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Load Balancing in Graphs

• Work xu for each vertex u 
• T = ∑u xu

• Goal: redistribute work so that every 
node has approximately T/n load
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Load Balancing in Graphs

• Work xu for each vertex u 
• T = ∑u xu

• Goal: redistribute work so that every 
node has approximately T/n load

• Can only send work along edges of 
graph, no global knowledge (Local 
Load Balancing)

• Synchronous rounds: transfer work 
along edges in each round
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Desirable Properties
• In each round, edges used form a matching 

• Each node sends/receives work from at most one other node in each 
round 

• Important for some applications/models [Cybenko ’89] 
• Dimension Exchange

• Works in dynamic graphs 
• Sequence of graphs H = (G1 = (V, E1), G2 = (V, E2), …), each 

connected 
• Distributed: each node sees only load of neighbors in current graph

• Converges quickly
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• In each round, edges used form a matching 

• Each node sends/receives work from at most one other node in each 
round 

• Important for some applications/models [Cybenko ’89] 
• Dimension Exchange

• Works in dynamic graphs 
• Sequence of graphs H = (G1 = (V, E1), G2 = (V, E2), …), each 

connected 
• Distributed: each node sees only load of neighbors in current graph

• Converges quickly

• Many results getting 2/3 — can we get all three?
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Model
• Beginning of round r: 

• Graph Gr = (V, Er) 
• xu(r-1) work at node u 
• Each node u knows work at neighbors (not total work or n)
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Model
• Beginning of round r: 

• Graph Gr = (V, Er) 
• xu(r-1) work at node u 
• Each node u knows work at neighbors (not total work or n)

• In round r: 
• Local computation to determine matching Mr 
• If {u,v} ∈ Mr, distribute xu(r-1) + xv(r-1) between u and v to get 

xu(r) and xv(r)

• Goal: 𝜏-convergence 
• |xu(u) - xv(r)| ≤ 𝜏 for all u,v ∈ V

4



Example

5

0 15

27

2

34
12

5

10

10

15

17



Example

6

0 15

27

2

34
12

5

10

10

15

17



Example

7

11 15

16

23

13
15

5

10

10

15

14



Example

8

11 15

16

23

13
15

5

10

10

15

14



Example

9

11 15

16

23

13
15

5

10

10

15

14



Example

10

13 15

14

13

12
15

15

10

11

15

14



Example

11

13 15

14

13

12
15

15

10

11

15

14

5-Converged



Results: Upper Bound
Theorem: There is an algorithm which achieve 𝜏-
convergence after
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Results: Upper Bound
Theorem: There is an algorithm which achieve 𝜏-
convergence after
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• Match if 𝜏 =𝛩(T/n)  
• O(n2 log n) rounds 
• If small enough constant, loads within multiplicative factor

• Easy, simple algorithm (Max-Neighbor)



Results: Lower Bound
Theorem: No randomized algorithm can achieve 
O(T/n)-convergence in o(n2) rounds against an 
online adaptive adversary.

13



Results: Lower Bound
Theorem: No randomized algorithm can achieve 
O(T/n)-convergence in o(n2) rounds against an 
online adaptive adversary.
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• Adversary in each round r: 
• Sees current work distribution {xu(r-1)}u∈V 
• Chooses graph Gr = (V, Er) 
• Does not see random coins used by algorithm in round r 

• Max-Neighbor upper bound holds



Max Neighbor (round r)

• Node u flips fair coin to decide whether to send or 
receive 
• If send, then u sends proposal to argmaxv∈N(u)(|xv(r-1) - xu(r-1)|) 
• If receive, accept proposal from argmaxv∈S(|xv(r-1) - xu(r-1)|) 

(where S is neighbors of u who sent a proposal to u) 

• If u accepts proposal from v, they are connected in 
round r  
• Set xu(r) = xv(r) = ½(xu(r-1) + xv(r-1))
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Analysis Outline
• Potential function 𝜑(r) = ∑u,v ∈V |xu(r) - xv(r)| 

• Initially: 𝜑(0) ≤ Tn2 

• 𝜏-converged if 𝜑(r) ≤ 𝜏
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Analysis Outline
• Potential function 𝜑(r) = ∑u,v ∈V |xu(r) - xv(r)| 

• Initially: 𝜑(0) ≤ Tn2 

• 𝜏-converged if 𝜑(r) ≤ 𝜏

• Want to show potential drops “quickly” 
• Step 1: lower bound potential drop by other function Dr 
• Step 2: with constant probability Dr at least “maximum 

gap” (good round) 
• Step 3: with high probability, after                          rounds, 

enough good rounds to drop potential below 𝜏
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Step I
• Lemma: 𝜑(r-1) - 𝜑(r) ≥ Dr 

• du,v(r) = |xu(r) - xv(r)| 
• Mr = {{u,v} : u,v connected in round r} 
• Dr = ∑{u,v}∈Mr du,v(r-1)
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show other gaps don’t increase in total
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Bounding Dr

• Lemma: Dr ≥ tmax(r-1) / O(log n) with constant 
probability 
• du,v(r) = |xu(r) - xv(r)| 
• tmax(r) = maxu,v∈V du,v(r)
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• Would be great if each edge was in matching 
independently with constant probability, but not true



Bounding Dr

• Fix edge {ui, ui+1}.  With constant probability there is 
edge {v,w} ∈ Mr s.t. 
• v, w at distance at most 3 from u,v, and 
•  
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Bounding Dr

• Fix edge {ui, ui+1}.  With constant probability there is 
edge {v,w} ∈ Mr s.t. 
• v, w at distance at most 3 from u,v, and 
•  
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dv,w(r � 1) � dui,ui+1(r � 1)
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• Independent for i, i’ with |i’ - i| > 6 (distance bound) 

• Constant prob. of logarithmic fraction of full path



Putting it Together
• Potential drop at least Dr 

• With constant probability, Dr ≥ tmax(r-1) / O(log n)  

• Potential at round r at most n2 tmax(r-1) 

• So after about n2 rounds, potential small enough to 
guarantee 𝜏-convergence
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Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence
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Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

28

n 0 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right 



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

29

n/4 3n/4 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right 



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

30

3n/4 n/4 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

31

3n/4 n/4 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

32

3n/4 3n/16 n/16 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right 



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

33

3n/4 3n/16 n/16 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right 



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

34

3n/16 3n/4 n/32 n/32 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right 



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

35

3n/4 3n/16 n/32 n/32 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right



Lower Bound
• Claim (informal): any algorithm which in each round 

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence
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• If ALG used {i, i+1} in round r-1, swap (if necessary) 
so one with smaller work is on the right 
• Lemma: best strategy for ALG is to split work equally across 

each edge it uses (EQUAL) 
• EQUAL takes 𝛺(n2) rounds before significant weight on node n



Conclusion
• Load balancing upper and lower bounds: 

• Local (no global coordination) 
• At most one connections / node / round (matching) 
• Dynamic networks 
• Provably converges quickly (w.h.p.) 

• Lots of interesting questions left! 
• Theory of dynamic graphs 
• Connection to smoothed analysis 
• Logarithmic gap between upper and lower bounds 
• Practice…
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Thanks!
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