
Distributed Minimum Degree Spanning Trees

Michael Dinitz (Johns Hopkins University)
Magnús Halldórsson (Reykjavik University)

Taisuke Izumi (Nagoya Institute of Technology)
Calvin Newport (Georgetown University)

PODC 2019
August 2, 2019

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 1 / 17



Minimum Degree Spanning Tree

Input: Graph G = (V,E)
Feasible Solution: Spanning tree T = (V,E′)
Objective: Minimize max degree ∆(T) of T

Classical NP-hard problem (reduction from Hamiltonian Path)

Natural in distributed/networked settings:

Building a low-degree backbone network
Broadcast capacity in mobile telephone model [D, Halldórsson, Newport, Weaver DISC ’19]
In many networking scenarios, degree ≈ load. Min max load.
Lots of attention to MST problem – why not MDST?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 2 / 17



Minimum Degree Spanning Tree

Input: Graph G = (V,E)
Feasible Solution: Spanning tree T = (V,E′)
Objective: Minimize max degree ∆(T) of T

Classical NP-hard problem (reduction from Hamiltonian Path)

Natural in distributed/networked settings:

Building a low-degree backbone network
Broadcast capacity in mobile telephone model [D, Halldórsson, Newport, Weaver DISC ’19]
In many networking scenarios, degree ≈ load. Min max load.
Lots of attention to MST problem – why not MDST?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 2 / 17



Algorithms for MDST

Centralized (d = OPT):

[Fürer, Raghavachari SODA ’92]: Polytime (d + 1)-solution via complex recursive local
search (semi-local improvements)
Simpler version (non-recursive) gives (2d + log n)-solution (local improvements)

Distributed:
[Blin, Butelle IPDPS ’03]: Each local and semi-local improvement of FR can be computed in

a distributed way

But separate improvements not computed in parallel, so still large running time (Ω(n))
Self-stabilizing algorithms [Blin, Fraigniaud ICDCS ’15], [Blin, Potop-Butucaru, Rovedakis
’11]: running times Ω(n2)
More general problem: find MST which minimizes max degree.

[Lavault, Valencia-Popon ’08]: Still Ω(n2).

Question: Can we provide good approximations for MDST in time O(D +
√

n) (like for
MST)?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 3 / 17



Algorithms for MDST

Centralized (d = OPT):

[Fürer, Raghavachari SODA ’92]: Polytime (d + 1)-solution via complex recursive local
search (semi-local improvements)
Simpler version (non-recursive) gives (2d + log n)-solution (local improvements)

Distributed:
[Blin, Butelle IPDPS ’03]: Each local and semi-local improvement of FR can be computed in

a distributed way

But separate improvements not computed in parallel, so still large running time (Ω(n))
Self-stabilizing algorithms [Blin, Fraigniaud ICDCS ’15], [Blin, Potop-Butucaru, Rovedakis
’11]: running times Ω(n2)
More general problem: find MST which minimizes max degree.

[Lavault, Valencia-Popon ’08]: Still Ω(n2).

Question: Can we provide good approximations for MDST in time O(D +
√

n) (like for
MST)?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 3 / 17



Algorithms for MDST

Centralized (d = OPT):

[Fürer, Raghavachari SODA ’92]: Polytime (d + 1)-solution via complex recursive local
search (semi-local improvements)
Simpler version (non-recursive) gives (2d + log n)-solution (local improvements)

Distributed:
[Blin, Butelle IPDPS ’03]: Each local and semi-local improvement of FR can be computed in

a distributed way

But separate improvements not computed in parallel, so still large running time (Ω(n))
Self-stabilizing algorithms [Blin, Fraigniaud ICDCS ’15], [Blin, Potop-Butucaru, Rovedakis
’11]: running times Ω(n2)
More general problem: find MST which minimizes max degree.

[Lavault, Valencia-Popon ’08]: Still Ω(n2).

