
Partially Optimal Edge Fault-Tolerant Spanners

Greg Bodwin1 Michael Dinitz2 Caleb Robelle3

1University of Michigan

2Johns Hopkins University

3MIT

SODA ’22

Bodwin, Dinitz, Robelle Partially Optimal Edge Fault-Tolerant Spanners SODA ’22 1 / 19



Graph Spanners: Basics

Definition

Given graph G = (V,E), subgraph H of G is a t-spanner of G if

dH(u,v) ≤ t ⋅ dG(u,v) for all u,v ∈ V

▸ t is the stretch of the spanner.
▸ In this paper: G undirected, connected
▸ Sufficient for stretch condition to hold for all edges {u,v} ∈ E

Original graph G A 3-spanner H
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Main Theorem

Theorem (Althöfer et al ’93)

▸ For any positive integer k, all graphs have a (2k − 1)-spanner with O(n1+1/k) edges, and
▸ There exist graphs in which all (2k − 1)-spanners have Ω(n1+1/k) edges (assuming Erdős

Girth Conjecture).

Upper bound statement existential, but actually algorithmic: greedy algorithm

H← (V,∅)
for all {u,v} ∈ E in nondecreasing weight order do

if dH(u,v) > (2k − 1) ⋅w(u,v) then
add {u,v} to H

end if
end for
return H
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Spanners For Distributed Systems

Go back to # edges.
In Theory, we’re done. We have a simple, optimal, textbook algorithm.
In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a 3-spanner of this network of computers, which need to talk to each other

. . . but then one breaks.

you really regret
using this spanner!
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Fault-Tolerant Spanners

Definition (Chechik, Langberg, Peleg, Roditty ’09)

A subgraph H ⊆ G is an f-Edge Fault Tolerant (EFT) (2k − 1)-spanner of G if, for every
possible set F of ∣F∣ = f edges, we have

H ∖ F is a (2k − 1)-spanner of G ∖ F.

Equivalently: for all u,v ∈ V and F ⊆ E with ∣F∣ ≤ f,

dH∖F(u,v) ≤ (2k − 1) ⋅ dG∖F(u,v)

f-Vertex Fault Tolerant (f-VFT): F ⊆ V.

Subtle definition: H only has to be “fault-tolerant” if G is “fault-tolerant”

▸ Relative fault-tolerance
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Fault-Tolerant Spanners

Question: How much “extra” above n1+1/k do we need to pay for f-fault tolerance?

Reasonable intuition:

▸ Natural approach: redundancy. Build a bunch of different spanners so that for all F, at
least one spanner is unaffected

▸ Needs at least f + 1 redundancy, pay extra factor of f

Theorem (Bodwin, D, Parter, Vassilevska Williams ’18)

Existential lower bounds on f-fault tolerance:

▸ f-VFT (2k − 1)-spanner: Ω (f1−1/kn1+1/k) edges.
▸ f-EFT (2k − 1)-spanner:

▸ k = 2: Ω (f1−1/kn1+1/k) = Ω (f1/2n3/2) edges.
▸ k ≥ 3: Ω (f

1
2
(1−1/k)n1+1/k + fn) edges.
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Vertex Fault-Tolerant Spanner Bounds

Spanner Size Runtime Greedy? Citation

Õ (kO(f) ⋅ n1+1/k) Õ (kO(f) ⋅ n3+1/k) [CLPR ’10]

Õ (f2−1/k ⋅ n1+1/k) Õ (f2−2/k ⋅mn1+1/k) [DK ’11]

O (exp(k)f1−1/k ⋅ n1+1/k) O (exp(k) ⋅mnO(f)) ✓ [BDPV ’18]

O (f1−1/k ⋅ n1+1/k) O (mnO(f)) ✓ [BP ’19]

O (kf1−1/k ⋅ n1+1/k) Õ (f2−1/k ⋅mn1+1/k) ✓∗ [DR ’20]

O (f1−1/k ⋅ n1+1/k) Õ (f1−1/kn2+1/k +mf2) ✓∗ [BDR ’21]

So VFT essentially resolved!
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Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

▸ Lower bound: Ω (f
1
2
(1−1/k)n1+1/k + fn) [BDPV ’18]

▸ Upper bound: O (f1−1/k ⋅ n1+1/k) [BDR ’21]

Theorem

Every n-node graph has an f-EFT (2k − 1)-spanner H with

∣E(H)∣ =
⎧⎪⎪
⎨
⎪⎪⎩

O (k2f1/2−1/(2k)n1+1/k + kfn) k is odd

O (k2f1/2n1+1/k + kfn) k is even.
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Edge Fault-Tolerant Spanner Bounds

k

dependence on f
(logf scale)

f1/4

f1/2

f3/4

f

2 3 5 7 94 6 8 10
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Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska
Williams ’18]

H← (V,∅)
for all {u,v} ∈ E in nondecreasing weight order
do

if there exists F ⊆ V∖{u,v} (for VFT) or F ⊆ E
(for EFT) with ∣H∣ ≤ f such that dH∖F(u,v) >
(2k − 1) ⋅w(u,v) then

add {u,v} to H
end if

end for
return H

k = 2, f = 1

v1

v2 v3

v4

v1

v2 v3

v4
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▸ How do we define “almost”?

