Partially Optimal Edge Fault-Tolerant Spanners

Greg Bodwin ${ }^{1}$ Michael Dinitz ${ }^{2}$ Caleb Robelle ${ }^{3}$
${ }^{1}$ University of Michigan
${ }^{2}$ Johns Hopkins University
${ }^{3} \mathrm{MIT}$

SODA '22

Graph Spanners: Basics

Definition

Given graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, subgraph \mathbf{H} of \mathbf{G} is a \mathbf{t}-spanner of \mathbf{G} if

$$
\mathbf{d}_{\mathbf{H}}(\mathbf{u}, \mathbf{v}) \leq \mathbf{t} \cdot \mathbf{d}_{\mathbf{G}}(\mathbf{u}, \mathbf{v}) \quad \text { for all } \mathbf{u}, \mathbf{v} \in \mathbf{V}
$$

- \mathbf{t} is the stretch of the spanner.
- In this paper: G undirected, connected
- Sufficient for stretch condition to hold for all edges $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$

Graph Spanners: Basics

Definition

Given graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, subgraph \mathbf{H} of \mathbf{G} is a \mathbf{t}-spanner of \mathbf{G} if

$$
\mathbf{d}_{\mathbf{H}}(\mathbf{u}, \mathbf{v}) \leq \mathbf{t} \cdot \mathbf{d}_{\mathbf{G}}(\mathbf{u}, \mathbf{v}) \quad \text { for all } \mathbf{u}, \mathbf{v} \in \mathbf{V}
$$

- \mathbf{t} is the stretch of the spanner.
- In this paper: G undirected, connected
- Sufficient for stretch condition to hold for all edges $\{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}$

Main Theorem

Theorem (Althöfer et al '93)

- For any positive integer \mathbf{k}, all graphs have a $(\mathbf{2 k}-\mathbf{1})$-spanner with $\mathbf{O}\left(\mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ edges, and
- There exist graphs in which all ($\mathbf{2 k} \mathbf{- 1}$)-spanners have $\Omega\left(\mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ edges (assuming Erdös Girth Conjecture).

Main Theorem

Theorem (Althöfer et al '93)

- For any positive integer \mathbf{k}, all graphs have a ($\mathbf{2 k}-\mathbf{1}$)-spanner with $\mathbf{O}\left(\mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ edges, and
- There exist graphs in which all ($\mathbf{2 k} \mathbf{- 1}$)-spanners have $\Omega\left(\mathbf{n}^{\mathbf{1 + 1} / \mathbf{k}}\right)$ edges (assuming Erdős Girth Conjecture).