Question: Can we provide good approximations for MDST in time O(D +
√

n) (like for
MST)?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 3 / 17



Our Results: Upper Bounds

Models:

CONGEST: synchronous rounds, each message size at most O(log n) bits (O(1) words)

broadcast-CONGEST: in each round, each node sends same message to all neighbors

Theorem

There is a randomized algorithm in the broadcast-CONGEST model which builds a spanning
tree of maximum degree at most 4(1 + ε)d +O(log n) and has expected running time at most
O((D +

√
n) log4 n)

Theorem

There is a deterministic algorithm in the CONGEST model which builds a spanning tree of
maximum degree at most 4(1 + ε)d +O(log n) and has expected running time at most
O((D +

√
n) log5 n)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 4 / 17



Our Results: Upper Bounds

Models:

CONGEST: synchronous rounds, each message size at most O(log n) bits (O(1) words)

broadcast-CONGEST: in each round, each node sends same message to all neighbors

Theorem

There is a randomized algorithm in the broadcast-CONGEST model which builds a spanning
tree of maximum degree at most 4(1 + ε)d +O(log n) and has expected running time at most
O((D +

√
n) log4 n)

Theorem

There is a deterministic algorithm in the CONGEST model which builds a spanning tree of
maximum degree at most 4(1 + ε)d +O(log n) and has expected running time at most
O((D +

√
n) log5 n)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 4 / 17



Our Results: Lower Bounds

Want to show that polynomial dependence on n is necessary

Precise lower bound rather complex. Some simple corollaries:

Theorem

For any ε < 1/6, there exists a family of instances of diameter D = Θ(n1/2−3ε + log n) where
any MDST algorithm with a polylogarithmic multiplicative approximation factor needs
Ω̃(n1/2−ε +D) rounds.

Theorem

There exists a family of instances of diameter D = O(log n) where any deterministic MDST
algorithm with a polylogarithmic multiplicative approximation factor needs Ω̃(n1/2) rounds.

Today: only upper bounds

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 5 / 17



Our Results: Lower Bounds

Want to show that polynomial dependence on n is necessary

Precise lower bound rather complex. Some simple corollaries:

Theorem

For any ε < 1/6, there exists a family of instances of diameter D = Θ(n1/2−3ε + log n) where
any MDST algorithm with a polylogarithmic multiplicative approximation factor needs
Ω̃(n1/2−ε +D) rounds.

Theorem

There exists a family of instances of diameter D = O(log n) where any deterministic MDST
algorithm with a polylogarithmic multiplicative approximation factor needs Ω̃(n1/2) rounds.

Today: only upper bounds

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 5 / 17



Local improvements

Idea: Adding an edge creates a cycle. Can remove any edge in that cycle.

u

x y

u

x y

Degrees of x,y increase by 1, but degree of u decreases by 1.

FR: Make local improvements to decrease degrees of high-degree nodes, until no such
local improvements exist.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 6 / 17



Parallel Improvements

To get o(n) running time, need to do many improvements in parallel. Requires coordination –
not all local improvements can be done simultaneously!

u

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 7 / 17



Parallel Improvements

To get o(n) running time, need to do many improvements in parallel. Requires coordination –
not all local improvements can be done simultaneously!

u

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 7 / 17



Everything else

Def: Let Xk be nodes of degree at least k in current tree T.
Two parameters

γ: definition of “high-degree” (nodes in Xγ)
q: definition of “low-degree” (degree at most γ0 ∶= γ − 2q)

Local improvements:
Hurt low-degree nodes by at most q
Improve high-degree nodes, but by at most q (so still worse than low-degree nodes)

Informal Theorem: If (some conditions), then we can find Ω(∣Xγq∣) local improvements
in Õ(D +

√
n) rounds that can all be done simultaneously.

Fix q, find γ which gives “large” improvement. Repeat until no such γ.

Try all q
Complicated potential function to prove Õ(1) iterations

Approximation basically from centralized analysis (some extra loss)

Main point (rest of talk): want to find lots of parallel local improvements.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 8 / 17



Everything else

Def: Let Xk be nodes of degree at least k in current tree T.
Two parameters

γ: definition of “high-degree” (nodes in Xγ)
q: definition of “low-degree” (degree at most γ0 ∶= γ − 2q)

Local improvements:
Hurt low-degree nodes by at most q
Improve high-degree nodes, but by at most q (so still worse than low-degree nodes)

Informal Theorem: If (some conditions), then we can find Ω(∣Xγq∣) local improvements
in Õ(D +

√
n) rounds that can all be done simultaneously.

Fix q, find γ which gives “large” improvement. Repeat until no such γ.

