
Load Balancing with
Bounded Convergence in

Dynamic Networks
Michael Dinitz

1

Jeremy Fineman Seth Gilbert Calvin Newport

Load Balancing in Graphs

2

0 15

27

5
2

34
12

Load Balancing in Graphs

• Work xu for each vertex u
• T = ∑u xu

• Goal: redistribute work so that every
node has approximately T/n load

2

0 15

27

5
2

34
12

Load Balancing in Graphs

• Work xu for each vertex u
• T = ∑u xu

• Goal: redistribute work so that every
node has approximately T/n load

• Can only send work along edges of
graph, no global knowledge (Local
Load Balancing)

• Synchronous rounds: transfer work
along edges in each round

2

0 15

27

5
2

34
12

Desirable Properties

3

Desirable Properties
• In each round, edges used form a matching

• Each node sends/receives work from at most one other node in each
round

• Important for some applications/models [Cybenko ’89]
• Dimension Exchange

• Works in dynamic graphs
• Sequence of graphs H = (G1 = (V, E1), G2 = (V, E2), …), each

connected
• Distributed: each node sees only load of neighbors in current graph

• Converges quickly

3

Desirable Properties
• In each round, edges used form a matching

• Each node sends/receives work from at most one other node in each
round

• Important for some applications/models [Cybenko ’89]
• Dimension Exchange

• Works in dynamic graphs
• Sequence of graphs H = (G1 = (V, E1), G2 = (V, E2), …), each

connected
• Distributed: each node sees only load of neighbors in current graph

• Converges quickly

• Many results getting 2/3 — can we get all three?

3

Model

4

Model
• Beginning of round r:

• Graph Gr = (V, Er)
• xu(r-1) work at node u
• Each node u knows work at neighbors (not total work or n)

4

Model
• Beginning of round r:

• Graph Gr = (V, Er)
• xu(r-1) work at node u
• Each node u knows work at neighbors (not total work or n)

• In round r:
• Local computation to determine matching Mr
• If {u,v} ∈ Mr, distribute xu(r-1) + xv(r-1) between u and v to get

xu(r) and xv(r)

4

Model
• Beginning of round r:

• Graph Gr = (V, Er)
• xu(r-1) work at node u
• Each node u knows work at neighbors (not total work or n)

• In round r:
• Local computation to determine matching Mr
• If {u,v} ∈ Mr, distribute xu(r-1) + xv(r-1) between u and v to get

xu(r) and xv(r)

• Goal: 𝜏-convergence
• |xu(u) - xv(r)| ≤ 𝜏 for all u,v ∈ V

4

Example

5

0 15

27

2

34
12

5

10

10

15

17

Example

6

0 15

27

2

34
12

5

10

10

15

17

Example

7

11 15

16

23

13
15

5

10

10

15

14

Example

8

11 15

16

23

13
15

5

10

10

15

14

Example

9

11 15

16

23

13
15

5

10

10

15

14

Example

10

13 15

14

13

12
15

15

10

11

15

14

Example

11

13 15

14

13

12
15

15

10

11

15

14

5-Converged

Results: Upper Bound
Theorem: There is an algorithm which achieve 𝜏-
convergence after

12

O

✓
min

✓
n2

log

✓
Tn

⌧

◆
,
Tn log n

⌧

◆◆

rounds with high probability

Results: Upper Bound
Theorem: There is an algorithm which achieve 𝜏-
convergence after

12

O

✓
min

✓
n2

log

✓
Tn

⌧

◆
,
Tn log n

⌧

◆◆

rounds with high probability

• Match if 𝜏 =𝛩(T/n)
• O(n2 log n) rounds
• If small enough constant, loads within multiplicative factor

• Easy, simple algorithm (Max-Neighbor)

Results: Lower Bound
Theorem: No randomized algorithm can achieve
O(T/n)-convergence in o(n2) rounds against an
online adaptive adversary.