Upper bound statement existential, but actually algorithmic: greedy algorithm

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order do}
    if \mp@subsup{d}{H}{}}(\mathbf{u},v)>(2k-1)\cdotw(u,v) the
        add {u,v} to H
    end if
end for
return H
```


Spanners For Distributed Systems

Go back to \# edges.
In Theory, we're done. We have a simple, optimal, textbook algorithm.
In Practice, spanners useful in many applications, but commonly used in distributed systems.
Imagine we build a 3-spanner of this network of computers, which need to talk to each other

Spanners For Distributed Systems

Go back to \# edges.
In Theory, we're done. We have a simple, optimal, textbook algorithm.
In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a 3-spanner of this network of computers, which need to talk to each other ... but then one breaks.

Spanners For Distributed Systems

Go back to \# edges.
In Theory, we're done. We have a simple, optimal, textbook algorithm.
In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a 3-spanner of this network of computers, which need to talk to each other ... but then one breaks.

Fault-Tolerant Spanners

Definition (Chechik, Langberg, Peleg, Roditty '09)
A subgraph $\mathbf{H} \subseteq \mathbf{G}$ is an \mathbf{f}-Edge Fault Tolerant (EFT) ($\mathbf{2 k} \mathbf{k} \mathbf{1}$)-spanner of \mathbf{G} if, for every possible set \mathbf{F} of $|\mathbf{F}|=\mathbf{f}$ edges, we have

$$
H, F \text { is a }(2 k-1) \text {-spanner of } G \backslash F \text {. }
$$

Equivalently: for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ and $\mathbf{F} \subseteq \mathbf{E}$ with $|\mathbf{F}| \leq \mathbf{f}$,

$$
d_{H \backslash F}(u, v) \leq(2 k-1) \cdot d_{G \backslash F}(u, v)
$$

f-Vertex Fault Tolerant (f-VFT): F $\subseteq \mathbf{V}$.

Fault-Tolerant Spanners

Definition (Chechik, Langberg, Peleg, Roditty '09)

A subgraph $\mathbf{H} \subseteq \mathbf{G}$ is an \mathbf{f}-Edge Fault Tolerant (EFT) ($\mathbf{2 k} \mathbf{k} \mathbf{- 1}$)-spanner of \mathbf{G} if, for every possible set \mathbf{F} of $|\mathbf{F}|=\mathbf{f}$ edges, we have

$$
\mathbf{H} \backslash \mathbf{F} \text { is a }(2 k-1) \text {-spanner of } G \backslash F .
$$

Equivalently: for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ and $\mathbf{F} \subseteq \mathbf{E}$ with $|\mathbf{F}| \leq \mathbf{f}$,

$$
d_{H \backslash F}(u, v) \leq(2 k-1) \cdot d_{G \backslash F}(u, v)
$$

f-Vertex Fault Tolerant (f-VFT): F $\subseteq \mathbf{V}$.
Subtle definition: H only has to be "fault-tolerant" if \mathbf{G} is "fault-tolerant"

- Relative fault-tolerance

Fault-Tolerant Spanners

Question: How much "extra" above $\mathbf{n}^{1+1 / \mathbf{k}}$ do we need to pay for \mathbf{f}-fault tolerance?

Fault-Tolerant Spanners

Question: How much "extra" above $\mathbf{n}^{1+1 / k}$ do we need to pay for \mathbf{f}-fault tolerance?
Reasonable intuition:

- Natural approach: redundancy. Build a bunch of different spanners so that for all F, at least one spanner is unaffected
- Needs at least $\mathbf{f}+\mathbf{1}$ redundancy, pay extra factor of \mathbf{f}

Fault-Tolerant Spanners

Question: How much "extra" above $\mathbf{n}^{1+1 / k}$ do we need to pay for \mathbf{f}-fault tolerance?
Reasonable intuition:

- Natural approach: redundancy. Build a bunch of different spanners so that for all F, at least one spanner is unaffected
- Needs at least $\mathbf{f}+\mathbf{1}$ redundancy, pay extra factor of \mathbf{f}

Theorem (Bodwin, D, Parter, Vassilevska Williams '18)

Existential lower bounds on \mathbf{f}-fault tolerance:

- \mathbf{f}-VFT ($\mathbf{2 k} \mathbf{k} \mathbf{1}$)-spanner: $\boldsymbol{\Omega}\left(\mathbf{f}^{\mathbf{1 - 1 / k}} \mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ edges.
- $\mathbf{f}-E F T(2 \mathbf{k}-\mathbf{1})$-spanner:
- $\mathbf{k}=\mathbf{2}: \Omega\left(\mathbf{f}^{1-1 / k} \mathbf{n}^{1+1 / k}\right)=\Omega\left(\mathbf{f}^{1 / 2} \mathbf{n}^{3 / 2}\right)$ edges.
- $k \geq 3: \Omega\left(f^{\frac{1}{2}(1-1 / k)} n^{1+1 / k}+f n\right)$ edges.

Vertex Fault-Tolerant Spanner Bounds

Spanner Size

$\widetilde{\mathrm{O}}\left(\mathrm{k}^{\mathrm{O}(\mathrm{f})} \cdot \mathrm{n}^{1+1 / \mathrm{k}}\right)$	$\widetilde{\mathrm{O}}\left(\mathrm{k}^{\mathrm{O}(\mathrm{f})} \cdot \mathrm{n}^{3+1 / \mathrm{k}}\right)$		[CLPR '10]
$\widetilde{\mathrm{O}}\left(\mathrm{f}^{2-1 / \mathrm{k}} \cdot \mathrm{n}^{1+1 / \mathrm{k}}\right)$	$\widetilde{\mathrm{O}}\left(\mathrm{f}^{2-2 / \mathrm{k}} \cdot \mathrm{mn}^{1+1 / \mathrm{k}}\right)$		[DK '11]
$\mathbf{O}\left(\exp (\mathrm{k}) \mathbf{f}^{1-1 / \mathrm{k}} \cdot \mathbf{n}^{1+1 / \mathrm{k}}\right)$	$\mathrm{O}\left(\exp (\mathrm{k}) \cdot \mathrm{mn}{ }^{\mathrm{O}(\mathrm{f})}\right)$	\checkmark	[BDPV '18]
$\mathrm{O}\left(\mathrm{f}^{1-1 / \mathrm{k}} \cdot \mathrm{n}^{1+1 / \mathrm{k}}\right.$)	$\mathrm{O}\left(\mathrm{mn}^{\text {O(f) }}\right.$)	\checkmark	[BP '19]
$\mathbf{O}\left(\mathbf{k f ~}^{1-1 / \mathrm{k}} \cdot \mathbf{n}^{1+1 / \mathrm{k}}\right.$)	$\widetilde{\mathrm{O}}\left(\mathrm{f}^{2-1 / \mathrm{k}} \cdot \mathrm{mn}^{1+1 / \mathrm{k}}\right)$	$\checkmark *$	[DR '20]
$\mathrm{O}\left(\mathrm{f}^{1-1 / \mathrm{k}} \cdot \mathrm{n}^{1+1 / \mathrm{k}}\right)$	$\widetilde{\mathrm{O}}\left(\mathbf{f}^{1-1 / \mathrm{k}} \mathbf{n}^{\mathbf{2}+1 / \mathrm{k}}+\mathrm{mf}^{\mathbf{2}}\right)$	$\checkmark *$	[BDR '21]

Vertex Fault-Tolerant Spanner Bounds

Spanner Size

$$
\begin{array}{ll}
\text { Spanner Size } & \text { Runtime } \\
\hline \widetilde{O}\left(k^{O(f)} \cdot n^{1+1 / k}\right) & \widetilde{O}\left(k^{O(f)} \cdot n^{3+1 / k}\right) \\
\widetilde{O}\left(f^{2-1 / k} \cdot n^{1+1 / k}\right) & \widetilde{O}\left(f^{2-2 / k} \cdot m n^{1+1 / k}\right) \\
O\left(\exp (k) f^{1-1 / k} \cdot n^{1+1 / k}\right) & O\left(\exp (k) \cdot m n^{O(f)}\right) \\
O\left(f^{1-1 / k} \cdot n^{1+1 / k}\right) & O\left(m n^{O(f)}\right) \\