Try all q
Complicated potential function to prove Õ(1) iterations

Approximation basically from centralized analysis (some extra loss)

Main point (rest of talk): want to find lots of parallel local improvements.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 8 / 17



Everything else

Def: Let Xk be nodes of degree at least k in current tree T.
Two parameters

γ: definition of “high-degree” (nodes in Xγ)
q: definition of “low-degree” (degree at most γ0 ∶= γ − 2q)

Local improvements:
Hurt low-degree nodes by at most q
Improve high-degree nodes, but by at most q (so still worse than low-degree nodes)

Informal Theorem: If (some conditions), then we can find Ω(∣Xγq∣) local improvements
in Õ(D +

√
n) rounds that can all be done simultaneously.

Fix q, find γ which gives “large” improvement. Repeat until no such γ.

Try all q
Complicated potential function to prove Õ(1) iterations

Approximation basically from centralized analysis (some extra loss)

Main point (rest of talk): want to find lots of parallel local improvements.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 8 / 17



Everything else

Def: Let Xk be nodes of degree at least k in current tree T.
Two parameters

γ: definition of “high-degree” (nodes in Xγ)
q: definition of “low-degree” (degree at most γ0 ∶= γ − 2q)

Local improvements:
Hurt low-degree nodes by at most q
Improve high-degree nodes, but by at most q (so still worse than low-degree nodes)

Informal Theorem: If (some conditions), then we can find Ω(∣Xγq∣) local improvements
in Õ(D +

√
n) rounds that can all be done simultaneously.

Fix q, find γ which gives “large” improvement. Repeat until no such γ.

Try all q
Complicated potential function to prove Õ(1) iterations

Approximation basically from centralized analysis (some extra loss)

Main point (rest of talk): want to find lots of parallel local improvements.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 8 / 17



Leaf Branches

Branch: Component of T ∖Xγ

Leaf branch: branch C where there is only one edge in T leaving C.

If add edges between leaf and non-leaf branches, parallel improvements don’t interfere!

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 9 / 17



Leaf Branches

Branch: Component of T ∖Xγ

Leaf branch: branch C where there is only one edge in T leaving C.

If add edges between leaf and non-leaf branches, parallel improvements don’t interfere!

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 9 / 17



Leaf Branches

Branch: Component of T ∖Xγ

Leaf branch: branch C where there is only one edge in T leaving C.

If add edges between leaf and non-leaf branches, parallel improvements don’t interfere!

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 9 / 17



Leaf Branches

Branch: Component of T ∖Xγ

Leaf branch: branch C where there is only one edge in T leaving C.

If add edges between leaf and non-leaf branches, parallel improvements don’t interfere!

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 9 / 17



Leaf Branches

Branch: Component of T ∖Xγ

Leaf branch: branch C where there is only one edge in T leaving C.

If add edges between leaf and non-leaf branches, parallel improvements don’t interfere!

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 9 / 17



Improvement Graph

Edge is good if:

Both endpoints degree at most γ0

Endpoints in different branches, one of which is a leaf branch

We’ll only make improvements from adding good edges.

Create new bipartite graph: improvement graph

U Q

U : leaf branches

Q: nodes of degree ≤ γ0

Edges: good edges in G

Approach: Find a large (1,q)-matching in improvement graph (de-
gree 1 on leaf branches, degree ≤ q on low-degree nodes).

What about requirement that high-degree edges improve at most
q?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 10 / 17



Improvement Graph

Edge is good if:

Both endpoints degree at most γ0

Endpoints in different branches, one of which is a leaf branch

We’ll only make improvements from adding good edges.

Create new bipartite graph: improvement graph

U Q

U : leaf branches

Q: nodes of degree ≤ γ0

Edges: good edges in G

Approach: Find a large (1,q)-matching in improvement graph (de-
gree 1 on leaf branches, degree ≤ q on low-degree nodes).

What about requirement that high-degree edges improve at most
q?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 10 / 17



Improvement Graph

Edge is good if:

Both endpoints degree at most γ0

Endpoints in different branches, one of which is a leaf branch

We’ll only make improvements from adding good edges.

Create new bipartite graph: improvement graph

U Q

U : leaf branches

Q: nodes of degree ≤ γ0

Edges: good edges in G

Approach: Find a large (1,q)-matching in improvement graph (de-
gree 1 on leaf branches, degree ≤ q on low-degree nodes).

