Load Balancing with Bounded Convergence in Dynamic Networks

Michael Dinitz

Jeremy Fineman

Seth Gilbert

Calvin Newport

GEORGETOWN UNIVERSITY

Load Balancing in Graphs

Load Balancing in Graphs

- Work *x*^{*u*} for each vertex *u*
 - $T = \sum_{u} x_{u}$
- Goal: redistribute work so that every node has approximately *T/n* load

Load Balancing in Graphs

- Work *x*^{*u*} for each vertex *u*
 - $T = \sum_{u} x_{u}$
- Goal: redistribute work so that every node has approximately *T/n* load
- Can only send work along edges of graph, no global knowledge (Local Load Balancing)
- Synchronous rounds: transfer work along edges in each round

Desirable Properties

Desirable Properties

- In each round, edges used form a matching
 - Each node sends/receives work from at most one other node in each round
 - Important for some applications/models [Cybenko '89]
 - Dimension Exchange
- Works in dynamic graphs
 - Sequence of graphs $H = (G_1 = (V, E_1), G_2 = (V, E_2), ...)$, each connected
 - Distributed: each node sees only load of neighbors in current graph
- Converges quickly

Desirable Properties

- In each round, edges used form a matching
 - Each node sends/receives work from at most one other node in each round
 - Important for some applications/models [Cybenko '89]
 - Dimension Exchange
- Works in dynamic graphs
 - Sequence of graphs $H = (G_1 = (V, E_1), G_2 = (V, E_2), ...)$, each connected
 - Distributed: each node sees only load of neighbors in current graph
- Converges *quickly*
- Many results getting 2/3 can we get all three?

- Beginning of round *r*:
 - Graph $G_r = (V, E_r)$
 - *x_u(r-1)* work at node *u*
 - Each node *u* knows work at neighbors (not total work or *n*)

- Beginning of round *r*:
 - Graph $G_r = (V, E_r)$
 - *x_u(r-1)* work at node *u*
 - Each node *u* knows work at neighbors (not total work or *n*)
- In round *r*:
 - Local computation to determine matching M_r
 - If $\{u, v\} \in M_r$, distribute $x_u(r-1) + x_v(r-1)$ between u and v to get $x_u(r)$ and $x_v(r)$

- Beginning of round *r*:
 - Graph $G_r = (V, E_r)$
 - *x_u(r-1)* work at node *u*
 - Each node *u* knows work at neighbors (not total work or *n*)
- In round *r*:
 - Local computation to determine matching M_r
 - If $\{u, v\} \in M_r$, distribute $x_u(r-1) + x_v(r-1)$ between u and v to get $x_u(r)$ and $x_v(r)$
- Goal: τ -convergence
 - $|X_U(U) X_V(r)| \le \tau$ for all $U, V \in V$

Results: Upper Bound

Theorem: There is an algorithm which achieve τ -convergence after

$$O\left(\min\left(n^2\log\left(\frac{Tn}{\tau}\right),\frac{Tn\log n}{\tau}\right)\right)$$

rounds with high probability

Results: Upper Bound

Theorem: There is an algorithm which achieve τ -convergence after

$$O\left(\min\left(n^2\log\left(\frac{Tn}{\tau}\right),\frac{Tn\log n}{\tau}\right)\right)$$

rounds with high probability

- Match if $\tau = \Theta(T/n)$
 - *O(n² log n)* rounds
 - If small enough constant, loads within multiplicative factor
- Easy, simple algorithm (Max-Neighbor)

Results: Lower Bound

Theorem: No randomized algorithm can achieve O(T/n)-convergence in $o(n^2)$ rounds against an online adaptive adversary.

Results: Lower Bound

Theorem: No randomized algorithm can achieve O(T/n)-convergence in $o(n^2)$ rounds against an online adaptive adversary.

- Adversary in each round *r*:
 - Sees current work distribution $\{x_u(r-1)\}_{u \in V}$
 - Chooses graph $G_r = (V, E_r)$
 - Does not see random coins used by algorithm in round *r*
- Max-Neighbor upper bound holds

Max Neighbor (round r)

- Node u flips fair coin to decide whether to send or receive
 - If send, then *u* sends proposal to $\operatorname{argmax}_{v \in N(u)}(|x_v(r-1) x_u(r-1)|)$
 - If receive, accept proposal from $\arg\max_{v \in S}(|x_v(r-1) x_u(r-1)|)$ (where S is neighbors of u who sent a proposal to u)
- If u accepts proposal from v, they are connected in round r
 - Set $x_u(r) = x_v(r) = \frac{1}{2}(x_u(r-1) + x_v(r-1))$

Analysis Outline

Analysis Outline

- Potential function $\varphi(r) = \sum_{u,v \in V} |x_u(r) x_v(r)|$
 - Initially: $\varphi(0) \leq Tn^2$
 - τ -converged if $\varphi(\mathbf{r}) \leq \tau$

Analysis Outline

- Potential function $\varphi(r) = \sum_{u,v \in V} |x_u(r) x_v(r)|$
 - Initially: $\varphi(0) \leq Tn^2$
 - τ -converged if $\varphi(\mathbf{r}) \leq \tau$
- Want to show potential drops "quickly"
 - Step 1: lower bound potential drop by other function D_r
 - Step 2: with constant probability D_r at least "maximum gap" (good round)
 - Step 3: with high probability, after $O\left(n^2 \log\left(\frac{Tn}{\tau}\right)\right)$ rounds, enough good rounds to drop potential below τ