O\left(k f^{1-1 / k} \cdot n^{1+1 / k}\right) & \widetilde{O}\left(f^{2-1 / k} \cdot m^{1+1 / k}\right) \\
O\left(f^{1-1 / k} \cdot n^{1+1 / k}\right) & \widetilde{O}\left(f^{1-1 / k} n^{2+1 / k}+m f^{2}\right) \\
& \text { So VFT essentially resolved! }
\end{array}
$$

Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

- Lower bound: $\boldsymbol{\Omega}\left(\mathbf{f}^{\frac{1}{2}(1-1 / k)} \mathbf{n}^{1+1 / k}+\mathbf{f n}\right)$ [BDPV '18]
- Upper bound: $\mathbf{O}\left(\mathbf{f}^{1-1 / k} \cdot \mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ [BDR '21]

Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

- Lower bound: $\boldsymbol{\Omega}\left(\mathbf{f}^{\frac{1}{2}(1-1 / k)} \mathbf{n}^{1+1 / k}+\mathbf{f n}\right)$ [BDPV '18]
- Upper bound: $\mathbf{O}\left(\mathbf{f}^{1-1 / k} \cdot \mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ [BDR '21]

Theorem

Every \mathbf{n}-node graph has an \mathbf{f}-EFT ($\mathbf{2 k} \mathbf{- 1}$)-spanner \mathbf{H} with

$$
|\mathbf{E}(\mathbf{H})|= \begin{cases}\mathbf{O}\left(\mathbf{k}^{2} \mathbf{f}^{1 / 2-1 /(2 k)} \mathbf{n}^{1+1 / k}+\mathbf{k f n}\right) & \mathbf{k} \text { is odd } \\ \mathbf{O}\left(\mathbf{k}^{2} \mathbf{f}^{1 / 2} \mathbf{n}^{1+1 / k}+\mathbf{k f n}\right) & \mathbf{k} \text { is even. }\end{cases}
$$

Edge Fault-Tolerant Spanner Bounds

Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {u,v} \in E in nondecreasing weight order
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with }|\mathbf{H}|\leq\mathbf{f}\mathrm{ such that (d)
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```


Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {u,v} \in E in nondecreasing weight order
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with }|\mathbf{H}|\leq\mathbf{f}\mathrm{ such that (d)
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```

$$
k=2, f=1
$$

v4)

Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with }|\mathbf{H}|\leq\mathbf{f}\mathrm{ such that (d)
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```

$$
k=2, f=1
$$

v4)

Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with }|\mathbf{H}|\leq\mathbf{f}\mathrm{ such that (d)
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```


Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with }|\mathbf{H}|\leq\mathbf{f}\mathrm{ such that (d)
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```


Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with |H| \leqf such that d}\mp@subsup{\mathbf{d}}{\mathbf{H},\mathbf{F}}{(}\mathbf{(u,v})
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```


Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}}\mathrm{ (for VFT) or F ¢ E
        (for EFT) with |H| \leqf such that d}\mp@subsup{\mathbf{d}}{\mathbf{H}, F}{}(\mathbf{u},\mathbf{v})
        (2k-1)\cdotw(u,v) then
        add {\mathbf{u},\mathbf{v}}\mathrm{ to H}
        end if
end for
return H
```


Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}} (for VFT) or F}\subseteq\mathbf{E
    (for EFT) with |H| \leqf such that d}\mp@subsup{\mathbf{d}}{\mathbf{H}, ( }{(u,v) >
    (2k-1)\cdotw(u,v) then
        add {u,v} to H
    end if
end for
return H
```

Intuition: \mathbf{H} should be "almost" high-girth

- How do we define "almost"?

Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska

Williams '18]

```
H}\leftarrow(V,\varnothing
for all {\mathbf{u},\mathbf{v}}\in\mathbf{E}\mathrm{ in nondecreasing weight order}
do
    if there exists \mathbf{F}\subseteq\mathbf{V}\{\mathbf{u},\mathbf{v}}(\mathrm{ for VFT) or F}\subseteq\mathbf{E}
    (for EFT) with |H| \leqf such that d}\mp@subsup{\mathbf{d}}{\mathbf{H}, ( }{(u,v) >
    (2k-1)\cdotw(u,v) then
        add {u,v} to H
    end if
end for
return H
```

Intuition: \mathbf{H} should be "almost" high-girth

- How do we define "almost"?

Structural: There is a large high-girth subgraph in \mathbf{H}

Moore-like: Suitable adaptations of the arguments for high-girth graphs also apply

Main Difficulty for Edge Fault-Tolerance

VFT: structural approach (BP '19, BDR '21)

- Greedy spanner "almost" high-girth because it has large high-girth subgraph
- Blocking sets (BP'19), or direct from algorithm (BDR '21)

Problem: Can't use this idea to get improved bounds for edge fault-tolerance!

- Bodwin-Patel showed can't use blocking sets to get below $\mathbf{f}^{1-1 / k} \mathbf{n}^{1+1 / k}$
- (this paper, informal): if there was a structural argument, then it would imply the Erdős girth conjecture for $\mathbf{k}=\mathbf{7}$ (currently unknown)

Main Difficulty for Edge Fault-Tolerance

VFT: structural approach (BP '19, BDR '21)

- Greedy spanner "almost" high-girth because it has large high-girth subgraph
- Blocking sets (BP'19), or direct from algorithm (BDR '21)

Problem: Can't use this idea to get improved bounds for edge fault-tolerance!

- Bodwin-Patel showed can't use blocking sets to get below $\mathbf{f}^{1-1 / k} \mathbf{n}^{1+1 / k}$
- (this paper, informal): if there was a structural argument, then it would imply the Erdős girth conjecture for $\mathbf{k}=\mathbf{7}$ (currently unknown)

Approach:

- Strong blocking sets
- More sophisticated version of Moore bounds on graphs with small strong blocking sets

Strong Blocking Sets

Definition (strong t-blocking set)

A strong t-blocking set of a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is a set $\mathbf{B} \subseteq \mathbf{E} \times \mathbf{E}$ where for every cycle \mathbf{C} in \mathbf{G} with $|\mathbf{C}| \leq \mathbf{t}$, there exists $\left(\mathbf{e}, \mathbf{e}^{\prime}\right) \in \mathbf{B}$ such that:

- $\mathbf{e}, \mathbf{e}^{\prime} \in \mathbf{C}$ and $\mathbf{e} \neq \mathbf{e}^{\prime}$, and
- Either \mathbf{e} or \mathbf{e}^{\prime} is the highest-weight edge in \mathbf{C}

If \mathbf{G} unweighted, "highest-weight" determined by ordering used by greedy algorithm.

Strong Blocking Sets

Definition (strong t-blocking set)

A strong t-blocking set of a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is a set $\mathbf{B} \subseteq \mathbf{E} \times \mathbf{E}$ where for every cycle \mathbf{C} in \mathbf{G} with $|\mathbf{C}| \leq \mathbf{t}$, there exists $\left(\mathbf{e}, \mathbf{e}^{\prime}\right) \in \mathbf{B}$ such that:

- $\mathbf{e}, \mathbf{e}^{\prime} \in \mathbf{C}$ and $\mathbf{e} \neq \mathbf{e}^{\prime}$, and
- Either \mathbf{e} or \mathbf{e}^{\prime} is the highest-weight edge in \mathbf{C}

If \mathbf{G} unweighted, "highest-weight" determined by ordering used by greedy algorithm.

Lemma

The subgraph H output by the greedy algorithm has a strong $\mathbf{2 k}$-blocking set of size at most $\mathbf{f}|\mathbf{E}(\mathbf{H})|$.

Proof sketch: Same as non-strong lemma from Bodwin-Patel '19

Moore Bounds

Can't use structural approach - use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph \mathbf{G} with girth at least $\mathbf{2 k}+\mathbf{1}$ has at most $\mathbf{O}\left(\mathbf{n}^{\mathbf{1}+1 / \mathbf{k}}\right)$ edges

Moore Bounds

