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e \Work x, for each vertex u
e [ =3, Xu
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i
27
\\ e Goal: redistribute work so that every
2 \
5

node has approximately T/n load

» Can only send work along edges of
graph, no global knowledge (Local
34
12

Load Balancing)

e Synchronous rounds: transfer work
along edges in each round
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connected
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Desirable Properties

In each round, edges used form a matching

e Each node sends/receives work from at most one other node in each
round

* |Important for some applications/models [Cybenko '89]
 Dimension Exchange

Works in dynamic graphs

e Sequence of graphs H=(G1=(V. E1), Go=(V, E»), ...), each
connected

e Distributed: each node sees only load of neighbors in current graph
Converges quickly

Many results getting 2/3 — can we get all three?
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Moael

* Beginning of round r
« Graph Gr=(V, E/)
o Xxy(r-1)work at node u
 Each node u knows work at neighbors (not total work or n)

* |nround r:
e Local computation to determine matching M,

o If {uv}e M, distribute xu(r-1) + x\(r-1) between u and v to get
xu(r) and xu(r)

e (Goal: r-convergence

o |xu(u)-xur)| <zforalluveV
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Results: Upper Bound

Gheorem: There Is an algorithm which achieve - X
convergence after

O <min <n2 log <@> : i logn>>
T T

rounds with high probability

J

. Match if £ =0(T/n)

 O(nélog n)rounds
* |f small enough constant, loads within multiplicative factor

* Easy, simple algorithm (Max-Neighbor)
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Results: Lower Bound

fTheorem: No randomized algorithm can achievew
O(T/n)-convergence in o(n?) rounds against an
Konline adaptive adversary. J

 Adversary in each round r:
e Sees current work distribution {xu(r-1)}uev
* Chooses graph Gr = (V, Er)
* Does not see random coins used by algorithm in round r

 Max-Neighbor upper bound holds
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Max Neighbor (round r)

 Node uflips fair coin to decide whether to send or

receive
» If send, then u sends proposal to argmaxvenw)(|Xv(r-1) - xu(r-1)])

« |f receive, accept proposal from argmaxves(|xu(r-1) - xu(r-1)|)
(where S is neighbors of uwho sent a proposal to u)

* |f uaccepts proposal from v, they are connected in

round r
o Set xu(r) = xu(r) = Yo(xu(r-1) + Xy(r-1))
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Analysis Outline

» Potential function @(r) = Yuvev |Xu(r) - xu(r)]
e Initially: @(0) < Tn?

e tr-convergedifo(r) <t

* Want to show potential drops "quickly”
 Step 1: lower bound potential drop by other function D,

e Step 2: with constant probability D, at least “maximum
gap” (good round) .

» Step 3: with high probability, after (“2 log <T>> rounds,
enough good rounds to drop potential below
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e Lemma: @(r-1) - o(r) = D

* duu(r) = ‘XU(f) 'XV(f)‘
e M, ={{uv}:u,vconnected in round r/
e D= > {uvjeMr du,v(r' 7)
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Bounding D

e Lemma: Dr > tmax(r-1) / O(log n) with constant

orobability
o duw(r) = |Xxu(r) - xu(r)|
 tmax(r) = maxuvev du(r)
12 16 14 30 45 36 15 50
Umax = Uo U1 Us us U4 Us Ue Vmax = U7

Z dui’ui‘Fl (,r o 1) Z dumaX7Umax (/r‘ o 1) — tmax(r o 1)

* \Would be great it each edge was in matching
iIndependently with constant probability, but not true
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* Fix edge {uj, ui+1}. With constant probability there is
edge {vw/} e M s.t.

e v wat distance at most 3 from u,v, and
¢ d’U,’w(r o 1) > duz’,uz’—|—1 (T R 1)
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Bounding D

* Fix edge {uj, ui+1}. With constant probability there is
edge {vw/} e M s.t.

e v wat distance at most 3 from u,v, and
¢ d’U,’w(r o 1) > duz’,uz’—|—1 (T R 1)

12 16 14 30 45 36 15 50
Umax = Uo OF /Uz U4 us Us Vmax = U7
\7 3 32
V 7%

* Independent for /, i’with |/’ - i| > 6 (distance bound)

* Constant prob. of logarithmic fraction of full path
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Putting it Together
e Potential drop at least D,
« With constant probability, Dr > tmax(r-1) / O(log n)
* Potential at round r at most n? tmax(r-1)

e SO after about n? rounds, potential small enough to
guarantee r-convergence

20
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* Claim (informal): any algorithm which in each round
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| ower Bound

* Claim (informal): any algorithm which in each round
uses a matching needs £(n?) rounds to get (T/n)-

convergence

3n/4 3n/16 n/32 n/32 0 0 0 0

e [f ALG used {i, i+7}inround r-1, swap (if necessary)
so one with smaller work is on the right

 Lemma: best strategy for ALG is to split work equally across
each edge it uses (EQUAL)

 EQUAL takes £2(n?) rounds before significant weight on node n
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Conclusion

* Load balancing upper and lower bounds:

Local (no global coordination)

At most one connections / node / round (matching)
Dynamic networks

Provably converges quickly (w.h.p.)

* [ots of interesting questions left!

Theory of dynamic graphs

Connection to smoothed analysis

Logarithmic gap between upper and lower bounds
Practice...
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Thanks!
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