- Lemma: $\varphi(r-1) \varphi(r) \ge D_r$
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $M_r = \{\{u, v\} : u, v \text{ connected in round } r\}$
 - $D_r = \sum_{\{u,v\}\in Mr} d_{u,v}(r-1)$

- Lemma: $\varphi(r-1) \varphi(r) \ge D_r$
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $M_r = \{\{u, v\} : u, v \text{ connected in round } r\}$
 - $D_r = \sum_{\{u,v\}\in Mr} d_{u,v}(r-1)$
- Get *D_r* drop directly from pairs in *M_r*, just need to show other gaps don't increase in total

- Lemma: $\varphi(r-1) \varphi(r) \ge D_r$
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $M_r = \{\{u, v\} : u, v \text{ connected in round } r\}$
 - $D_r = \sum_{\{u,v\}\in Mr} d_{u,v}(r-1)$
- Get *D_r* drop directly from pairs in *M_r*, just need to show other gaps don't increase in total
- Intuition: M_r is one edge

- Lemma: $\varphi(r-1) \varphi(r) \ge D_r$
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $M_r = \{\{u, v\} : u, v \text{ connected in round } r\}$
 - $D_r = \sum_{\{u,v\}\in Mr} d_{u,v}(r-1)$
- Get *D_r* drop directly from pairs in *M_r*, just need to show other gaps don't increase in total
- Intuition: M_r is one edge

Bounding D_r

- Lemma: $D_r \ge t_{max}(r-1) / O(\log n)$ with constant probability
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $t_{max}(r) = max_{u,v \in V} d_{u,v}(r)$

Bounding Dr

- Lemma: $D_r \ge t_{max}(r-1) / O(\log n)$ with constant probability
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $t_{max}(r) = max_{u,v \in V} d_{u,v}(r)$

Bounding Dr

- Lemma: $D_r \ge t_{max}(r-1) / O(\log n)$ with constant probability
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $t_{max}(r) = max_{u,v \in V} d_{u,v}(r)$

$$\sum_{i} d_{u_i, u_{i+1}}(r-1) \ge d_{u_{\max}, v_{\max}}(r-1) = t_{\max}(r-1)$$

Bounding D_r

- Lemma: $D_r \ge t_{max}(r-1) / O(\log n)$ with constant probability
 - $d_{U,V}(r) = |X_U(r) X_V(r)|$
 - $t_{max}(r) = max_{u,v \in V} d_{u,v}(r)$

$$\sum_{i} d_{u_i, u_{i+1}}(r-1) \ge d_{u_{\max}, v_{\max}}(r-1) = t_{\max}(r-1)$$

 Would be great if each edge was in matching independently with constant probability, but not true

Bounding Dr

- Fix edge { u_i , u_{i+1} }. With constant probability there is edge {v,w} $\in M_r$ s.t.
 - v, w at distance at most 3 from u,v, and

•
$$d_{v,w}(r-1) \ge d_{u_i,u_{i+1}}(r-1)$$

Bounding Dr

- Fix edge { u_i , u_{i+1} }. With constant probability there is edge {v,w} $\in M_r$ s.t.
 - v, w at distance at most 3 from u,v, and

•
$$d_{v,w}(r-1) \ge d_{u_i,u_{i+1}}(r-1)$$

Bounding D_r

- Fix edge $\{u_i, u_{i+1}\}$. With constant probability there is edge $\{v, w\} \in M_r$ s.t.
 - v, w at distance at most 3 from u,v, and

•
$$d_{v,w}(r-1) \ge d_{u_i,u_{i+1}}(r-1)$$

- Independent for *i*, *i* with |i' i| > 6 (distance bound)
- Constant prob. of logarithmic fraction of full path

Putting it Together

- Potential drop at least D_r
- With constant probability, $D_r \ge t_{max}(r-1) / O(\log n)$
- Potential at round r at most n² t_{max}(r-1)
- So after about n^2 rounds, potential small enough to guarantee τ -convergence

 Claim (informal): any algorithm which in each round uses a matching needs Ω(n²) rounds to get (T/n)convergence

 Claim (informal): any algorithm which in each round uses a matching needs Ω(n²) rounds to get (T/n)convergence

 Claim (informal): any algorithm which in each round uses a matching needs Ω(n²) rounds to get (T/n)convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

• Claim (informal): any algorithm which in each round uses a matching needs $\Omega(n^2)$ rounds to get (*T/n*)-convergence

 Claim (informal): any algorithm which in each round uses a matching needs Ω(n²) rounds to get (T/n)convergence

- If ALG used {*i*, *i*+1} in round r-1, swap (if necessary) so one with smaller work is on the right
 - Lemma: best strategy for ALG is to split work equally across each edge it uses (EQUAL)
 - EQUAL takes $\Omega(n^2)$ rounds before significant weight on node n

Conclusion

- Load balancing upper and lower bounds:
 - Local (no global coordination)
 - At most one connections / node / round (matching)
 - Dynamic networks
 - Provably converges quickly (w.h.p.)
- Lots of interesting questions left!
 - Theory of dynamic graphs
 - Connection to smoothed analysis
 - Logarithmic gap between upper and lower bounds
 - Practice...

Thanks!