E} \text{ in nondecreasing weight order do} \\ \text{ if } \mathsf{d}_{\mathsf{H}}(\mathbf{u}, \mathbf{v}) > (2\mathsf{k} - 1) \cdot \mathsf{w}(\mathbf{u}, \mathbf{v}) \text{ then} \\ \quad \text{ add } \{\mathbf{u}, \mathbf{v}\} \text{ to } \mathsf{H} \\ \text{ end if} \\ \text{ end for} \\ \text{ return } \mathsf{H} \end{array}
```

Spanners For Distributed Systems

Go back to # edges. In Theory, we're done. We have a simple, optimal, textbook algorithm. In **Practice**, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a 3-spanner of this network of computers, which need to talk to each other

Spanners For Distributed Systems

Go back to # edges. In Theory, we're done. We have a simple, optimal, textbook algorithm. In **Practice**, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a **3-spanner** of this network of computers, which need to talk to each other ... but then one breaks.

Spanners For Distributed Systems

Go back to # edges. In Theory, we're done. We have a simple, optimal, textbook algorithm. In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a **3-spanner** of this network of computers, which need to talk to each other ... but then one breaks.

Definition (Chechik, Langberg, Peleg, Roditty '09) A subgraph $H \subseteq G$ is an f-Edge Fault Tolerant (EFT) (2k – 1)-spanner of G if, for every possible set F of |F| = f edges, we have

 $H \setminus F$ is a (2k - 1)-spanner of $G \setminus F$.

Equivalently: for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ and $\mathbf{F} \subseteq \mathbf{E}$ with $|\mathbf{F}| \leq \mathbf{f}$,

 $d_{\mathsf{H}\smallsetminus\mathsf{F}}(\mathsf{u},\mathsf{v})\leq (2\mathsf{k}-1)\cdot d_{\mathsf{G}\smallsetminus\mathsf{F}}(\mathsf{u},\mathsf{v})$

f-Vertex Fault Tolerant (**f**-VFT): $\mathbf{F} \subseteq \mathbf{V}$.

Definition (Chechik, Langberg, Peleg, Roditty '09) A subgraph $H \subseteq G$ is an f-Edge Fault Tolerant (EFT) (2k – 1)-spanner of G if, for every possible set F of |F| = f edges, we have

 $H \setminus F$ is a (2k - 1)-spanner of $G \setminus F$.

Equivalently: for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ and $\mathbf{F} \subseteq \mathbf{E}$ with $|\mathbf{F}| \leq \mathbf{f}$,

 $d_{\mathsf{H}\smallsetminus\mathsf{F}}(\mathsf{u},\mathsf{v})\leq (2\mathsf{k}-1)\cdot d_{\mathsf{G}\smallsetminus\mathsf{F}}(\mathsf{u},\mathsf{v})$

f-Vertex Fault Tolerant (**f**-VFT): $\mathbf{F} \subseteq \mathbf{V}$.

Subtle definition: H only has to be "fault-tolerant" if G is "fault-tolerant"

Relative fault-tolerance

Question: How much "extra" above $n^{1+1/k}$ do we need to pay for f-fault tolerance?

Question: How much "extra" above $n^{1+1/k}$ do we need to pay for f-fault tolerance?

Reasonable intuition:

- Natural approach: redundancy. Build a bunch of different spanners so that for all F, at least one spanner is unaffected
- Needs at least f + 1 redundancy, pay extra factor of f

