Load Balancing with Bounded Convergence in Dynamic Networks

Load Balancing in Graphs

Load Balancing in Graphs

- Work x_{u} for each vertex u
- $T=\sum u X_{u}$
- Goal: redistribute work so that every node has approximately T / n load

Load Balancing in Graphs

- Work x_{u} for each vertex u
- $T=\sum u X_{u}$
- Goal: redistribute work so that every node has approximately T / n load
- Can only send work along edges of graph, no global knowledge (Local Load Balancing)
- Synchronous rounds: transfer work along edges in each round

Desirable Properties

Desirable Properties

- In each round, edges used form a matching
- Each node sends/receives work from at most one other node in each round
- Important for some applications/models [Cybenko '89]
- Dimension Exchange
- Works in dynamic graphs
- Sequence of graphs $H=\left(G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), \ldots\right)$, each connected
- Distributed: each node sees only load of neighbors in current graph
- Converges quickly

Desirable Properties

- In each round, edges used form a matching
- Each node sends/receives work from at most one other node in each round
- Important for some applications/models [Cybenko '89]
- Dimension Exchange
- Works in dynamic graphs
- Sequence of graphs $H=\left(G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), \ldots\right)$, each connected
- Distributed: each node sees only load of neighbors in current graph
- Converges quickly
- Many results getting 2/3 - can we get all three?

Model

Model

- Beginning of round r :
- Graph $G_{r}=\left(V, E_{r}\right)$
- $X_{u}(r-1)$ work at node u
- Each node u knows work at neighbors (not total work or n)

Model

- Beginning of round r :
- Graph $G_{r}=\left(V, E_{r}\right)$
- $\quad x_{u}(r-1)$ work at node u
- Each node u knows work at neighbors (not total work or n)
- In round r :
- Local computation to determine matching M_{r}
- If $\{u, v\} \in M_{r}$, distribute $x_{u}(r-1)+x_{v}(r-1)$ between u and v to get $x_{u}(r)$ and $x_{v}(r)$

Model

- Beginning of round r :
- Graph $G_{r}=\left(V, E_{r}\right)$
- $x_{u}(r-1)$ work at node u
- Each node u knows work at neighbors (not total work or n)
- In round r :
- Local computation to determine matching M_{r}
- If $\{u, v\} \in M_{r}$, distribute $x_{u}(r-1)+x_{v}(r-1)$ between u and v to get $x_{u}(r)$ and $x_{v}(r)$
- Goal: τ-convergence
- $\left|x_{u}(u)-x_{v}(r)\right| \leq \tau$ for all $u, v \in V$

Example

Results: Upper Bound

Theorem: There is an algorithm which achieve τ convergence after

$$
O\left(\min \left(n^{2} \log \left(\frac{T n}{\tau}\right), \frac{T n \log n}{\tau}\right)\right)
$$

rounds with high probability

Results: Upper Bound

Theorem: There is an algorithm which achieve τ convergence after

$$
O\left(\min \left(n^{2} \log \left(\frac{T n}{\tau}\right), \frac{T n \log n}{\tau}\right)\right)
$$

rounds with high probability

- Match if $\tau=\Theta(T / n)$
- $O\left(n^{2} \log n\right)$ rounds
- If small enough constant, loads within multiplicative factor
- Easy, simple algorithm (Max-Neighbor)

Results: Lower Bound

Theorem: No randomized algorithm can achieve $O(T / n)$-convergence in $o\left(n^{2}\right)$ rounds against an online adaptive adversary.

Results: Lower Bound

Theorem: No randomized algorithm can achieve $O(T / n)$-convergence in $o\left(n^{2}\right)$ rounds against an online adaptive adversary.

- Adversary in each round r :
- Sees current work distribution $\left\{x_{u}(r-1)\right\}_{u \in V}$
- Chooses graph $G_{r}=\left(V, E_{r}\right)$
- Does not see random coins used by algorithm in round r
- Max-Neighbor upper bound holds

Max Neighbor (round r)

- Node u flips fair coin to decide whether to send or receive
- If send, then u sends proposal to $\operatorname{argmax}_{v \in N(u)}\left(\left|x_{v}(r-1)-x_{u}(r-1)\right|\right)$
- If receive, accept proposal from $\operatorname{argmax}_{v \in S}\left(\left|x_{v}(r-1)-x_{u}(r-1)\right|\right)$ (where S is neighbors of u who sent a proposal to u)
- If u accepts proposal from v, they are connected in round r
- Set $x_{u}(r)=x_{v}(r)=1 / 2\left(x_{u}(r-1)+x_{v}(r-1)\right)$

Example

Example

Example

Example

Example

Example

Analysis Outline

Analysis Outline

- Potential function $\varphi(r)=\sum_{u, v \in v}\left|x_{u}(r)-x_{v}(r)\right|$
- Initially: $\varphi(0) \leq T n^{2}$
- τ-converged if $\varphi(r) \leq \tau$