13

Results: Lower Bound
Theorem: No randomized algorithm can achieve
O(T/n)-convergence in o(n2) rounds against an
online adaptive adversary.

13

• Adversary in each round r:
• Sees current work distribution {xu(r-1)}u∈V
• Chooses graph Gr = (V, Er)
• Does not see random coins used by algorithm in round r

• Max-Neighbor upper bound holds

Max Neighbor (round r)

• Node u flips fair coin to decide whether to send or
receive
• If send, then u sends proposal to argmaxv∈N(u)(|xv(r-1) - xu(r-1)|)
• If receive, accept proposal from argmaxv∈S(|xv(r-1) - xu(r-1)|)

(where S is neighbors of u who sent a proposal to u)

• If u accepts proposal from v, they are connected in
round r
• Set xu(r) = xv(r) = ½(xu(r-1) + xv(r-1))

14

Example

15

0 15

27

2

34
12

5

10

10

16

17

= send

Example

16

0 15

27

2

34
12

5

10

10

16

17

= send

Example

17

0 15

27

2

34
12

5

10

10

16

17

= send

Example

18

0 15

27

2

34
12

5

10

10

16

17

= send

Example

19

17 15

27

2

17
14

5

10

10

14

17

= send

Example

20

17 15

27

2

17
14

5

10

10

14

17

= send

Analysis Outline

21

Analysis Outline
• Potential function 𝜑(r) = ∑u,v ∈V |xu(r) - xv(r)|

• Initially: 𝜑(0) ≤ Tn2

• 𝜏-converged if 𝜑(r) ≤ 𝜏

21

Analysis Outline
• Potential function 𝜑(r) = ∑u,v ∈V |xu(r) - xv(r)|

• Initially: 𝜑(0) ≤ Tn2

• 𝜏-converged if 𝜑(r) ≤ 𝜏

• Want to show potential drops “quickly”
• Step 1: lower bound potential drop by other function Dr
• Step 2: with constant probability Dr at least “maximum

gap” (good round)
• Step 3: with high probability, after rounds,

enough good rounds to drop potential below 𝜏

21

O

✓
n2

log

✓
Tn

⌧

◆◆

Step I

22

Step I
• Lemma: 𝜑(r-1) - 𝜑(r) ≥ Dr

• du,v(r) = |xu(r) - xv(r)|
• Mr = {{u,v} : u,v connected in round r}
• Dr = ∑{u,v}∈Mr du,v(r-1)

22

Step I
• Lemma: 𝜑(r-1) - 𝜑(r) ≥ Dr

• du,v(r) = |xu(r) - xv(r)|
• Mr = {{u,v} : u,v connected in round r}
• Dr = ∑{u,v}∈Mr du,v(r-1)

• Get Dr drop directly from pairs in Mr, just need to
show other gaps don’t increase in total

22

Step I
• Lemma: 𝜑(r-1) - 𝜑(r) ≥ Dr

• du,v(r) = |xu(r) - xv(r)|
• Mr = {{u,v} : u,v connected in round r}
• Dr = ∑{u,v}∈Mr du,v(r-1)

• Get Dr drop directly from pairs in Mr, just need to
show other gaps don’t increase in total

• Intuition: Mr is one edge

23

0 max load

Step I
• Lemma: 𝜑(r-1) - 𝜑(r) ≥ Dr

• du,v(r) = |xu(r) - xv(r)|
• Mr = {{u,v} : u,v connected in round r}
• Dr = ∑{u,v}∈Mr du,v(r-1)

• Get Dr drop directly from pairs in Mr, just need to
show other gaps don’t increase in total

• Intuition: Mr is one edge

23

0 max load

Bounding Dr

• Lemma: Dr ≥ tmax(r-1) / O(log n) with constant
probability
• du,v(r) = |xu(r) - xv(r)|
• tmax(r) = maxu,v∈V du,v(r)

24

Bounding Dr

• Lemma: Dr ≥ tmax(r-1) / O(log n) with constant
probability
• du,v(r) = |xu(r) - xv(r)|
• tmax(r) = maxu,v∈V du,v(r)