What about requirement that high-degree edges improve at most
q?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 10 / 17



Constrained q-Matching

High-degree node improves ≥ q only if ≥ q leaf branches adjacent to it are matched.

Constrained q-Matching: force this not to happen

Partition U into bundles which share a parent

Require each bundle to only have q matched nodes.

U Q

So want to prove:

There must exist a large Constrained q-Matching (if γ large
enough and not many “medium-degree” nodes)

Can quickly find O(1)-approximation to Max Constrained
q-Matching.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 11 / 17



Constrained q-Matching

High-degree node improves ≥ q only if ≥ q leaf branches adjacent to it are matched.

Constrained q-Matching: force this not to happen

Partition U into bundles which share a parent

Require each bundle to only have q matched nodes.

U Q

So want to prove:

There must exist a large Constrained q-Matching (if γ large
enough and not many “medium-degree” nodes)

Can quickly find O(1)-approximation to Max Constrained
q-Matching.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 11 / 17



Constrained q-Matching

High-degree node improves ≥ q only if ≥ q leaf branches adjacent to it are matched.

Constrained q-Matching: force this not to happen

Partition U into bundles which share a parent

Require each bundle to only have q matched nodes.

U Q

So want to prove:

There must exist a large Constrained q-Matching (if γ large
enough and not many “medium-degree” nodes)

Can quickly find O(1)-approximation to Max Constrained
q-Matching.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 11 / 17



Constrained q-Matching

High-degree node improves ≥ q only if ≥ q leaf branches adjacent to it are matched.

Constrained q-Matching: force this not to happen

Partition U into bundles which share a parent

Require each bundle to only have q matched nodes.

U Q

So want to prove:

There must exist a large Constrained q-Matching (if γ large
enough and not many “medium-degree” nodes)

Can quickly find O(1)-approximation to Max Constrained
q-Matching.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 11 / 17



Constrained q-Matching

High-degree node improves ≥ q only if ≥ q leaf branches adjacent to it are matched.

Constrained q-Matching: force this not to happen

Partition U into bundles which share a parent

Require each bundle to only have q matched nodes.

U Q

So want to prove:

There must exist a large Constrained q-Matching (if γ large
enough and not many “medium-degree” nodes)

Can quickly find O(1)-approximation to Max Constrained
q-Matching.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 11 / 17



Constrained q-Matching

High-degree node improves ≥ q only if ≥ q leaf branches adjacent to it are matched.

Constrained q-Matching: force this not to happen

Partition U into bundles which share a parent

Require each bundle to only have q matched nodes.

U Q

So want to prove:

There must exist a large Constrained q-Matching (if γ large
enough and not many “medium-degree” nodes)

Can quickly find O(1)-approximation to Max Constrained
q-Matching.

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 11 / 17



Large Constrained q-Matching

Theorem

There is a constrained q-matching of size at least q
γ
((γ − 2)∣Xγ ∣ − d∣Xγ0 ∣) (where d is optimal

max degree)

Proof Sketch:

Each node in Xγ causes lots of leaf branches when removed.

OPT connects these components without using many edges.

Counting and averaging.

So if ∣Xγ0 ∣ not much larger than Xγ and γ large enough, about q∣Xγ ∣

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 12 / 17



Large Constrained q-Matching

Theorem

There is a constrained q-matching of size at least q
γ
((γ − 2)∣Xγ ∣ − d∣Xγ0 ∣) (where d is optimal

max degree)

Proof Sketch:

Each node in Xγ causes lots of leaf branches when removed.

OPT connects these components without using many edges.

Counting and averaging.

So if ∣Xγ0 ∣ not much larger than Xγ and γ large enough, about q∣Xγ ∣

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 12 / 17



Large Constrained q-Matching

Theorem

There is a constrained q-matching of size at least q
γ
((γ − 2)∣Xγ ∣ − d∣Xγ0 ∣) (where d is optimal

max degree)

Proof Sketch:

Each node in Xγ causes lots of leaf branches when removed.

OPT connects these components without using many edges.

Counting and averaging.

So if ∣Xγ0 ∣ not much larger than Xγ and γ large enough, about q∣Xγ ∣

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 12 / 17



Approximating Constrained q-Matching

Turn constrained q-matching into flow:

U Q s t

q

1 1

q

Integral capacities, so integral max flow

Flow of α iff constrained q-matching of size α

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 13 / 17



Approximate Max Flow

s t

q

1 1

q

U Q

Lemma: In depth-d flow network, any maximal flow
has value at least (1/d) of max flow.