Analysis Outline

- Potential function $\varphi(r)=\sum_{u, v \in v}\left|x_{u}(r)-x_{v}(r)\right|$
- Initially: $\varphi(0) \leq T n^{2}$
- τ-converged if $\varphi(r) \leq \tau$
- Want to show potential drops "quickly"
- Step 1: lower bound potential drop by other function D_{r}
- Step 2: with constant probability D_{r} at least "maximum gap" (good round)
- Step 3: with high probability, after $O\left(n^{2} \log \left(\frac{T n}{\tau}\right)\right)$ rounds, enough good rounds to drop potential below τ

Step I

Step I

- Lemma: $\varphi(r-1)-\varphi(r) \geq D_{r}$
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $M_{r}=\{\{u, v\}: u, v$ connected in round $r\}$
- $D_{r}=\sum_{(u, v)_{\in} M r} d_{u, v}(r-1)$

Step I

- Lemma: $\varphi(r-1)-\varphi(r) \geq D_{r}$
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $M_{r}=\{\{u, v\}: u, v$ connected in round $r\}$
- $D_{r}=\sum_{\{u, v) \in M r} d_{u, v}(r-1)$
- Get D_{r} drop directly from pairs in M_{r}, just need to show other gaps don't increase in total

Step I

- Lemma: $\varphi(r-1)-\varphi(r) \geq D_{r}$
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $M_{r}=\{\{u, v\}: u, v$ connected in round $r\}$
- $D_{r}=\sum_{\{u, v\} \in M r} d_{u, v}(r-1)$
- Get D_{r} drop directly from pairs in M_{r}, just need to show other gaps don't increase in total
- Intuition: M_{r} is one edge

Step I

- Lemma: $\varphi(r-1)-\varphi(r) \geq D_{r}$
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $M_{r}=\{\{u, v\}: u, v$ connected in round $r\}$
- $D_{r}=\sum_{\{u, v\} \in M r} d_{u, v}(r-1)$
- Get D_{r} drop directly from pairs in M_{r}, just need to show other gaps don't increase in total
- Intuition: M_{r} is one edge

Bounding D_{r}

- Lemma: $D_{r} \geq t_{\max }(r-1) / O(\log n)$ with constant probability
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $t_{\text {max }}(r)=\max _{u, v \in v} d_{u, v}(r)$

Bounding D_{r}

- Lemma: $D_{r} \geq t_{\max }(r-1) / O(\log n)$ with constant probability
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $t_{\text {max }}(r)=\max _{u, v \in V} d_{u, v}(r)$

Bounding D_{r}

- Lemma: $D_{r} \geq t_{\max }(r-1) / O(\log n)$ with constant probability
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $t_{\text {max }}(r)=\max _{u, v \in V} d_{u, v}(r)$

Bounding D_{r}

- Lemma: $D_{r} \geq t_{\max }(r-1) / O(\log n)$ with constant probability
- $d_{u, v}(r)=\left|x_{u}(r)-x_{v}(r)\right|$
- $t_{\text {max }}(r)=\max _{u, v \in v} d_{u, v}(r)$

- Would be great if each edge was in matching independently with constant probability, but not true

Bounding D_{r}

- Fix edge $\left\{u_{i}, u_{i+1}\right\}$. With constant probability there is edge $\{v, w\} \in M_{r}$ s.t.
- v, w at distance at most 3 from u, v, and
- $d_{v, w}(r-1) \geq d_{u_{i}, u_{i+1}}(r-1)$

Bounding D_{r}

- Fix edge $\left\{u_{i}, u_{i+1}\right\}$. With constant probability there is edge $\{v, w\} \in M_{r}$ s.t.
- v, w at distance at most 3 from u, v, and
- $d_{v, w}(r-1) \geq d_{u_{i}, u_{i+1}}(r-1)$

Bounding D_{r}

- Fix edge $\left\{u_{i}, u_{i+1}\right\}$. With constant probability there is edge $\{v, w\} \in M_{r}$ s.t.
- v, w at distance at most 3 from u, v, and
- $d_{v, w}(r-1) \geq d_{u_{i}, u_{i+1}}(r-1)$

- Independent for i, i ' with $\mid i{ }^{\prime}$ - $i \mid>6$ (distance bound)
- Constant prob. of logarithmic fraction of full path

Putting it Together

- Potential drop at least D_{r}
- With constant probability, $D_{r} \geq t_{\max }(r-1) / O(\log n)$
- Potential at round r at most $n^{2} t_{\max }(r-1)$
- So after about n^{2} rounds, potential small enough to guarantee τ-convergence

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If $A L G$ used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right

Lower Bound

- Claim (informal): any algorithm which in each round uses a matching needs $\Omega\left(n^{2}\right)$ rounds to get (T/n)convergence

- If ALG used $\{i, i+1\}$ in round $r-1$, swap (if necessary) so one with smaller work is on the right
- Lemma: best strategy for ALG is to split work equally across each edge it uses (EQUAL)
- EQUAL takes $\Omega\left(n^{2}\right)$ rounds before significant weight on node n

Conclusion

- Load balancing upper and lower bounds:
- Local (no global coordination)
- At most one connections / node / round (matching)
- Dynamic networks
- Provably converges quickly (w.h.p.)
- Lots of interesting questions left!
- Theory of dynamic graphs
- Connection to smoothed analysis
- Logarithmic gap between upper and lower bounds
- Practice...

Thanks!