Question: How much "extra" above $n^{1+1/k}$ do we need to pay for f-fault tolerance?

Reasonable intuition:

- Natural approach: redundancy. Build a bunch of different spanners so that for all F, at least one spanner is unaffected
- Needs at least f + 1 redundancy, pay extra factor of f

Theorem (Bodwin, D, Parter, Vassilevska Williams '18)

Existential lower bounds on **f**-fault tolerance:

• f-VFT (2k-1)-spanner: $\Omega\left(f^{1-1/k}n^{1+1/k}\right)$ edges.

•
$$k = 2$$
: $\Omega(f^{1-1/k}n^{1+1/k}) = \Omega(f^{1/2}n^{3/2})$ edges

▶
$$k \ge 3$$
: Ω $\left(f^{\frac{1}{2}(1-1/k)}n^{1+1/k} + fn\right)$ edges.

Vertex Fault-Tolerant Spanner Bounds

Spanner Size	Runtime	Greedy?	Citation
$\widetilde{O}\left(k^{O(f)}\cdot n^{1+1/k}\right)$	$\widetilde{O}\left(k^{O(f)}\cdot n^{3+1/k}\right)$		[CLPR '10]
$\widetilde{O}\left(f^{2-1/k}\cdot n^{1+1/k}\right)$	$\widetilde{O}\left(f^{2-2/k}\cdot mn^{1+1/k}\right)$		[DK '11]
$O\left(exp(k)f^{1-1/k}\cdot n^{1+1/k} ight)$	$O\left(exp(k)\cdot mn^{O(f)}\right)$	\checkmark	[BDPV '18]
$O\left(f^{1-1/k}\cdot n^{1+1/k}\right)$	O (mn ^{O(f)})	\checkmark	[BP '19]
$O\left(kf^{1-1/k}\cdotn^{1+1/k} ight)$	$\widetilde{O}\left(f^{2-1/k}\cdot mn^{1+1/k}\right)$	√*	[DR '20]
$O\left(f^{1-1/k}\cdot n^{1+1/k}\right)$	$\widetilde{O}\left(f^{1-1/k}n^{2+1/k} + mf^2\right)$	√*	[BDR '21]

Vertex Fault-Tolerant Spanner Bounds

Spanner Size	Runtime	Greedy?	Citation
$\widetilde{O}\left(k^{O(f)}\cdot n^{1+1/k}\right)$	$\widetilde{O}\left(k^{O(f)}\cdot n^{3+1/k}\right)$		[CLPR '10]
$\widetilde{O}\left(f^{2-1/k}\cdot n^{1+1/k}\right)$	$\widetilde{O}\left(f^{2-2/k}\cdot mn^{1+1/k}\right)$		[DK '11]
$O\left(exp(k)f^{1-1/k}\cdot n^{1+1/k} ight)$	$O\left(exp(k)\cdot mn^{O(f)}\right)$	\checkmark	[BDPV '18]
$O\left(f^{1-1/k}\cdot n^{1+1/k}\right)$	$O\left(mn^{O(f)}\right)$	\checkmark	[BP '19]
$O\left(kf^{1-1/k}\cdot n^{1+1/k}\right)$	$\widetilde{O}\left(f^{2-1/k}\cdot mn^{1+1/k}\right)$	√*	[DR '20]
$O\left(f^{1-1/k}\cdot n^{1+1/k}\right)$ Sc	$\widetilde{O}\left(f^{1-1/k}n^{2+1/k} + mf^2\right)$ o VFT essentially resolved	√* !	[BDR '21]

Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

- Lower bound: $\Omega\left(f^{\frac{1}{2}(1-1/k)}n^{1+1/k} + fn\right)$ [BDPV '18]
- Upper bound: $O\left(f^{1-1/k} \cdot n^{1+1/k}\right)$ [BDR '21]

Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

- Lower bound: $\Omega\left(f^{\frac{1}{2}(1-1/k)}n^{1+1/k} + fn\right)$ [BDPV '18]
- Upper bound: $O(f^{1-1/k} \cdot n^{1+1/k})$ [BDR '21]

Theorem

Every n-node graph has an f-EFT (2k - 1)-spanner H with

$$|\mathsf{E}(\mathsf{H})| = \begin{cases} \mathsf{O}\left(\mathsf{k}^{2}\mathsf{f}^{1/2-1/(2\mathsf{k})}\mathsf{n}^{1+1/\mathsf{k}} + \mathsf{k}\mathsf{f}\mathsf{n}\right) & \mathsf{k} \text{ is odd} \\ \mathsf{O}\left(\mathsf{k}^{2}\mathsf{f}^{1/2}\mathsf{n}^{1+1/\mathsf{k}} + \mathsf{k}\mathsf{f}\mathsf{n}\right) & \mathsf{k} \text{ is even.} \end{cases}$$

Edge Fault-Tolerant Spanner Bounds