High-Level Algorithm:

Start each flow path with 1/m flow
In each round: double flow in each flow path,
unless some node on path already “full”

Gives approximate fractional maximal flow.

Randomized rounding to get approximate
constrained q-matching

Some annoying details (U are actually components,
not nodes)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 14 / 17



Approximate Max Flow

s t

q

1 1

q

U Q

Lemma: In depth-d flow network, any maximal flow
has value at least (1/d) of max flow.

High-Level Algorithm:

Start each flow path with 1/m flow
In each round: double flow in each flow path,
unless some node on path already “full”

Gives approximate fractional maximal flow.

Randomized rounding to get approximate
constrained q-matching

Some annoying details (U are actually components,
not nodes)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 14 / 17



Approximate Max Flow

s t

q

1 1

q

U Q

Lemma: In depth-d flow network, any maximal flow
has value at least (1/d) of max flow.

High-Level Algorithm:

Start each flow path with 1/m flow
In each round: double flow in each flow path,
unless some node on path already “full”

Gives approximate fractional maximal flow.

Randomized rounding to get approximate
constrained q-matching

Some annoying details (U are actually components,
not nodes)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 14 / 17



Putting it Together

Want to find many parallel local improvements

Restrict to “safe” improvements: add good edge, remove edge from leaf branch

Prove there have to be many safe improvements (or else finished)

Algorithm for approximating max safe improvements via max flow, randomized rounding.

Õ(D +
√

n) rounds using complex but standard CONGEST communication ideas.

Have to do this for polylog values of q.

For each q, make progress on potential function or finish.

Approximation guarantee:

Somewhat complex/delicate
Morally: same as centralized FR, but with small extra loss (2 to 4 multiplicative)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 15 / 17



Putting it Together

Want to find many parallel local improvements

Restrict to “safe” improvements: add good edge, remove edge from leaf branch

Prove there have to be many safe improvements (or else finished)

Algorithm for approximating max safe improvements via max flow, randomized rounding.

Õ(D +
√

n) rounds using complex but standard CONGEST communication ideas.

Have to do this for polylog values of q.

For each q, make progress on potential function or finish.

Approximation guarantee:

Somewhat complex/delicate
Morally: same as centralized FR, but with small extra loss (2 to 4 multiplicative)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 15 / 17



Putting it Together

Want to find many parallel local improvements

Restrict to “safe” improvements: add good edge, remove edge from leaf branch

Prove there have to be many safe improvements (or else finished)

Algorithm for approximating max safe improvements via max flow, randomized rounding.

Õ(D +
√

n) rounds using complex but standard CONGEST communication ideas.

Have to do this for polylog values of q.

For each q, make progress on potential function or finish.

Approximation guarantee:

Somewhat complex/delicate
Morally: same as centralized FR, but with small extra loss (2 to 4 multiplicative)

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 15 / 17



Conclusion

Results:

Gave first Õ(D+
√

n)-round O(d+ log n)-degree bounded MDST algorithm in CONGEST

Lower bound: Can’t really improve running time even if only want O(d ⋅ log n)-degree

Open Problems:

Key idea was finding many local improvements which can be done in parallel. Should
imply PRAM, streaming, etc. algorithms?

Stronger approximation! Ideally: degree d + 1?

Steiner tree instead of spanning?

Centralized bounds same (degree d + 1 from local search)
Centralized algorithm makes local improvements using paths instead of edges. Distributed?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 16 / 17



Conclusion

Results:

Gave first Õ(D+
√

n)-round O(d+ log n)-degree bounded MDST algorithm in CONGEST

Lower bound: Can’t really improve running time even if only want O(d ⋅ log n)-degree

Open Problems:

Key idea was finding many local improvements which can be done in parallel. Should
imply PRAM, streaming, etc. algorithms?

Stronger approximation! Ideally: degree d + 1?

Steiner tree instead of spanning?

Centralized bounds same (degree d + 1 from local search)
Centralized algorithm makes local improvements using paths instead of edges. Distributed?

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 16 / 17



Thanks!

Dinitz, Halldórsson, Izumi, Newport Distributed MDST PODC 2019 17 / 17