Can't use structural approach - use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph \mathbf{G} with girth at least $\mathbf{2 k}+\mathbf{1}$ has at most $\mathbf{O}\left(\mathbf{n}^{\mathbf{1 + 1 / k}}\right)$ edges
Counting Lemma: Let \mathbf{d} be average degree of \mathbf{G}. Then \mathbf{G} has at least $\Omega\left(\mathbf{n} \cdot \mathbf{d}^{\mathbf{k}}\right)$ simple \mathbf{k}-paths

Moore Bounds

Can't use structural approach - use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph \mathbf{G} with girth at least $\mathbf{2 k}+\mathbf{1}$ has at most $\mathbf{O}\left(\mathbf{n}^{\mathbf{1 + 1} / \mathbf{k}}\right)$ edges

Counting Lemma: Let \mathbf{d} be average degree of \mathbf{G}. Then \mathbf{G} has at least $\boldsymbol{\Omega}\left(\mathbf{n} \cdot \mathbf{d}^{\mathbf{k}}\right)$ simple \mathbf{k}-paths

Dispersion Lemma: No two simple \mathbf{k}-paths can share the same endpoints $\Longrightarrow \leq \mathbf{n}^{\mathbf{2}}$ simple \mathbf{k}-paths

Moore Bounds

Can't use structural approach - use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph \mathbf{G} with girth at least $\mathbf{2 k}+\mathbf{1}$ has at most $\mathbf{O}\left(\mathbf{n}^{\mathbf{1}+1 / \mathbf{k}}\right)$ edges

Counting Lemma: Let \mathbf{d} be average degree of \mathbf{G}. Then \mathbf{G} has at least $\boldsymbol{\Omega}\left(\mathbf{n} \cdot \mathbf{d}^{\mathbf{k}}\right)$ simple \mathbf{k}-paths

Dispersion Lemma: No two simple \mathbf{k}-paths can share the same endpoints $\Longrightarrow \leq \mathbf{n}^{2}$ simple \mathbf{k}-paths

$$
n \cdot d^{k} \leq n^{2} \Longrightarrow d \leq n^{1 / k} \Longrightarrow|E|=n d / 2=\mathbf{O}\left(n^{1+1 / k}\right)
$$

Generalized Dispersion Lemma

Greedy spanner \mathbf{H} has small strong blocking set.

Generalized Dispersion Lemma

Greedy spanner \mathbf{H} has small strong blocking set.
\Longrightarrow for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set $\mathbf{S}_{\mathbf{u v}}$ of $\mathbf{O}(\mathbf{k f})$ edges such that all simple $\mathbf{u}-\mathbf{v} \mathbf{k}$-paths use some edge of $\mathbf{S}_{\mathbf{u v}}$ as heaviest edge.

Generalized Dispersion Lemma

Greedy spanner \mathbf{H} has small strong blocking set.
\Longrightarrow for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set $\mathbf{S}_{\mathbf{u v}}$ of $\mathbf{O}(\mathbf{k f})$ edges such that all simple $\mathbf{u}-\mathbf{v} \mathbf{k}$-paths use some edge of $\mathbf{S}_{\mathbf{u v}}$ as heaviest edge.

Idea: For each $(\mathbf{x}, \mathbf{y}) \in \mathbf{S}_{\mathbf{u v}}$, inductively bound $\# \mathbf{u}-\mathbf{x}$ paths and $\# \mathbf{y}-\mathbf{v}$ paths

Generalized Dispersion Lemma

Greedy spanner \mathbf{H} has small strong blocking set.
\Longrightarrow for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set $\mathbf{S}_{\mathbf{u v}}$ of $\mathbf{O}(\mathbf{k f})$ edges such that all simple $\mathbf{u}-\mathbf{v} \mathbf{k}$-paths use some edge of $\mathbf{S}_{\mathbf{u v}}$ as heaviest edge.

Idea: For each $(\mathbf{x}, \mathbf{y}) \in \mathbf{S}_{\mathbf{u v}}$, inductively bound $\# \mathbf{u}-\mathbf{x}$ paths and $\# \mathbf{y}-\mathbf{v}$ paths
To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction

- Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops

Generalized Dispersion Lemma

Greedy spanner \mathbf{H} has small strong blocking set.
\Longrightarrow for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set $\mathbf{S}_{\mathbf{u v}}$ of $\mathbf{O}(\mathbf{k f})$ edges such that all simple $\mathbf{u}-\mathbf{v} \mathbf{k}$-paths use some edge of $\mathbf{S}_{\mathbf{u v}}$ as heaviest edge.

Idea: For each $(\mathbf{x}, \mathbf{y}) \in \mathbf{S}_{\mathbf{u v}}$, inductively bound $\# \mathbf{u}-\mathbf{x}$ paths and $\# \mathbf{y}-\mathbf{v}$ paths
To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction

- Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops

Generalized Dispersion Lemma

Greedy spanner \mathbf{H} has small strong blocking set.
\Longrightarrow for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$, there is some set $\mathbf{S}_{\mathbf{u v}}$ of $\mathbf{O}(\mathbf{k f})$ edges such that all simple $\mathbf{u}-\mathbf{v} \mathbf{k}$-paths use some edge of $\mathbf{S}_{\mathbf{u v}}$ as heaviest edge.