```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```



```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```



```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```



```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```


Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```

k = 2, f = 1V٦ Vo ٧₃`

```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```



```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```


Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
        add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```

Intuition: H should be "almost" high-girth

How do we define "almost"?

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H \leftarrow (V, \emptyset)
for all \{u, v\} \in E in nondecreasing weight order
do
    if there exists \mathbf{F} \subseteq \mathbf{V} \setminus \{\mathbf{u}, \mathbf{v}\} (for VFT) or \mathbf{F} \subseteq \mathbf{E}
    (for EFT) with |\mathbf{H}| \leq \mathbf{f} such that \mathbf{d}_{\mathbf{H} \setminus \mathbf{F}}(\mathbf{u}, \mathbf{v}) >
    (2k-1) \cdot w(u, v) then
         add \{\mathbf{u}, \mathbf{v}\} to H
    end if
end for
return H
```

Intuition: H should be "almost" high-girth

How do we define "almost"?

Structural: There is a large high-girth subgraph in **H**

Moore-like: Suitable adaptations of the arguments for high-girth graphs also apply

Main Difficulty for Edge Fault-Tolerance

- VFT: structural approach (BP '19, BDR '21)
 - · Greedy spanner "almost" high-girth because it has large high-girth subgraph
 - Blocking sets (BP'19), or direct from algorithm (BDR '21)

Problem: Can't use this idea to get *improved* bounds for edge fault-tolerance!

- Bodwin-Patel showed can't use blocking sets to get below $f^{1-1/k} n^{1+1/k}$
- (this paper, informal): if there was a structural argument, then it would imply the Erdős girth conjecture for k = 7 (currently unknown)

Main Difficulty for Edge Fault-Tolerance

- VFT: structural approach (BP '19, BDR '21)
 - Greedy spanner "almost" high-girth because it has large high-girth subgraph
 - Blocking sets (BP'19), or direct from algorithm (BDR '21)

Problem: Can't use this idea to get *improved* bounds for edge fault-tolerance!

- Bodwin-Patel showed can't use blocking sets to get below $f^{1-1/k}n^{1+1/k}$
- (this paper, informal): if there was a structural argument, then it would imply the Erdős girth conjecture for k = 7 (currently unknown)

Approach:

- Strong blocking sets
- More sophisticated version of Moore bounds on graphs with small strong blocking sets

Strong Blocking Sets

Definition (strong **t**-blocking set)

A strong t-blocking set of a graph G = (V, E) is a set $B \subseteq E \times E$ where for every cycle C in G with $|C| \le t$, there exists $(e, e') \in B$ such that:

- $\mathbf{e}, \mathbf{e}' \in \mathbf{C}$ and $\mathbf{e} \neq \mathbf{e}'$, and
- ▶ Either **e** or **e**′ is the *highest-weight* edge in **C**

If G unweighted, "highest-weight" determined by ordering used by greedy algorithm.

Strong Blocking Sets

Definition (strong t-blocking set)

A strong t-blocking set of a graph G = (V, E) is a set $B \subseteq E \times E$ where for every cycle C in G with $|C| \le t$, there exists $(e, e') \in B$ such that:

- $\mathbf{e}, \mathbf{e}' \in \mathbf{C}$ and $\mathbf{e} \neq \mathbf{e}'$, and
- ▶ Either **e** or **e**′ is the *highest-weight* edge in **C**

If ${f G}$ unweighted, "highest-weight" determined by ordering used by greedy algorithm.

Lemma

The subgraph H output by the greedy algorithm has a strong 2k-blocking set of size at most f|E(H)|.

Proof sketch: Same as non-strong lemma from Bodwin-Patel '19

Can't use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph **G** with girth at least $2\mathbf{k} + 1$ has at most $O(n^{1+1/k})$ edges

Can't use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph **G** with girth at least $2\mathbf{k} + 1$ has at most $O(n^{1+1/k})$ edges

Counting Lemma: Let d be average degree of G. Then G has at least $\Omega(n \cdot d^k)$ simple k-paths

Can't use structural approach - use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph **G** with girth at least $2\mathbf{k} + 1$ has at most $O(n^{1+1/k})$ edges

Dispersion Lemma: No two simple k-paths can share the same endpoints $\implies \le n^2$ simple k-paths

Can't use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

G has at least $\Omega(\mathbf{n} \cdot \mathbf{d}^{\mathbf{k}})$ simple **k**-paths

the same endpoints $\implies \leq n^2$ simple k-paths

Any graph **G** with girth at least $2\mathbf{k} + 1$ has at most $O(n^{1+1/k})$ edges

$$\mathbf{n} \cdot \mathbf{d}^k \le \mathbf{n}^2 \implies \mathbf{d} \le \mathbf{n}^{1/k} \implies |\mathbf{E}| = \mathbf{nd}/2 = \mathbf{O}(\mathbf{n}^{1+1/k})$$

Generalized Dispersion Lemma

Greedy spanner ${\boldsymbol{\mathsf{H}}}$ has small strong blocking set.

Greedy spanner ${\boldsymbol{\mathsf{H}}}$ has small strong blocking set.

 \implies for all $u, v \in V$, there is some set S_{uv} of O(kf) edges such that all simple

 $\mathbf{u} - \mathbf{v} \mathbf{k}$ -paths use some edge of $\mathbf{S}_{\mathbf{uv}}$ as *heaviest* edge.

Greedy spanner $\boldsymbol{\mathsf{H}}$ has small strong blocking set.