Structural: There is a large
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Moore-like: Suitable adaptations of
the arguments for high-girth graphs
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Main Difficulty for Edge Fault-Tolerance

VFT: structural approach (BP ’19, BDR ’21)
▸ Greedy spanner “almost” high-girth because it has large high-girth subgraph

▸ Blocking sets (BP’19), or direct from algorithm (BDR ’21)

Problem: Can’t use this idea to get improved bounds for edge fault-tolerance!

▸ Bodwin-Patel showed can’t use blocking sets to get below f1−1/kn1+1/k

▸ (this paper, informal): if there was a structural argument, then it would imply the Erdős
girth conjecture for k = 7 (currently unknown)

Approach:

▸ Strong blocking sets

▸ More sophisticated version of Moore bounds on graphs with small strong blocking sets
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Strong Blocking Sets

Definition (strong t-blocking set)

A strong t-blocking set of a graph G = (V,E) is a set B ⊆ E × E where for every cycle C in G
with ∣C∣ ≤ t, there exists (e,e′) ∈ B such that:

▸ e,e′ ∈ C and e ≠ e′, and

▸ Either e or e′ is the highest-weight edge in C

If G unweighted, “highest-weight” determined by ordering used by greedy algorithm.

Lemma

The subgraph H output by the greedy algorithm has a strong 2k-blocking set of size at most
f ∣E(H)∣.

Proof sketch: Same as non-strong lemma from Bodwin-Patel ’19
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Moore Bounds

Can’t use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph G with girth at least 2k + 1 has at most O(n1+1/k) edges

Counting Lemma: Let d be average degree of G. Then
G has at least Ω(n ⋅ dk) simple k-paths

Dispersion Lemma: No two simple k-paths can share
the same endpoints Ô⇒ ≤ n2 simple k-paths

3/22/21 Faculty Research Overview 3
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n ⋅ dk ≤ n2 Ô⇒ d ≤ n1/k Ô⇒ ∣E∣ = nd/2 = O(n1+1/k)
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Generalized Dispersion Lemma
Greedy spanner H has small strong blocking set.

Ô⇒ for all u,v ∈ V, there is some set Suv of O(kf) edges such that all simple
u − v k-paths use some edge of Suv as heaviest edge.

Idea: For each (x,y) ∈ Suv, inductively bound # u − x paths and # y − v paths

To make induction work, helpful if heaviest edge not first or last, and for this to be true
throughout induction

▸ Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops

3/22/21 Faculty Research Overview 3

d

d

d

d

u v

Lemma (Generalized Dispersion)

For any nodes u,v, the number of simple alternating
u − v k-paths is

O (k2f)
(k−1)/2

k is odd

O (k2f)
k/2

k is even
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Generalized Counting Lemma
Need to show there are many simple alternating k-paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path

Proof: Induction on k

Lemma: Any graph with at least 2kn edges has at least kn simple alternating k-paths

Proof: Find a distinct simple alternating k-path for each “extra” edge

Lemma (Generalized Counting)

H has Ω(n ⋅ (d/k)k) simple alternating k-paths.

Proof Sketch.

Sample nodes to get subgraph, use previous lemma to argue many simple alternating k-paths,
scale back up.
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Putting It Together

Count simple alternating k-paths.

Odd k:

Ω(n ⋅ (d/k)k) = O(n2 (k2f)
(k−1)/2

)

Ô⇒ d/k = O(n1/k (k2f)
1
2
(1−1/k)

)

Ô⇒ ∣E(H)∣ =
nd

2
= O (k2f

1
2
(1−1/k)n1+1/k)

Even k:

Ω(n ⋅ (d/k)k) = O(n2 (k2f)
k/2
)

Ô⇒ d/k = O(n1/k (k2f)
1/2
)

Ô⇒ ∣E(H)∣ =
nd

2
= O (k2f1/2n1+1/k)
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Final Notes

Optimal for odd constant k, off by f1/(2k) for even constant k.

Main open question: close gap for even k!

▸ Essentially always see difference between even/odd stretch due to bipartiteness (hence
why stretch is always 2k − 1)

▸ Rare (but not unheard of) to see difference between even/odd k.

▸ What is the correct bound???

Also off by k2, but WLOG k ≤ O(log n). Still would like to get rid of k factors!

Algorithm as stated takes exponential time!

▸ Can turn into polytime using same idea as [D, Robelle PODC ’20]. Extra loss of O(k1/2)
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Thanks!
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