24

umax = u0 u1 u2 u3 u4 u5 u6 vmax = u7

12 16 14 30 45 36 15 50

Bounding Dr

• Lemma: Dr ≥ tmax(r-1) / O(log n) with constant
probability
• du,v(r) = |xu(r) - xv(r)|
• tmax(r) = maxu,v∈V du,v(r)

24

umax = u0 u1 u2 u3 u4 u5 u6 vmax = u7

X

i

dui,ui+1

(r � 1) � du
max

,v
max

(r � 1) = t
max

(r � 1)

12 16 14 30 45 36 15 50

Bounding Dr

• Lemma: Dr ≥ tmax(r-1) / O(log n) with constant
probability
• du,v(r) = |xu(r) - xv(r)|
• tmax(r) = maxu,v∈V du,v(r)

24

umax = u0 u1 u2 u3 u4 u5 u6 vmax = u7

X

i

dui,ui+1

(r � 1) � du
max

,v
max

(r � 1) = t
max

(r � 1)

12 16 14 30 45 36 15 50

• Would be great if each edge was in matching
independently with constant probability, but not true

Bounding Dr

• Fix edge {ui, ui+1}. With constant probability there is
edge {v,w} ∈ Mr s.t.
• v, w at distance at most 3 from u,v, and
•

25

dv,w(r � 1) � dui,ui+1(r � 1)

umax = u0 u1 u2 u3 u4 u5 u6 vmax = u7

12 16 14 30 45 36 15 50

Bounding Dr

• Fix edge {ui, ui+1}. With constant probability there is
edge {v,w} ∈ Mr s.t.
• v, w at distance at most 3 from u,v, and
•

25

dv,w(r � 1) � dui,ui+1(r � 1)

umax = u0 u1 u2 u3 u4 u5 u6 vmax = u7

12 16 14 30 45 36 15 50

v w

13 32

Bounding Dr

• Fix edge {ui, ui+1}. With constant probability there is
edge {v,w} ∈ Mr s.t.
• v, w at distance at most 3 from u,v, and
•

25

dv,w(r � 1) � dui,ui+1(r � 1)

umax = u0 u1 u2 u3 u4 u5 u6 vmax = u7

12 16 14 30 45 36 15 50

v w

13 32

• Independent for i, i’ with |i’ - i| > 6 (distance bound)

• Constant prob. of logarithmic fraction of full path

Putting it Together
• Potential drop at least Dr

• With constant probability, Dr ≥ tmax(r-1) / O(log n)

• Potential at round r at most n2 tmax(r-1)

• So after about n2 rounds, potential small enough to
guarantee 𝜏-convergence

26

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

27

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

27

n 0 0 0 0 0 0 0

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

27

n 0 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

28

n 0 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

29

n/4 3n/4 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

30

3n/4 n/4 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

31

3n/4 n/4 0 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

32

3n/4 3n/16 n/16 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

33

3n/4 3n/16 n/16 0 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

34

3n/16 3n/4 n/32 n/32 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

35

3n/4 3n/16 n/32 n/32 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right

Lower Bound
• Claim (informal): any algorithm which in each round

uses a matching needs 𝛺(n2) rounds to get (T/n)-
convergence

36

3n/4 3n/16 n/32 n/32 0 0 0 0

• If ALG used {i, i+1} in round r-1, swap (if necessary)
so one with smaller work is on the right
• Lemma: best strategy for ALG is to split work equally across

each edge it uses (EQUAL)
• EQUAL takes 𝛺(n2) rounds before significant weight on node n

Conclusion
• Load balancing upper and lower bounds:

• Local (no global coordination)
• At most one connections / node / round (matching)
• Dynamic networks
• Provably converges quickly (w.h.p.)

• Lots of interesting questions left!
• Theory of dynamic graphs
• Connection to smoothed analysis
• Logarithmic gap between upper and lower bounds
• Practice…

37

Thanks!

38