 $\implies \text{ for all } u, v \in V, \text{ there is some set } S_{uv} \text{ of } O(kf) \text{ edges such that all simple} \\ u - v \text{ } k\text{-paths use some edge of } S_{uv} \text{ as } heaviest \text{ edge.}$

Idea: For each $(x, y) \in S_{uv}$, inductively bound # u - x paths and # y - v paths

Greedy spanner ${\boldsymbol{\mathsf{H}}}$ has small strong blocking set.

⇒ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set \mathbf{S}_{uv} of $\mathbf{O}(\mathbf{k}\mathbf{f})$ edges such that all simple $\mathbf{u} - \mathbf{v} \mathbf{k}$ -paths use some edge of \mathbf{S}_{uv} as *heaviest* edge.

Idea: For each $(x, y) \in S_{uv}$, inductively bound # u - x paths and # y - v paths

To make induction work, helpful if heaviest edge *not* first or last, and for this to be true throughout induction

• Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops

Greedy spanner ${\boldsymbol{\mathsf{H}}}$ has small strong blocking set.

 \implies for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set \mathbf{S}_{uv} of $\mathbf{O}(\mathbf{k}\mathbf{f})$ edges such that all simple $\mathbf{u} - \mathbf{v} \mathbf{k}$ -paths use some edge of \mathbf{S}_{uv} as *heaviest* edge.

Idea: For each $(x, y) \in S_{uv}$, inductively bound # u - x paths and # y - v paths

To make induction work, helpful if heaviest edge *not* first or last, and for this to be true throughout induction

• Only count simple *alternating* **k**-paths: each even hop heavier than adjacent (odd) hops

Greedy spanner $\boldsymbol{\mathsf{H}}$ has small strong blocking set.

 $\implies \mbox{ for all } u, v \in V, \mbox{ there is some set } S_{uv} \mbox{ of } O(kf) \mbox{ edges such that all simple } u - v \mbox{ } k\mbox{-paths use some edge of } S_{uv} \mbox{ as } heaviest \mbox{ edge.}$

Idea: For each $(x, y) \in S_{uv}$, inductively bound # u - x paths and # y - v paths

To make induction work, helpful if heaviest edge *not* first or last, and for this to be true throughout induction

• Only count simple *alternating* **k**-paths: each even hop heavier than adjacent (odd) hops

Lemma (Generalized Dispersion)

For any nodes \mathbf{u}, \mathbf{v} , the number of simple alternating $\mathbf{u} - \mathbf{v} \mathbf{k}$ -paths is

$$\begin{array}{ll} O\left(k^{2}f\right)^{(k-1)/2} & k \text{ is odd} \\ O\left(k^{2}f\right)^{k/2} & k \text{ is even} \end{array}$$

Need to show there are many simple alternating \mathbf{k} -paths.

Need to show there are many simple alternating \mathbf{k} -paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path Proof: Induction on k

Need to show there are many simple alternating \mathbf{k} -paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path Proof: Induction on k

Lemma: Any graph with at least 2kn edges has at least kn simple alternating k-paths Proof: Find a distinct simple alternating k-path for each "extra" edge

Need to show there are many simple alternating ${\bf k}\mbox{-} paths.$

Lemma: Any graph with at least kn edges has at least one simple alternating k-path Proof: Induction on k

Lemma: Any graph with at least 2kn edges has at least kn simple alternating k-paths Proof: Find a distinct simple alternating k-path for each "extra" edge

Lemma (Generalized Counting)

H has $\Omega(n \cdot (d/k)^k)$ simple alternating k-paths.

Need to show there are many simple alternating ${\bf k}\mbox{-paths}.$

Lemma: Any graph with at least kn edges has at least one simple alternating k-path Proof: Induction on k

Lemma: Any graph with at least 2kn edges has at least kn simple alternating k-paths Proof: Find a distinct simple alternating k-path for each "extra" edge

Lemma (Generalized Counting)

H has $\Omega(n \cdot (d/k)^k)$ simple alternating k-paths.

Proof Sketch.

Sample nodes to get subgraph, use previous lemma to argue many simple alternating \mathbf{k} -paths, scale back up.

Putting It Together

Count simple alternating **k**-paths.

Final Notes

Optimal for odd constant **k**, off by $f^{1/(2k)}$ for even constant **k**.

Main open question: close gap for even k!

- Essentially always see difference between even/odd stretch due to bipartiteness (hence why stretch is always 2k - 1)
- Rare (but not unheard of) to see difference between even/odd **k**.
- What is the correct bound???

Also off by k^2 , but WLOG $k \le O(\log n)$. Still would like to get rid of k factors!

Algorithm as stated takes exponential time!

• Can turn into polytime using same idea as [D, Robelle PODC '20]. Extra loss of $O(k^{1/2})$

Thanks!