Idea: For each $(\mathbf{x}, \mathbf{y}) \in \mathbf{S}_{\mathbf{u v}}$, inductively bound $\# \mathbf{u}-\mathbf{x}$ paths and $\# \mathbf{y}-\mathbf{v}$ paths
To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction

- Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops

Lemma (Generalized Dispersion)

For any nodes \mathbf{u}, \mathbf{v}, the number of simple alternating $\mathbf{u}-\mathbf{v} \mathbf{k}$-paths is
$O\left(k^{2} f\right)^{(k-1) / 2}$
\mathbf{k} is odd
$O\left(k^{2} f\right)^{k / 2}$
\mathbf{k} is even

Generalized Counting Lemma

Need to show there are many simple alternating \mathbf{k}-paths.

Generalized Counting Lemma

Need to show there are many simple alternating \mathbf{k}-paths.
Lemma: Any graph with at least $\mathbf{k n}$ edges has at least one simple alternating \mathbf{k}-path Proof: Induction on \mathbf{k}

Generalized Counting Lemma

Need to show there are many simple alternating \mathbf{k}-paths.
Lemma: Any graph with at least $\mathbf{k n}$ edges has at least one simple alternating \mathbf{k}-path Proof: Induction on \mathbf{k}

Lemma: Any graph with at least $\mathbf{2 k n}$ edges has at least $\mathbf{k n}$ simple alternating \mathbf{k}-paths Proof: Find a distinct simple alternating k-path for each "extra" edge

Generalized Counting Lemma

Need to show there are many simple alternating \mathbf{k}-paths.
Lemma: Any graph with at least $\mathbf{k n}$ edges has at least one simple alternating \mathbf{k}-path Proof: Induction on \mathbf{k}

Lemma: Any graph with at least $\mathbf{2 k n}$ edges has at least $\mathbf{k n}$ simple alternating \mathbf{k}-paths Proof: Find a distinct simple alternating k-path for each "extra" edge

Lemma (Generalized Counting)

\mathbf{H} has $\Omega\left(\mathbf{n} \cdot(\mathbf{d} / \mathbf{k})^{\mathbf{k}}\right)$ simple alternating \mathbf{k}-paths.

Generalized Counting Lemma

Need to show there are many simple alternating \mathbf{k}-paths.
Lemma: Any graph with at least $\mathbf{k n}$ edges has at least one simple alternating \mathbf{k}-path Proof: Induction on \mathbf{k}

Lemma: Any graph with at least $\mathbf{2 k n}$ edges has at least $\mathbf{k n}$ simple alternating \mathbf{k}-paths Proof: Find a distinct simple alternating \mathbf{k}-path for each "extra" edge

Lemma (Generalized Counting)

\mathbf{H} has $\Omega\left(\mathbf{n} \cdot(\mathbf{d} / \mathbf{k})^{\mathbf{k}}\right)$ simple alternating \mathbf{k}-paths.

Proof Sketch.

Sample nodes to get subgraph, use previous lemma to argue many simple alternating k-paths, scale back up.

Putting It Together

Count simple alternating \mathbf{k}-paths.

Odd \mathbf{k} :

$$
\begin{aligned}
& \Omega\left(n \cdot(d / k)^{k}\right)=O\left(n^{2}\left(k^{2} f\right)^{(k-1) / 2}\right) \\
\Longrightarrow & d / k=O\left(n^{1 / k}\left(k^{2} f\right)^{\frac{1}{2}(1-1 / k)}\right) \\
\Longrightarrow & |E(H)|=\frac{n d}{2}=O\left(k^{2} f^{\frac{1}{2}(1-1 / k)} n^{1+1 / k}\right)
\end{aligned}
$$

Even \mathbf{k} :

$$
\begin{aligned}
& \Omega\left(n \cdot(d / k)^{k}\right)=O\left(n^{2}\left(k^{2} f\right)^{k / 2}\right) \\
\Longrightarrow & d / k=O\left(n^{1 / k}\left(k^{2} f\right)^{1 / 2}\right) \\
\Longrightarrow & |E(H)|=\frac{n d}{2}=O\left(k^{2} f^{1 / 2} n^{1+1 / k}\right)
\end{aligned}
$$

Final Notes

Optimal for odd constant \mathbf{k}, off by $\mathbf{f}^{\mathbf{1 / (2 k)}}$ for even constant \mathbf{k}.

Main open question: close gap for even \mathbf{k} !

- Essentially always see difference between even/odd stretch due to bipartiteness (hence why stretch is always $\mathbf{2 k}-\mathbf{1}$)
- Rare (but not unheard of) to see difference between even/odd \mathbf{k}.
-What is the correct bound???
Also off by $\mathbf{k}^{\mathbf{2}}$, but WLOG $\mathbf{k} \leq \mathbf{O}(\log \mathbf{n})$. Still would like to get rid of \mathbf{k} factors!
Algorithm as stated takes exponential time!
- Can turn into polytime using same idea as [D, Robelle PODC '20]. Extra loss of $\mathbf{O}\left(\mathbf{k}^{\mathbf{1 / 2}}\right)$

Thanks!

